Hodge Spectral Sequence and Symmetry on Compact Kähler Spaces

By

Takeo OHSAWA*

Introduction

For every complex manifold M, there exists a canonical spectral sequence which abuts to the de Rham cohomology of M. It consists of the set of C^∞ differential forms on M, and the complex exterior derivatives ∂ and $\bar{\partial}$ of type $(0,1)$ and $(1,0)$, respectively, and its E_1-term is defined to be $\text{Ker} \, \partial/\text{Im} \, \bar{\partial}$. This will be referred to as the Hodge spectral sequence on M, after the celebrated result of W. Hodge [4].

Hodge's theorem states that the Hodge spectral sequence degenerates at E_1 and that $E_1^{pq}(M) \cong E_1^{qp}(M)$ if M is a compact Kähler manifold. Here $E_1^{pq}(M)$ denotes the (p, q)-component of the E_1-term.

The purpose of the present note is to study an analogue of Hodge spectral sequences on compact complex spaces within the spirit of the previous note [7], where we considered the spaces which admit only isolated singularities.

Our main result is as follows.

Theorem 1 Let X be a compact Kähler space of pure dimension and let Y be an analytic subset of X containing the singular locus of X. Then, the Hodge spectral sequence on $X \setminus Y$ degenerates for the total degrees less than $\text{codim} \, Y - 1$ at the E_1-term. Moreover, $E_1^{pq}(X \setminus Y) \cong E_1^{qp}(X \setminus Y)$ for $p + q < \text{codim} \, Y - 1$.

In order to understand the symmetry $E_1^{pq}(X \setminus Y) \cong E_1^{qp}(X \setminus Y)$, we shall also prove the following.

Received December 24, 1986.

* Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 606 Japan.
Theorem 2 Let X and Y be as above, and let (E, h) be a flat Hermitian vector bundle over $X \setminus Y$. Then, $H^{p,q}(X \setminus Y, E) \cong H^{q,p}(X \setminus Y, E^*)$, for $p + q < \text{codim } Y - 1$. Here $H^{p,q}$ denotes the cohomology of type (p, q) in the sense of Dolbeault and E^* denotes the dual bundle of E.

For the proof of the above mentioned results, an L^2-version of Andreotti-Grauert's vanishing theorem on q-complete spaces is necessary which is to be proved in §2 by using a new L^2-estimate obtained in [8].

The author expresses his hearty thanks to Professors H. Flenner and S. Tsuyumine for stimulating discussions during the author's stay at Mathematisches Institut of the University of Göttingen.

§ 1. Preliminaries

Definition A (reduced) complex space X together with the following data $\{U_j, \varphi_j\}_{j \in A}$ is called a Kähler space.

1) A is a set of indices.
2) $\{U_j\}_{j \in A}$ is an open covering of X.
3) φ_j is a C^∞ strictly plurisubharmonic function on U_j.
4) $\varphi_j - \varphi_k$ is pluriharmonic on $U_j \cap U_k$.

Given a Kähler space X, one attaches a Kähler metric on the complement of the singular locus by $\partial \bar{\partial} \varphi_j$, which is globally well defined by condition 4).

Let X be a compact Kähler space of pure dimension n with singular locus Z, and let Y be an analytic subset of X containing Z. We shall denote by ds^2 the prescribed Kähler metric on $X \setminus Z$.

Let $\{Y_a\}_{a=0}^m$ be a partition of Y into subsets satisfying the following properties.

i) Y_a are pure dimensional analytic subsets of Y.
i) $Y_{a+1} \subseteq \overline{Y}_a$.
i) $\text{dim } Y_a = m - a$.
i) The reduced structures of Y_a are regular.
Such a partition (a stratification of Y) always exists, since the singular loci of complex analytic spaces are analytic subsets.

As a complex manifold Y_a has a holomorphic coordinate patch. In other words, for each point $y \in Y_a$ one can find a Stein open neighbourhood U in Y_a and a biholomorphic map from U onto a domain in \mathbb{C}^{m-a}. Since every holomorphic function on U is holomorphically extendable to a neighbourhood of U in X, it follows that U is a holomorphic neighbourhood retract in X. Therefore, Y_a can be covered by Stein open subsets, each of which has a Stein neighbourhood, say V, with a holomorphic embedding into a domain of some complex number space \mathbb{C}^N such that the image of $V \cap Y_a$ is contained in a linear subspace of dimension $m-a$. Identifying V as a subspace of \mathbb{C}^N, one sees that the restrictions of linear functions vanishing on $V \cap Y_a$, say z_1, \ldots, z_{N-m+a}, generate the ideal of holomorphic functions vanishing on $V \cap Y_a$ in the ring of holomorphic functions on V. One associates to V a possibly smaller Stein open set

$$W := \left\{ x \in V; \sum_{\nu=1}^{N-m+a} |z_\nu(x)|^2 < \frac{1}{2} \right\}$$

and define a plurisubharmonic function ϕ_W on W by

$$\phi_W(x) := -\ln(-\ln|z'(x)|^p).$$

Here we put $z' := (z_1, \ldots, z_{N-m+a})$ and $||z'(x)||^p := \sum_{\nu=1}^{N-m+a} |z_\nu(x)|^2$.

Suppose that a point y in Y_a belongs to the polar sets of two such functions ϕ_W and $\phi_{W'}$ (i.e. $\phi_W(y) = \phi_{W'}(y) = -\infty$). Then, there exists a neighbourhood $\mathcal{O} \ni y$ and a constant C such that

$$(1) \quad |\exp(-\phi_W) - \exp(-\phi_{W'})| < C \quad \text{on} \quad \mathcal{O} \setminus Y.$$

In fact, this follows from that z_i are generators of the ideal sheaf of $V \cap Y_a$.

Now let \mathcal{J}_a be the ideal sheaf of \bar{Y}_a in the structure sheaf \mathcal{O}_X of X. Then, for each point $y \in \bar{Y}_a$ there exists a neighbourhood U_y in X and finitely many holomorphic functions $f_1, \ldots, f_m (m = m(y))$ which generate the stalks of \mathcal{J}_a at every point of U_y (cf. [3]). Then we put

$$W_y := \left\{ x \in U_y; \sum_{i=1}^{m} |f_i|^2 < \frac{1}{2} \right\}$$

and $\phi_y := -\ln(-\ln||f||^p)$, where $||f||^p := \sum_{i=1}^{m} |f_i|^2$.
Let \(\{W_k\} \) be a finite system of such Stein open subsets of \(X \) whose union contains \(\overline{Y}_a \), where we put \(W_k = W_{k,2} \) and let \(\phi_k \) be the associated plurisubharmonic functions on \(W_k \) defined as above. Such a system \(\{W_k, \phi_k\} \) shall be referred to as a polarized cover along \(\overline{Y}_a \). Suppose that \(y \in W_k \cap W_i \). Then, by the same reasoning as above, one sees that there exists a neighbourhood \(\Omega \ni y \) and a constant \(C \) such that

\[
|\exp(-\phi_k) - \exp(-\phi_i)| < C \quad \text{on } \Omega \setminus \overline{Y}_a.
\]

Let \(\{W_k, \phi_k\} \) be a polarized cover along \(\overline{Y}_a \) and let \(\{\rho_k, \rho\} \) be a \(C^\infty \) partition of unity associated to the covering \(\{W_k, X \setminus \overline{Y}_a\} \) of \(X \) such that \(\rho_k \geq 0 \). Namely, \(\rho_k \) is a system of nonnegative \(C^\infty \) functions on \(X \) such that \(\supp \rho_k \subseteq W_k \) and \(\sum \rho_k = 1 \) on a neighbourhood of \(\overline{Y}_a \), say \(W_a \), and \(\rho = 1 - \sum \rho_k \).

We put \(\phi_k^* = \sum \rho_k \phi_k \). Then we have

\[
\begin{align*}
\partial \bar{\partial} \phi_k &= \sum \partial \rho_k \partial \phi_k + \sum \bar{\partial} \phi_k \bar{\partial} \rho_k + \sum \bar{\partial} \rho_k \partial \phi_k - \sum \rho_k \partial \bar{\partial} \phi_k \\
&= \sum \partial \rho_k \partial \phi_k - \sum (\partial \sum \rho_i \partial \phi_k + \sum \partial \phi_k \bar{\partial} \rho_k - \sum \partial \phi_k (\partial \sum \rho_i) \\
&\quad + \sum \bar{\partial} \rho_k \partial \phi_k - \sum \bar{\partial} \sum \rho_i \partial \phi_k + \sum \rho_k \partial \bar{\partial} \phi_k \\
&= \sum_k \partial \rho_k (\partial \phi_k - \partial \phi_i) + \sum_{k,i} (\partial \phi_k - \partial \phi_i) \bar{\partial} \rho_k + \sum_k (\rho_k - \rho_i) \partial \bar{\partial} \rho_k \\
&\quad + \sum \rho_k \partial \bar{\partial} \phi_k,
\end{align*}
\]

on \(W_a \setminus \overline{Y}_a \).

We are going to estimate the eigenvalues of \(\partial \bar{\partial} \phi_k \).

Once for all, let \(|.|_k \) denote the length of the differential forms measured by \(ds^2 + \partial \bar{\partial} \phi_k \). Then we have \(|\partial \phi_k|_k \leq \sqrt{2} \), since \(\phi_k = -\ln(-\ln||f_k||^2) \) for some vector \(f_k \) of holomorphic functions and

\[
\partial \bar{\partial} \phi_k = \frac{-\partial \bar{\partial} \ln||f_k||^2}{\ln||f_k||^2} + \frac{\partial \ln||f_k||^2 \partial \ln||f_k||^2}{(\ln||f_k||^2)^2} \geq \partial \bar{\partial} \phi_k \partial \phi_k.
\]

Let \(K_{kl} \subseteq W_k \cap W_l \) be any compact subset. Then,

\[
C_{kl} (ds^2 + \partial \bar{\partial} \phi_k) \leq ds^2 + \partial \bar{\partial} \phi_l \leq C_{kl} (ds^2 + \partial \bar{\partial} \phi_k)
\]

on \(K_{kl} \setminus \overline{Y}_a \), where \(C_{kl} \) is a constant depending on \(K_{kl} \). In particular we have

\[
|\partial \phi_k|_k \leq \sqrt{2} C_{kl} \quad \text{on } K_{kl} \setminus \overline{Y}_a.
\]

Proof of (3): We put \(f_k = (a_1, \ldots, a_m) \).
Then
\[\partial \bar{\partial} \phi_k = \frac{\sum_{\mu < \nu} (a_{\mu} \partial a_{\nu} - a_{\nu} \partial a_{\mu}) (a_{\mu} \partial a_{\nu} - a_{\nu} \partial a_{\mu})}{(-\ln || f_k ||^2 || f_k ||^4) + \frac{\sum_{\mu} a_{\mu} \partial a_{\mu}}{\ln || f_k ||^2 || f_k ||^4}}. \]

Let \(\phi_i = -\ln (-\ln || f_i ||^2) \) and \(f_i = (b_1, \ldots, b_{m_i}) \). Then
\[a_{\mu} = \sum_{j=1}^{m_i} u_{\mu} b_j, \quad 1 \leq \mu \leq m_k \]
for some holomorphic functions \(u_{\mu} \) on \(W_k \cap W_i \).

Substituting (6) into (5) and applying the Cauchy-Schwarz inequality, we have
\[\partial \bar{\partial} \phi_k \geq \sum_{i \leq j} (\partial b_i - \partial b_j) (\partial b_i - \partial b_j) \]
\[\quad \cdot \frac{(-\ln || f_k ||^2 || f_k ||^4) + \frac{\sum_{\mu} u_{\mu} b_j \partial b_j}{\ln || f_k ||^2 || f_k ||^4}} + O_{k_i}, \]
on \(K_{k_i} \setminus \bar{V}_a \) for some constant \(C_{k_i} \). Here \(O_{k_i} \) has bounded length with respect to \(ds^2 \).

Note that \(\sum_{i=1}^{m} |\xi_i|^2 (\sum_{j=1}^{m} |\eta_j|^2) = \sum_{i \neq j} |\xi_i \eta_j - \xi_j \eta_i|^2 + |\sum_{i=1}^{m} \xi_i \eta_i|^2 \), for any complex numbers \(\xi_i \) and \(\eta_j \), \(1 \leq i, j \leq m \) (Lagrange's equality). Applying this equality to (7), we have
\[\frac{(\sum_{\mu} \sum_{j} u_{\mu} b_j \partial b_j) (\sum_{\mu} \sum_{j} u_{\mu} b_j \partial b_j)}{\ln || f_k ||^2 || f_k ||^4} \]
\[\leq C_{i,j} \sum_{i,j} (b_i \partial b_j - b_j \partial b_i) (b_i \partial b_j - b_j \partial b_i) + (\sum_{i} \partial b_i) (\sum_{j} \partial b_j) \]
on \(K_{k_i} \setminus \bar{V}_a \), for some constant \(C \).

Since we have chosen \(W_k \) so that \(\ln || f_k ||^2 < -\ln 2 \) on \(W_k \), we have
\[\partial \bar{\partial} \phi_k \leq C' \partial \bar{\partial} \phi_i + O_{k_i} \quad \text{on} \quad K_{k_i} \setminus \bar{V}_a, \]
where \(C' \) is a constant and \(O_{k_i} \) is bounded with respect to \(ds^2 \). (3) follows from (9) immediately.

From (1'), (2), (3) and (4), we obtain
\[-A_k ds^2 + \frac{1}{2} \sum_{\rho_k} \partial \bar{\partial} \phi_k \leq \partial \bar{\partial} \phi_{c_3}, \]
for sufficiently large $A_\alpha \geq 1$.

Thus we know that $Ad_\alpha^2 + \partial \partial \phi_\alpha$ is a metric on $X \setminus Y$ for any $A > A_\alpha$. Furthermore, let $\lambda_1^\alpha \geq \ldots \geq \lambda_n^\alpha$ be the eigenvalues of $\partial \partial \phi_\alpha$ with respect to the metric $Ad_\alpha^2 + \partial \partial \phi_\alpha (A > A_\alpha)$. Then, from (10) one immediately sees that, for any $\varepsilon > 0$, there exists an $A > A_\alpha$ such that $\lambda_j^\alpha > -\varepsilon$ for $n - \alpha < j$ on $X \setminus Y$. Moreover, (10) implies that at least $n - \alpha$ eigenvalues of $\partial \partial \phi_\alpha$ with respect to $d\alpha^2$ tend to $+\infty$ as one approaches to a point in Y_α (see (5) and recall Courant's mini-max principle). Hence, for any point $y \in Y_\alpha$ and $\varepsilon > 0$, one can choose a neighbourhood $\Omega \ni y$ in X so that $1 - \varepsilon < \lambda_j^\alpha < 1 + \varepsilon$ for $1 \leq j \leq n - \alpha$ on $\Omega \setminus Y$.

Note that (4) implies $\partial \phi_\alpha \bar{\partial} \phi_\alpha < C(Ad_\alpha^2 + \partial \partial \phi_\alpha)$ for some $C > 0$.

For any positive number u we put $\phi_u := u \sum_{\alpha=0}^m \phi_\alpha$ and $d\alpha_{u,\alpha} := Ad_\alpha^2 + \partial \partial \phi_\alpha$. Then, $d\alpha_{u,\alpha}$ is a complete Kähler metric on $X \setminus Y$ whenever $A > u \sum_{\alpha=0}^m A_\alpha$.

Now we have the following.

Proposition 1.1 Let $(X, d\alpha^2)$ be a compact Kähler space of pure dimension n and Y an analytic subset containing the singular locus of X. Then, for any $\varepsilon > 0$, there exist a complete Kähler metric $d\alpha_Y$ on $X \setminus Y$, a proper C^∞ map $\phi : X \setminus Y \to (-\infty, 0]$ and a neighbourhood $W \ni Y$ such that,

\begin{align}
\text{(*)} & \quad |\partial \phi|^2 < \varepsilon, \\
\text{(**)} & \quad |\partial \partial \phi|^2_Y < 2n, \\
\text{(***)} & \quad \text{The eigenvalues } \lambda_1 \geq \ldots \geq \lambda_n \text{ of } \partial \partial \phi \text{ with respect to } d\alpha_Y \text{ satisfy} \\
& \quad 1 - \varepsilon < \lambda_j < 1 + \varepsilon \quad \text{for } 1 \leq j \leq \text{codim } Y \text{ on } W \setminus Y, \\
& \quad -\varepsilon < \lambda_j < 1 \quad \text{for } j > \text{codim } Y \text{ on } X \setminus Y.
\end{align}

Here $|_Y$ denotes the length with respect to the metric $d\alpha_Y$.

Proof Let $A \gg 0$, $u \ll \frac{1}{A}$, and put $\phi = \phi_u$, $d\alpha_y = d\alpha_{u,\alpha}^2$.

§ 2. Vanishing of the Local L^2–Cohomology

Let $(M, d\alpha_y)$ be a Hermitian manifold of dimension n, and let (E, h) be a Hermitian holomorphic vector bundle over M. For any $C^\infty (1, 1)$–form $G = i \sum A_{\alpha\beta} dz_\alpha \wedge d\bar{z_\beta}$ with $A_{\alpha\beta} = A_{\bar{\beta}\bar{\alpha}}$ on M, we define real–valued functions $\Gamma_{A,\alpha}[G]$ by
\[\Gamma_{h,t}[G](x) := \min \left\{ \sum_{a=1}^{\beta} \lambda_{i_a}(x) + \sum_{b=1}^{\gamma} \lambda_{j_b}(x) - \sum_{k=1}^{n} \lambda_k(x) : \right. \\
\lambda_k(x) (1 \leq k \leq n) \text{ are the eigenvalues of } G \text{ at } x, \\
1 \leq i_1 < \ldots < i_\beta \leq \eta \text{ and } 1 \leq j_1 < \ldots < j_\gamma \leq n \}. \]

In terms of \(\Gamma_{h,t} \) we shall state a sufficient condition for an à priori estimate for the operator \(\bar{\delta} \). The \(L^2 \)-norm for \(E \)-valued forms will be denoted by \(\| \cdot \|_h \).

Let \(\omega \) be the fundamental form of \(ds^2 \) and \(A \) the adjoint of the multiplication \(w \mapsto \omega \wedge u \). We denote by \(\bar{\partial}_h^* \) the \((L^2-)\) adjoint of the operator \(\bar{\delta} \) with respect to the metrics \(ds^2 \) and \(h \). The operator \(\bar{\partial}^* := -\star \bar{\partial}_h^* \) (\(\star \) : the conjugate after the Hodge's star) acts on \(E \)-valued forms and we denote by \(\bar{\partial}_h \) the adjoint of \(\bar{\partial}^* \) with respect to \(ds^2 \) and \(h \). Then we have \([\bar{\partial}_h, A] = -i \bar{\partial}_h^* + T_1 \) and \([\partial_h, A] = -i \partial_h^* + T_2 \), where \([\cdot, \cdot]\) denotes the Poisson bracket and \(T_j (j = 1, 2) \) contain no differentiation (i.e. \(T_j \) are function-linear).

Let \(\langle T_j \rangle \) denote the \((L^2-) \) operator norms of \(T_j \). Then, from the explicit expression of the operator \(T_1 + T_2 \) in terms of \(dw \) and other elementary operators like \(\bar{\omega}, A \), etc. (cf. [5] appendix), we see that there exists a positive number \(\beta_n \) depending only on \(n \) such that \(3\langle T_1 \rangle^2 + \langle T_2 \rangle^2 \leq \beta_n |dw|^2 \). In what follows we fix such \(\beta_n \).

Proposition 2.1 Let \(F_1 \) be a \(C^\infty \) real-valued function on \(M \) and \(h_1 := h \exp(-F_1) \). Let \(\Theta \) be the curvature form of \(h \). Suppose that there exists a \(C^\infty \) real-valued function \(F \) satisfying
\[(11) \quad \Gamma_{h,t}[\partial \partial (F + F_1)] \geq n |\Theta| + \beta_n |dw|^2 + 3 |\partial F|^2 + \varepsilon \]
for some \(\varepsilon > 0 \). Then
\[\| \partial u \|^2_h + \| \bar{\partial}_h^* u \|^2_h \geq \varepsilon \| u \|^2_h, \]
for any compactly supported \(E \)-valued \(C^\infty (p, q) \)-form \(u \) on \(M \).

For the proof, see [8], Corollary 1.7.

Definition A Hermitian vector bundle \((E, h)\) is said to be flat, if the operator \((\bar{\delta} + \partial_h) \circ (\bar{\delta} + \partial_h)\) is identically zero.

By the above definition, \((E, h)\) is flat if and only if \(\Theta \equiv 0 \).
In §1 we have constructed a metric ds^2 and a function ϕ satisfying several properties, from which we shall produce the functions F_1 and F as above. In particular, for flat vector bundles we have the following.

Proposition 2.2 Let (N, ds_N^2) be a Kähler manifold of dimension n and let (E, h) be a flat Hermitian vector bundle over N. Suppose that there exist a positive integer r and a C^∞ real-valued function ϕ on N such that

(i) $|\partial \phi|^2 < 1/12.$
(ii) $|\partial \partial \phi| < 2n.$
(iii) The eigenvalues $\lambda_1 \geq \ldots \geq \lambda_n$ of $\partial \partial \phi$ satisfy

$$\lambda_j^{1/2} < 1 + \frac{1}{4n} \quad \text{for } 1 \leq j \leq r$$
$$-\frac{1}{4n} < \lambda_j \quad \text{for } r < j.$$

Then, for any $A > 2^{16} \beta_n^2 n^4$ and $c \in \mathbb{R}$, the inequality (11) is satisfied by $M = \{ x \in N ; \phi(x) < c \}$, $ds^2 = (A(c-\phi)^{-2} + 1) ds_N^2 + 2A(c-\phi)^{-3} \partial \phi \partial \phi$, $F_1 = A(c-\phi)^{-1}$ and $\varepsilon = 1/8$, for $p + q > 2n - r$.

Proof Let $| \cdot |_A$ denote the length of the forms with respect to the metric ds^2. Let ω_N and ω be the fundamental forms of ds_N^2 and ds^2, respectively. Then, $d\omega = A(c-\phi)^{-3} d\phi \wedge (2\omega_N - i \partial \partial \phi)$. We estimate $|d\omega|_A$ as follows.

First, from the definition of ds^2, $|d\phi|_A < 2A^{-1/2}(c-\phi)^{3/2}$ and $|\omega_N|_A < 2n(A(c-\phi)^{-2} + 1)^{-1}$. Secondly, from (ii), $|\partial \partial \phi|_A < 2n(A(c-\phi)^{-2} + 1)^{-1}$.

Therefore,

$$|d\omega|_A \leq A(c-\phi)^{-3} |d\phi|_A (2 |\omega_N|_A + |\partial \partial \phi|_A) < 6nA^{1/2}(c-\phi)^{-3/2}(A(c-\phi)^{-2} + 1)^{-1}.$$

Hence,

$$|d\omega|_A < 6nA^{1/2}(c-\phi)^{-3/2} < 6nA^{-1/4} \quad \text{if } A < (c-\phi)^2,$$

and

$$|d\omega|_A < 6nA^{-1/2}(c-\phi)^{1/2} \leq 6nA^{-1/4} \quad \text{if } A \geq (c-\phi)^2.$$

Thus, $\beta_n |d\omega|_A^2 \leq 36 \beta_n n^2 A^{-1/2}$, so that
(12) \[\beta_n |\omega|^2 < \frac{1}{4} \quad \text{if } A > 2^{15} \beta_n^4. \]

To estimate the left hand side of the inequality, let \(x \in M \) be any point and let \(L \) be the subspace of the complex tangent space of \(M \) at \(x \) spanned by the eigenvectors corresponding to \(\lambda_1(x), \ldots, \lambda_r(x) \). Then, for any vector \(v \in L \), one has, for \(F = \phi \) and \(F_1^1 = A(e - \phi)^{-1} \),

\[1 - \frac{1}{4n} < \left\langle \partial \bar{\partial} (F + F_1^1), v, \bar{v} \right\rangle < 1 + \frac{1}{4n}, \]

from (iii). Here \(|v|_A \) denotes the length of \(v \) with respect to \(ds^2 \).

Similarly, for any unit tangent vector \(w \) at \(x \),

\[< \partial \bar{\partial} (F + F_1^1), w, \bar{w} > - \frac{1}{4n}. \]

Combining (13) and (14), we have

\[\Gamma_{k,q} < \partial \bar{\partial} (F + F_1^1) > - \frac{3}{4}, \quad \text{if } p + q > 2n - r. \]

From (i) we have

\[3 |\partial F|_A^2 < \frac{1}{4}. \]

Combining (12), (15) and (16), we obtain the desired inequality for the flat bundle \((E, h)\).

Applying Proposition 2.2 to the Kähler manifold \((W' \setminus Y, ds_Y^2)\) described in Proposition 1.1, we obtain the following.

Proposition 2.3 Let \((X, ds^2)\) be a compact Kähler space of pure dimension \(n \) and \(Y \) an analytic subset containing the singular locus of \(X \). Then, there exists a \(C^0 \) proper map \(\phi : X \setminus Y \to (-\infty, 0] \) and \(c \in \mathbb{R} \) (\(c \); arbitrarily small) such that, for any compactly supported \(C^0 \) \((p, q)\)-form \(u \) on \(W := \{ x \in X \setminus Y ; \phi(x) < c \} \) with values in a flat vector bundle \((E, h)\) over \(X \setminus Y \), the estimate

\[||\partial u||_{W^*}^2 + ||\partial_{W^*} u||_{W^*}^2 \geq \frac{1}{4} ||u||_{W^*}^2 \]

holds for \(p + q > 2n - \text{codim} \ Y \) with respect to the metrics

\[ds_Y^2 = (A(e - \phi)^{-2} + 1) ds^2 + 2A (e - \phi)^{-2} \partial \bar{\partial} \phi \]

and
and \(h_w = h \exp(-A(c-\phi)^{-1}) \), where \(A > \frac{16}{\ell^2} n^4 \) and \(ds_Y^2 \) is some (i.e., not arbitrary) complete Kähler metric on \(X \setminus Y \).

Since the above \((W, ds_Y^2) \) is a complete Hermitian manifold, Proposition 2.3 implies that the Hermitian bundle \((E|_W, h_w) \) is \(W^{p,q} \)-elliptic in the sense of Andreotti–Vesentini [2], if \(p + q > 2n - \text{codim } Y \).

Thus, in virtue of Andreotti–Vesentini’s theorem, we have the following corollary to Proposition 2.3.

Corollary 2.4 Under the above situation, let \(f \) be any \(E \)-valued \((p,q)\)-form on \(W \) which is square integrable with respect to \(ds_Y^2 \) and \(h_w \) and \(\bar{\partial} f = 0 \) in the sense of distribution. If \(p + q > 2n - \text{codim } Y \), then there exists an \(E \)-valued \((p, q-1)\)-form \(g \) on \(W \), square integrable with respect to \(ds_Y^2 \) and \(h_w \) such that \(\bar{\partial} g = f \) and \(\|g\|_{h_w} \leq 2\|f\|_{h_w} \).

§3. \(L^2 \) Cohomology and Harmonic Forms

Let \((M, ds_M^2) \) be a Hermitian manifold of dimension \(n \), and let \((E, h)\) be a Hermitian vector bundle over \(M \). We denote by \(L^{p,q}(M, E)_h \) the set of square integrable \(E \)-valued \((p, q)\)-forms on \(M \) with respect to \(ds_M^2 \) and \(h \), and put

\[
H^{p,q}_{\text{loc}}(M, E)_h := \{ f \in L^{p,q}(M, E)_h ; \bar{\partial} f = 0 \} / \{ g \in L^{p,q}(M, E)_h ; \exists u \in L^{p,q-1}(M, E)_h \text{ such that } g = \bar{\partial} u \}.
\]

Here the derivatives are taken in the distribution sense.

Let \(L^{p,q}_{\text{loc}}(M, E) \) be the set of locally square integrable \(E \)-valued \((p, q)\)-forms on \(M \). We put

\[
H^{p,q}(M, E)_h := \{ f \in L^{p,q}_{\text{loc}}(M, E)_h ; \bar{\partial} f = 0 \} / \{ g \in L^{p,q}_{\text{loc}}(M, E)_h ; \exists u \in L^{p,q-1}_{\text{loc}}(M, E)_h \text{ such that } \bar{\partial} u = g \}.
\]

Since the \(L^2 \)-version of Dolbeault’s Lemma is valid (cf. [6] or [9]), \(H^{p,q}(M, E)_h \) is canonically isomorphic to the \(E \)-valued Dolbeault cohomology of type \((p,q)\).

We put \(\square_h := \partial \bar{\partial} + \partial \bar{\partial} \) and \(\square_{h^*} = \partial_h \bar{\partial}^* + \bar{\partial}^* \partial_h \). Clearly, \(\square_{h^*} = (\square_h)^* \).

We put \(\mathfrak{H}^{p,q}(E)_h := \{ f \in L^{p,q}(M, E)_h ; \square_h f = 0 \} \).

If the metric \(ds_M^2 \) is Kählerian, one has \([\partial_h, A] = -i \partial_h^* \) and \([\bar{\partial} , A] = i \partial_h^* \). Hence \(i(\bar{\partial} + \partial_h)(\bar{\partial} + \partial_h) A = \partial \cdot i[\partial_h, A] + i[\partial_h, A] \bar{\partial} + \partial_h \cdot i[\partial, A] + \)
If the bundle \((E, h)\) is flat, then we have \(\partial h = \overline{\partial h}\). Thus we obtain

Lemma 3.1 Let \((M, ds^2_M)\) be a Kähler manifold and \((E, h)\) a flat Hermitian vector bundle over \(M\). Then, \(\mathcal{H}^{p,q}(E)_h \cong \mathcal{H}^{p-q,q}(E)_h\). Here the isomorphism is given by \(f \mapsto hf\).

Identifying \(h\) as a \(C^\infty\) section of \(\text{Hom}(E, \overline{E})\), we have \(\partial h = h^{-1} \partial h\). Therefore we obtain

Lemma 3.2 Under the situation of Lemma 3.1, \(\mathcal{H}^{p,q}(E)_h \cong \mathcal{H}^{q,p}(E^*)_h\). Here the isomorphism is given by \(f \mapsto \overline{hf}\). (\(h^* := h^{-1}\)).

The following is fundamental.

Proposition 3.3 Let \((M, ds^2_M)\) be a complete Hermitian manifold and \((E, h)\) a Hermitian vector bundle over \(M\). Then

\[
\mathcal{H}^{p,q}(E)_h = \{ f \in L^{p,q}(M, E)_h; \quad \partial f = 0, \quad \overline{\partial} f = 0 \}.
\]

Proof. See Andreotti–Vesentini [2].

Thus, if the metric \(ds^2_M\) is complete, then we have an orthogonal decomposition:

\[
L^{p,q}(M, E)_h = \mathcal{H}^{p,q}(E)_h \oplus R^p_q(E)_h \oplus \overline{R}^p_q(E).
\]

Here \(R^p_q(E)\) (resp. \(\overline{R}^p_q(E)\)) denotes the range of \(\partial\) (resp. \(\overline{\partial}\)), and \(R^p_q(E)\) (resp. \(\overline{R}^p_q(E)\)) its closure.

From the above decomposition we obtain

\[
H^{p,q}_{\partial}(M, E)_h = \mathcal{H}^{p,q}(E)_h,
\]

if \(R^p_q(E)\) is closed (for instance it is the case when \(H^{p,q}_{\partial}(M, E)_h\) is finite dimensional).

Combining Lemma 3.2 with (17), we have

Proposition 3.4 Let \((M, ds^2_M)\) be a complete Kähler manifold and \((E, h)\) a flat Hermitian vector bundle over \(M\). Suppose that \(\dim H^{p,q}_{\overline{\partial}}(M, E)_h < \infty\) and \(\dim H^{p,q}_{\partial}(M, E^*)_h < \infty\). Then \(H^{p,q}_{\overline{\partial}}(M, E)_h \cong H^{p,q}_{\overline{\partial}}(M, E^*)_h\).
§ 4. Proof of Theorems

First we shall prove Theorem 2.

Let \(X, Y, (E, h) \), etc. be as in Proposition 2.3. We shall show that the natural homomorphism \(\tau: H^q_{\text{c}}(X \setminus Y, E) \to H^q_{\text{c}}(X \setminus Y, E)_h \) is isomorphism if \(p + q > 2n - \text{codim } Y + 1 \). Here \(H^q_{\text{c}} \) denotes the cohomology with compact support and the \(L^2 \) cohomology \(H^q_{\text{c}} \) is with respect to \(ds_Y^2 \).

Surjectivity: Let \([u] \in H^q_{\text{c}}(X \setminus Y, E)_h\), where \(u \in L^p(X \setminus Y, E)_h \) and \(\bar{\partial} u = 0 \). Clearly, \(u \rvert_W \) is square integrable, for any choice of \(W(\text{or } \omega) \), with respect to \(ds_Y^p \) and \(h_W \). Hence, by Corollary 2.4, one can find a \(v \in L^q_{\text{c}}(W, E) \), square integrable with respect to \(ds_Y^q \) and \(h_w \), such that \(\bar{\partial} v = u \). Since \(ds_Y^p \) is quasi-isometric to \(ds_Y^q \) on a neighbourhood of \(Y \), it follows immediately that \(u \) is represented by a compactly supported form, which completes the proof of the surjectivity.

Injectivity: Let \([w] \in H^p_{\text{c}}(X\setminus Y, E)\). If \(\tau([w]) = 0 \), then there exists an \(f \in L^{p+q-1}(X \setminus Y, E)_h \) such that \(\bar{\partial} f = w \). Since the support of \(w \) is compact, \(\bar{\partial} f = 0 \) near \(Y \). Hence, applying Corollary 2.4, one can find a \(v \in L^q_{\text{c}}(W, E) \), square integrable with respect to \(ds_Y^q \) and \(h_w \), such that \(\bar{\partial} v = u \). Since \(ds_Y^p \) is quasi-isometric to \(ds_Y^q \) on a neighbourhood of \(Y \), it follows immediately that \(u \) is represented by a compactly supported form, which completes the proof of the injectivity.

In virtue of Andreotti-Grauert’s finiteness theorem (cf. [1]), \(\dim H^p_{\text{c}}(X\setminus Y, E) < \infty \) for \(p + q < \text{codim } Y - 1 \). Hence, by Serre-Malgrange’s duality

\[
\text{(18)} \quad \dim H^p_{\text{c}}(X\setminus Y, E^*) < \infty, \quad \text{for } p + q > 2n - \text{codim } Y + 1.
\]

Similarly, we have

\[
\text{(19)} \quad \dim H^q_{\text{c}}(X\setminus Y, E) < \infty, \quad \text{for } p + q > 2n - \text{codim } Y + 1.
\]

In view of the above isomorphism, we obtain the finite dimensionality of \(H^p_{\text{c}}(X\setminus Y, E)_h \) and \(H^q_{\text{c}}(X\setminus Y, E^*)_h \) for \(p + q > 2n - \text{codim } Y + 1 \). Thus, by Proposition 3.4, we have \(H^p_{\text{c}}(X\setminus Y, E)_h \cong H^q_{\text{c}}(X\setminus Y, E^*)_h \) for \(p + q > 2n - \text{codim } Y + 1 \), so that \(H^p_{\text{c}}(X\setminus Y, E) \cong H^q_{\text{c}}(X\setminus Y, E^*) \) for \(p + q > 2n - \text{codim } Y + 1 \).

Hence, by the duality again we obtain

\[H^{p, q}(X\setminus Y, E) \cong H^{q, p}(X\setminus Y, E^*), \quad \text{for } p + q < \text{codim } Y - 1, \]

which completes the proof of Theorem 2.

Proof of Theorem 1 \(E^p_{\text{c}}(X\setminus Y) = E^q_{\text{c}}(X\setminus Y) \) if every cohomology
class in $H^{p,q}(X \setminus Y)$ and $H^{p-1,q}(X \setminus Y)$ is represented by a d-closed form. This can be shown for $p+q < \text{codim } Y - 1$ as follows.

First, taking the dual of the isomorphism $\tau: H^p_0(X \setminus Y) \to H^p_{\mathbb{C}}(X \setminus Y)$ we have $H^p_{\mathbb{C}}(X \setminus Y) \cong H^p(X \setminus Y)$ for $p+q < \text{codim } Y - 1$. (For the trivial bundle, (E, h) is not referred to.)

Therefore, from (17) $H^p(X \setminus Y) \cong \mathcal{H}^{p,q}$ for $p+q < \text{codim } Y - 1$.

Since by the equality $\square = \square$ combined with Proposition 3.3, every form in $\mathcal{H}^{p,q}$ is \mathcal{H}-closed, the assertion is proved.

That $E^1_{p,q}(X \setminus Y) \cong E^{p,1}_1(X \setminus Y)$ for $p+q < \text{codim } Y - 1$ is a corollary of Theorem 2.

References
