Conditions for Well-posedness in Gevrey Classes of the Cauchy Problems for Fuchsian Hyperbolic Operators II

By

Shigeharu ITOH* and Hitoshi URYU**

 Detected to Professor Shoji IRIE on his sixtieth birthday

Introduction

In this article we shall present a sufficient condition for well-posedness in Gevrey classes of some Fuchsian hyperbolic Cauchy problems. Namely we show that we can determine a function space in which the Cauchy problem for a given Fuchsian hyperbolic operator is well-posed.

In the case that the initial surface is non-characteristic, there are many results.

The results independent of the lower order terms were obtained by Ohya [12], Leray-Ohya [8], Steinberg [13], Ivrii [5], Trepreau [15], Bronstein [2], Kajitani [7] and Nishitani [11], which show that the multiplicity of the characteristic roots determines the well-posed class.

On the other hand, it is an interesting problem to study how the lower order terms have an effect on the well-posed class. Ivrii showed the following in [6].

(I) Let \(P = \partial_t^2 - t^2 \partial_x^2 + at \partial_x \), where \(\ell \) and \(s \) are non-negative integers and \(a \) is a non-zero constant. When \(0 \leq s < \ell - 1 \), the Cauchy problem for \(P \) is \(r^{(\ell)}_{\text{loc}} \)-well-posed if and only if \(1 \leq \epsilon < (2 \ell - s)/(\ell - s - 1) \).

(II) Let \(P = \partial_t^2 - x^2 \partial_x^2 + ax^2 \partial_x \), where \(\mu \) and \(\nu \) are non-negative integers and \(a \) is a non-zero constant. When \(0 \leq \nu < \mu \), the Cauchy problem for \(P \) is \(r^{(\mu)}_{\text{loc}} \)-well-posed if and only if \(1 \leq \epsilon < (2 \mu - \nu)/\mu \).
These examples are extended for more general operators by Igari [3], Uryu [17] and Tahara [14] concerning (I) and Uryu-Itoh [18] and Itoh [4] concerning (II).

Furthermore we propose the following operator.

\[(III)
P = \partial_x^2 - t^2 x^{2\mu} \partial_x^2 + at^x \partial_x, \text{ where } \mu, s \text{ and } \nu \text{ are non-negative integers and } a \text{ is a non-zero constant.}
\]

In this paper we consider the Cauchy problem for the operators which are the most general extension of (III), noting that Fuchsian partial differential operators introduced by Baouendi-Goulaouic [1] are the natural extension of non-characteristic operators.

§1. Main Result and Remarks

Let \((x, t) \in \mathbb{R}^n \times [0, T]\) and \((D_x, D_t) = (D_{x_1}, \ldots, D_{x_n}, D_t) = (-\sqrt{-1} \partial / \partial x_1, \ldots, -\sqrt{-1} \partial / \partial x_n, -\sqrt{-1} \partial / \partial t)\). Let us denote by \((\xi, \tau)\) the dual variable of \((x, t)\).

Now we shall define the Gevrey classes.

Definition 1.1. \((\tau^{(\kappa)}) \cap \tau^{(\kappa)}\); \(\kappa \geq 1\) implies that \(f(x) \in C^\kappa(\mathbb{R}^n)\) nad for any compact set \(K \subset \mathbb{R}^n\), there exist constants \(c, R > 0\) such that

\[
|D^\alpha f(x)| \leq c R^|\alpha| |\alpha|^\kappa, \quad x \in K, \quad \text{for any } \alpha.
\]

\(f(x) \in \tau^{(\kappa)}\) implies that \(f(x) \in C^\kappa(\mathbb{R}^n)\) and (1.1) holds for any \(x \in \mathbb{R}^n\).

Next we shall define Fuchsian partial differential operators according to Baouendi-Goulaouic [1].

Let

\[
L = L(x, t, D_x, D_t)
= t^k D_t^k + L_1(x, t, D_x) t^{k-1} D_t^{m-1} + \cdots + L_m(x, t, D_x) D_t^{m-k} + L_{m+1}(x, t, D_x) D_t^{m-k}.\]

Then \(L\) is said to be of Fuchsian type with weight \(m-k\) with respect to \(t\) when it has the following properties:

(A-1) \(k \in \mathbb{Z}, 0 \leq k \leq m,\)

(A-2) \(\text{ord } L_j(x, t, D_x) \leq j,\)

(A-3) \(\text{ord } L_j(x, 0, D_x) = 0 \text{ for } 1 \leq j \leq k.\)

From (A-3), we can set \(L_j(x, 0, D_x) = a_j(x)\) for \(1 \leq j \leq k.\)

A characteristic polynomial associated with \(L\) is
(1.2) \[C(\lambda, x) = \lambda(\lambda-1)\cdots(\lambda-m+1) + \sqrt{-1}a_1(x)\lambda(\lambda-1)\cdots(\lambda-m+2) + \cdots + \sqrt{-1}a_k(x)\lambda(\lambda-1)\cdots(\lambda-m+k+1). \]

It's roots, called characteristic exponents, are denoted by 0, 1, \ldots, m-k-1, \lambda_1(x), \ldots, \lambda_k(x).

(A-4) there exists a constant \(c>0\) such that
\[|(\lambda-\lambda_1(x))\cdots(\lambda-\lambda_k(x))| \geq c/\lambda(\lambda-1)\cdots(\lambda-m+k+1) \text{ for } \lambda \in \mathbb{Z}, \lambda \geq m-k. \]

In this paper we deal with the following Fuchsian partial differential operator. Let
\[t^{-m}L = \tilde{L}(x, t, D_x, D_t) = \tilde{L}_0(x, t, D_x, D_t) + \tilde{L}_1(x, t, D_x, D_t), \]
where
\[\tilde{L}_0(x, t, D_x, D_t) = t^m D_t^m + \sum_{|\alpha| + j = m} t^{|\alpha|+j}a(x)^{|\alpha|}a_{\alpha,j}(x, t)D_x^\alpha D_t^j, \]
and
\[\tilde{L}_1(x, t, D_x, D_t) = \sum_{|\alpha| + j \leq m-1} t^{|\alpha|+j}a(x)^{|\alpha|}a_{\alpha,j}(x, t)D_x^\alpha D_t^j. \]

We assume the following conditions on \(L\).

(A-5) \(\lambda\)-roots of \(\lambda^m + \sum_{|\alpha| + j = m} a_{\alpha,j}(x, t)\xi^\alpha \lambda^j = 0\) are real and distinct.

(A-6) \(a_{\alpha,j}(x, t) \in \mathcal{B}([0, T], \tau^{(\alpha)}). \)

(A-7) \(\sigma(x) \in \tau^{(\sigma)} \) and is a real-valued function.

(A-8) \(\iota \) is a positive rational number and \(\mu, s(\alpha, j) \) and \(\nu(\alpha, j) \) are integers such that \(\mu \geq 1, s(\alpha, j) \geq 0 \) and \(\nu(\alpha, j) \geq 0. \)

We define \(\rho \) as follows:
\[\rho = \max_{|\alpha| + j \leq m-1} \{(m-j-s(\alpha, j)/\iota)/(m-j-|\alpha|), (m-j-\nu(\alpha, j)/\mu)/(m-j-|\alpha|), 1\} . \]

Then we have

Theorem 1.1. Under (A-1)\(\sim\)(A-8), if \(1 \leq \varepsilon < \rho/(\rho-1)\), the Cauchy problem for \(L\):
\[
\begin{align*}
\left\{ \begin{array}{ll}
Lu(x, t) = f(x, t) & \text{in } \mathbb{R}^n \times (0, T) \\
D_t^i u(x, t) |_{t=0} = u'(x), & 0 \leq i \leq m-k-1 \text{ on } \mathbb{R}^n
\end{array} \right.
\end{align*}
\]

is \(\tau^{(\rho)}_\text{loc}\)-well-posed, i.e. for any \(f(x, t) \in \mathcal{B}([0, T], \tau^{(\rho)}_\text{loc})\) and any \(u'(x) \in \mathcal{B}([0, T], \tau^{(\rho)}_\text{loc})\), \(0 \leq i \leq m-k-1\), there exists a unique solution \(u(x, t) \in \mathcal{B}([0, T], \tau^{(\rho)}_\text{loc})\) of (1.6).
Remark 1.1. From the definition of p, we may only consider the case that $s(\alpha, j) \leq |\alpha| |l|$ and $v(\alpha, j) \leq |\alpha| |\mu|$.

Remark 1.2. From (A-3), $s(\alpha, j) > 0$ if $|\alpha| > 0$.

Remark 1.3. In the case that $k=0$, $\sigma(x)$ is a polynomial and $a_{\alpha,j}(x, t) \in \mathcal{B}([0, T], \tau^{(s)})$, Ivrii showed in [6] that if (1.6) is locally $\tau^{(s)}_{loc}$-well-posed, then $1 \leq \varepsilon \leq \rho/(\rho-1)$.

§2. Proof of Theorem 1.1

In this section we shall reduce Theorem 1.1 to Theorem 2.1.

Definition 2.1. We say that $f(x) \in H^m(\mathbb{R}^n)$ belongs to $\Gamma(\varepsilon)$ if there exist constants $c, R > 0$ such that

\begin{equation}
\|D^a_x f(x)\| \leq c R^{[a]}|\alpha|^\varepsilon \quad \text{for any } \alpha,
\end{equation}

where $\| \cdot \|$ denotes L^2-norm with respect to x.

Theorem 2.1. Under $(A-1) \sim (A-8)$, if $1 \leq \varepsilon < \rho/(\rho-1)$, then the assertions (1°) and (2°) hold.

(1°) (1.6) is $\Gamma(\varepsilon)$-well-posed.

(2°) If $\text{supp } u(x) \subset K$, $0 \leq i \leq m-k-1$ and $\text{supp } f(x, t) \subset C_d(K)$ for any compact set $K \subset \mathbb{R}^n$, then $\text{supp } u(x, t) \subset C_d(K)$. Here

$$C_d(K) = \{(x, t) \in \mathbb{R}^n \times [0, T]; \min_{\rho \in K} |x-y| \leq \lambda_{\max} |t|^{1/4}\},$$

where $\lambda_{\max} = \max_{1 \leq i \leq m} \sup_{x, t \in \mathbb{R}^n \times [0, T], |t|^{1/4}} |\sigma(x)^i \lambda_j(x, t, \xi)|$ and $\lambda_j(x, t, \xi)$ are λ-roots in (A-5).

Lemma 2.1. Theorem 1.1 follows from Theorem 2.1.

Proof. (1°; the case that $\varepsilon > 1$) First we shall show the existence of a solution of (1.6). Let $\{\phi_p(x)\}$ be a partition of unity. Namely $\phi_p(x)$ are compactly supported $\tau^{(s)}$-functions satisfying the following three conditions: (i) $0 \leq \phi_p(x) \leq 1$, (ii) $\sum \phi_p(x)$ is locally finite and (iii) $\sum \phi_p(x) \equiv 1$ on \mathbb{R}^n. For any $u(p)(x) \in \tau^{(s)}_{loc}$, $0 \leq i \leq m-k-1$ and any $f(x, t) \in \mathcal{B}([0, T], \tau^{(s)}_{loc})$, we set $u_p(x)(x) = \phi_p(x) u(x) \in \Gamma(\varepsilon)$ and $f_p(x, t) = \phi_p(x) f(x, t) \in \mathcal{B}([0, T], \Gamma(\varepsilon))$. Then from (1°) in Theorem 2.1, there exists a unique solution $u_p(x, t) \in \mathcal{B}([0, T], \Gamma(\varepsilon))$ of the Cauchy problem:

\begin{align*}
\begin{cases}
Lu_p(x, t) = f_p(x, t) \\
D_i u_p(x, t)|_{t=0} = u_p(x), \quad 0 \leq i \leq m-k-1.
\end{cases}
\end{align*}
We note that \(T^{(\kappa)} \subset \gamma^{(\kappa)} \) by Sobolev's lemma. Therefore \(u_\rho(x, t) \in \mathcal{B}([0, T], \gamma^{(\kappa)}) \). Furthermore since the summation \(\sum_{\rho} u_\rho(x, t) \) is locally finite, then \(u(x, t) = \sum_{\rho} u_\rho(x, t) \) belongs to \(\mathcal{B}([0, T], \gamma^{(\kappa)}_{1, \infty}) \) and is a solution of (1.6).

Next we shall show the uniqueness of solutions. For any \((x_0, t_0) \in \mathbb{R}^n \times (0, T]\), we set

\[
D_0(x_0, t_0) = \{ (x, t) \in \mathbb{R}^n \times [0, T] ; \ |x-x_0| < \lambda_{\max}(t_0-t^2)/4 \} \quad \text{and} \quad K = D_0(x_0, t_0) \cap \{(x, 0); x \in \mathbb{R}^n \} .
\]

Let \(\phi(x) \) be a compactly supported \(\gamma^{(\kappa)} \)-function such that \(\phi(x) = 1 \) on \(K \). Let us assume that \(u(x, t) \in \mathcal{B}([0, T], \gamma^{(\kappa)}_{1, \infty}) \) satisfies the following equation:

\[
\begin{cases}
Lu(x, t) = 0 & \text{in } \mathbb{R}^n \times (0, T] \\
D^1_i u(x, t) \big|_{t=0} = 0 , \quad 0 \leq i \leq m-k-1 & \text{on } \mathbb{R}^n .
\end{cases}
\]

Since \(L(\phi u) = \phi L u + [L, \phi] u = [L, \phi] u = J^t(x, t) \) and \(L \) is a differential operator, we get that \(\mathcal{J}^t(x, t) \subset C_\kappa(K^\kappa) \). Here \([\cdot, \cdot]\) is the commutator. Therefore from (2.3) in Theorem 2.1, we find that \(\text{supp } \phi u \subset C_\kappa(K^\kappa) \). Then \(u \equiv 0 \) on \(D_0(x_0, t_0) \). Hence \(u(x_0, t_0) = 0 \).

(II; the case that \(\kappa = 1 \)) In (I), we have already showed that if \(1 < \kappa < \rho/\rho - 1 \), there exists a unique solution \(u(x, t) \in \mathcal{B}([0, T], \gamma^{(\kappa)}_{1, \infty}) \) of (1.6). Therefore it is sufficient to show the analyticity of the solution. If we refer to the method of Mizohata [9] and §5 in this paper, we can easily see this fact. Q.E.D.

We shall prove Theorem 2.1 by the method of successive approximations. Therefore we decompose \(\bar{L} \) as follows and consider the following scheme.

\[
(2.2) \quad \bar{L} = Q_0(x, t, D_x, D_t) + Q_1(x, t, D_x, D_t) .
\]

For \(\alpha, j \) such that \(s(\alpha, j) = |\alpha| \ell \) and \(\nu(\alpha, j) = |\alpha| \mu \), we set

\[
(2.3) \quad Q_0(x, t, D_x, D_t) = \bar{L}_0(x, t, D_x, D_t) + \sum_{|\alpha| + j \leq m-1} t^{s(\alpha, j)+j} \sigma(x)^{\nu(\alpha, j)} a_{\alpha, j}(x, t) D_x^\alpha D_t^j
\]

and for \(\alpha, j \) such that \(s(\alpha, j) < |\alpha| \ell \) or \(\nu(\alpha, j) < |\alpha| \mu \), we set

\[
(2.4) \quad Q_1(x, t, D_x, D_t) = \sum_{|\alpha| + j \leq m-1} t^{s(\alpha, j)+j} \sigma(x)^{\nu(\alpha, j)} a_{\alpha, j}(x, t) D_x^\alpha D_t^j .
\]

\[
(2.5) \quad \begin{cases}
Q_0 u_0(x, t) = t^{m-k} f(x, t) & \text{in } \mathbb{R}^n \times (0, T] \\
D^1_i u_0(x, t) \big|_{t=0} = u^0(x) , \quad 0 \leq i \leq m-k-1 & \text{on } \mathbb{R}^n
\end{cases}
\]

and for \(j \geq 1 \)
The following proposition will be proved in §3.

Proposition 2.1. Under (A–1)–(A–8), (1°) and (2°) hold.

(1°) The Cauchy problem for Q_0

\[
\begin{aligned}
Q_0v(x, t) &= t^{m-k}v(x, t) \quad \text{in } \mathbb{R}^n \times (0, T] \\
D_i^j v(x, t) &\big|_{t=0} = \nu^j(x), \quad 0 \leq i \leq m-k-1 \quad \text{on } \mathbb{R}^n
\end{aligned}
\]

is H^∞-well-posed.

(2°) If $\text{supp } v(x) \subset K, 0 \leq i \leq m-k-1$ and $\text{supp } f(x, t) \subset C(K)$ for any compact set $K \subset \mathbb{R}^n$, then $\text{supp } u(x, t) \subset C(K)$.

Corollary 2.1. When $\rho = 1$, (1.6) is C^∞-well-posed.

If we note that Q_0 is a differential operator and $H^{(\rho)} \subset H^\infty$ and use Proposition 2.1, then we find that $u_j(x, t) \in \mathcal{B}([0, T], H^\infty)$ for any $j \geq 0$. Therefore our aim is to show the formal solution

\[
u(x, t) = \sum_{j=0}^\infty u_j(x, t)
\]

converges in $\mathcal{B}([0, T], H^{(\rho)})$.

Our plan is as follows. In §4, we shall get an energy inequality for Q_0. In §5, we shall estimate derivatives of a solution of the Cauchy problem:

\[
\begin{aligned}
Q_0v(x, t) &= g(x, t) \\
D_i^j v(x, t) &\big|_{t=0} = 0, \quad 0 \leq i \leq m-k-1,
\end{aligned}
\]

where $g(x, t) \in \mathcal{B}([0, T], H^{(\rho)})$ such that for any sufficiently large fixed integer $s, D_i g(x, t) |_{t=0} = 0, 0 \leq i \leq s-1$. And in §6, we shall obtain an estimate of $Q_0v(x, t)$. Using the consequence in §5 and §6, we shall prove Theorem 2.1 in §7.

§3. Proof of Proposition 2.1

Let us note that

\[L_0(x, t, \xi, \tau) = \prod_{j=1}^n (\tau - t^4\sigma(x)^j \lambda_j(x, t, \xi)),\]

where $\lambda_j(x, t, \xi)$ are λ-roots in (A–5). And modifying $\lambda_j(x, t, \xi)$ near $\xi = 0$, we
may assume that if $i \neq j$, there exists a constant $\delta > 0$ such that $|\lambda_i - \lambda_j| < 2\delta$, where $\lambda_i(x, t, \xi) \in \mathcal{B}([0, T], S^k)$ and $\langle \xi \rangle = (1 + |\xi|^2)^{1/2}$. Here for real k, S^k is the symbol class of classical pseudo-differential operators.

We shall define the modules W_k, $0 \leq k \leq m - 1$, over the ring of pseudo-differential operators in x of order zero.

Let $\partial_j := tD_i - t' = \lambda_j(x, t, D_x)$ and $\Pi_m = \partial_1 \cdots \partial_m$. Let W_{m-1} be the module generated by the monomial operators $\Pi_m/\partial_i = \partial_1 \cdots \partial_i \cdots \partial_m$ of order $m - 1$ and let W_{m-2} be the module generated by the operators $\Pi_m/\partial_i \partial_j$, $i \neq j$, of order $m - 2$ and so on.

Lemma 3.1. For any i, j, there exist pseudo-differential operators A_{ij}, B_{ij} and $C_{ij} \in \mathcal{B}([0, T], S^0)$ such that

$$[\partial_i, \partial_j] = A_{ij} \partial_i + B_{ij} \partial_j + C_{ij},$$

where $[\cdot, \cdot]$ is the commutator.

Proof. Let $\sigma_0([\partial_i, \partial_j])$ be the principal symbol of $[\partial_i, \partial_j]$. Then by the product formula of pseudo-differential operators, we get

$$\sigma_0([\partial_i, \partial_j]) = \partial_i (t \tau - t\sigma(x)^n \lambda_i) D_j (t \tau - t\sigma(x)^n \lambda_j)$$

$$- \partial_j (t \tau - t\sigma(x)^n \lambda_j) D_i (t \tau - t\sigma(x)^n \lambda_i)$$

$$+ \sum_{k=1}^n \{ \partial_{\xi_k} (t \tau - t\sigma(x)^n \lambda_i) D_{\xi_k} (t \tau - t\sigma(x)^n \lambda_j)$$

$$- \partial_{\xi_k} (t \tau - t\sigma(x)^n \lambda_j) D_{\xi_k} (t \tau - t\sigma(x)^n \lambda_i) \}$$

$$= t\sigma(x)^n D_{ij} (x, t, \xi),$$

where $D_{ij} \in \mathcal{B}([0, T], S^1)$.

If we set $A_{ij} = D_{ij}/(\lambda_i - \lambda_j)$ and $B_{ij} = D_{ij}/(\lambda_i - \lambda_j)$, then A_{ij}, $B_{ij} \in \mathcal{B}([0, T], S^0)$ and $A_{ij}(x, t, \xi) (t \tau - t\sigma(x)^n \lambda_i) + B_{ij}(x, t, \xi) (t \tau - t\sigma(x)^n \lambda_j) = t\sigma(x)^n D_{ij}(x, t, \xi)$.

Q.E.D.

Lemma 3.2. For any monomial $\omega_k^i \in W_k$, $0 \leq k \leq m - 1$, there exist ∂_i and $\omega_{k+1}^i \in W_{k+1}$ such that

$$\partial_i \omega_k^i = \omega_{k+1}^i + \sum_{j=1}^{k+1} \sum_{(j)} C_{ij} \omega_{k+1-j}^i,$$

where $C_{ij} \in \mathcal{B}([0, T], S^0)$.

Proof. For any $\omega_k^i = \partial_{j_1} \cdots \partial_{j_k}$, $1 \leq j_1 < \cdots < j_k \leq m$, there exists some $i \in \{j_1, \cdots, j_k\}$ with $1 \leq i \leq m$. Hence if we use Lemma 3.1, we easily obtain (3.2).

Q.E.D.

Lemma 3.3. Let
\[\mathcal{V}(t) = \sum_{k=0}^{m-1} \sum_{\alpha} ||\omega_{k}^\alpha u||, \]

then there exists a constant \(c_1 > 0 \) such that

\[t \frac{d}{dt} \mathcal{V}(t) \leq c_1 \{ ||\Pi_m u|| + \mathcal{V}(t) \}, \]

for \(u(x, t) \in \mathcal{B}([0, T], H^m) \).

Proof. From Lemma 3.2 and Lemma A.2 in Appendix, we get that for any \(k \) with \(0 \leq k \leq m-1 \),

\[t \frac{d}{dt} ||\omega_{k}^\alpha u||^2 = 2 \Re (\sqrt{-1} t^\alpha \sigma(x)^\alpha \omega_{k+1}^\alpha u + \omega_{k+1}^\alpha u + \sum_{j=1}^{k+1} \sum_{\gamma} C_{\gamma,j} \omega_{k+1-j}^\gamma u, \omega_{k}^\alpha u) \]

\[\leq c_2 ||\omega_{k}^\alpha u|| + ||\omega_{k+1}^\alpha u|| + \sum_{j=1}^{k+1} \sum_{\gamma} ||\omega_{k+1-j}^\gamma u|| ||\omega_{k}^\alpha u||. \]

Therefore we obtain (3.3). Q.E.D.

Lemma 3.4. Let \(\Pi_s = \partial_{i_1} \cdots \partial_{i_s}, 1 \leq i_1 < \cdots < i_s \leq m \). Then \(\Pi_s \), the symbol of \(\Pi_s \), is expressed in the form:

\[\sigma(\Pi_s) = \prod_{j=1}^s (t \tau - t^\alpha \sigma(x)^\alpha \lambda_{i_j}) + R_{s-1} + \cdots + R_0, \]

where \(R_{s-j} = \sum_{p + q = s-j} t^\beta \sigma(x)^\beta b_{ij}(x, t, \xi) \tau^\delta \) for some \(b_{ij} \in \mathcal{B}([0, T], S^p) \).

Proof. We carry out the proof by induction on \(s \). When \(s = 1 \), (3.4) is trivial. Suppose (3.4) holds for \(s \). Since \(\Pi_{s+1} = \Pi_s \partial_{i_{s+1}} \),

\[\sigma(\Pi_{s+1}) = \sigma(\Pi_s) (t \tau - t^\alpha \sigma(x)^\alpha \lambda_{i_{s+1}}) + \sum_{\alpha} \partial_{i_{s+1}}^{\alpha} \sigma(\Pi_s) D_{s+1}^\alpha (t \tau - t^\alpha \sigma(x)^\alpha \lambda_{i_{s+1}}). \]

Substituting the right hand side of (3.4) for \(\sigma(\Pi_s) \), we have (3.4) with \(s+1 \).

Q.E.D.

Lemma 3.5. There exist \(A_j(x, t, \xi) \in \mathcal{B}([0, T], S^0) \) such that for \(i' + j' = m-k \), \(1 \leq k \leq m \),

\[t^{i'\alpha+j'\beta} \sigma(x)^{i'\alpha} b_{i'j'}(x, t, \xi) \tau^{j'} \]

\[= \sum_{j=k}^{m} A_j(x, t, \xi) \prod_{i \leq j, i \neq k} (t \tau - t^\alpha \sigma(x)^\alpha \lambda_i(x, t, \xi)), \]

where \(b_{ij} \in \mathcal{B}([0, T], S^i) \).

Proof. Substituting \(t^\alpha \sigma(x)^\alpha \lambda_i(x, t, \xi) \) for \(t \tau \), then we obtain
\[
I_t^{(m-k)} \sigma(x)^{(m-k)\mu} K_j(x, t, \xi) = A_j(x, t, \xi) I_t^{(m-k)} \sigma(x)^{(m-k)\mu} \prod_{i+j, j \in \mathbb{Z}^n} (\lambda_j - \lambda_i),
\]
where \(K_j(x, t, \xi) \in \mathcal{B}[[0, T], S^{m-k}] \). Therefore if we set \(A_j(x, t, \xi) = K_j(x, t, \xi) \times \{ \sum_{i+j, j \in \mathbb{Z}^n} (\lambda_j - \lambda_i) \}^{-1} \), (3.5) is realized. Q.E.D.

Corollary 3.1. There exist pseudo-differential operators \(C_k(x, t, D_x) \in \mathcal{B}[[0, T], S^0] \) such that

\[
Q_0 - \Pi_m = \sum_{k=0}^{m-1} \sum_{a} C_k(x, t, D_x) \omega_x^a.
\]

Proof. From (3.4) with \(s = m \),

\[
\sigma(Q_0 - \Pi_m) = \sum_{j=1}^{m} \sum_{p+q = m-j} t^{\beta+q} \sigma(x)^{\mu} b_{p_j}(x, t, \xi) \tau^q,
\]
where \(b_{p_j}(x, t, \xi) \in \mathcal{B}[[0, T], S^0] \). Using Lemma 3.5, the principal symbol of \(Q_0 - \Pi_m \) is

\[
\sum_{j=1}^{m} A_j(x, t, \xi) \prod_{i+j, j \in \mathbb{Z}^n} (\tau-t^\ell \sigma(x)^{\mu} \lambda_j(x, t, \xi)),
\]
where \(A_j(x, t, \xi) \in \mathcal{B}[[0, T], S^0] \). Applying (3.4) for \(s = m-1 \),

\[
\sigma(Q_0 - \Pi_m - \sum_{j=1}^{m} A_j \prod_{i+j, j \in \mathbb{Z}^n} \partial \mu \sigma(x)^{\mu} b_{p_j}(x, t, \xi) \tau^q,
\]
where \(b_{p_j}(x, t, \xi) \in \mathcal{B}[[0, T], S^0] \). Repeating these steps, (3.6) is verified. Q.E.D.

Lemma 3.6. There exists a constant \(c_3 > 0 \) such that

\[
it^\frac{d}{dt} \Psi(t) \leq c_3 \{ ||Q_0 u|| + \Psi(t) \}.
\]

Proof. Using Lemma 3.3 and Corollary 3.1, we obtain that

\[
it^\frac{d}{dt} \Psi(t) \leq c_3 \{ ||Q_0 u|| + \Psi(t) \}
\]
\[
\leq c_3 \{ ||Q_0 u|| + ||(Q_0 - \Pi_m) u|| + \Psi(t) \} \leq c_3 \{ ||Q_0 u|| + \Psi(t) \}.
\]
Q.E.D.

For a sufficiently large integer \(N \), we put

\[
u_N(x, t) = u(x, t) - \sum_{j=0}^{m+1} \frac{t^j}{j!} \partial^j u(x, 0).
\]

Then \(u_N(x, t) \) satisfies the equation:
Q_0 u_N(x, t) = f(x, t) - Q_0\left(\sum_{i=0}^{m-k} \partial^i u(x, 0)\right) = f_N(x, t).

Here we note that from (A-4), for any i ≥ 0, D_i u(x, 0) is represented by f(x, t) and u^i(x), 0 ≤ i ≤ m - k - 1 (cf. Baouendi-Goulaouic [1]).

Lemma 3.7. For sufficiently large N, the following energy estimate holds.

(3.8) \(||u(\cdot, t)||_s \lesssim \text{const.} \left\{ \sum_{i=0}^{m-k} \frac{t^i}{i!} \left\| \partial^i u(\cdot, 0) \right\|_s + t^N \int_0^t \| D_t^{N+1} f_N(\cdot, \tau) \|_s d\tau \right\} , \)

where \(\| \cdot \|_s \) denotes \(H^s \)-norm with respect to x.

Proof. If we redefine \(\Psi(t) \) replacing \(u(x, t) \) by \(u_N(x, t) \), then from Lemma 3.6,

\[\frac{d}{dt} \left(t^{-s} \Psi(t) \right) \leq c_3 t^{-s-1} \| f_N(\cdot, t) \| . \]

We can choose \(N \) such that \(t^{-s} \Psi(t) \big|_{t=0} = 0 \). Then

\[\Psi(t) \leq c_3 t^s \int_0^t \tau^{-s-1} \| f_N(\cdot, \tau) \| d\tau . \]

On the other hand, since \(D_i f_N(x, 0) = 0 \) for \(0 \leq i \leq N \),

\[f_N(x, t) = \frac{1}{N!} \int_0^t (t-\tau)^N \partial_t^{N+1} f_N(x, \tau) d\tau . \]

Thus

\[||u_N(\cdot, t)|| \leq \text{const.} \cdot t^N \int_0^t || D_t^{N+1} f_N(\cdot, \tau) || d\tau . \]

Similarly we get that for real \(s \),

\[||u_N(\cdot, t)||_s \leq \text{const.} \cdot t^N \int_0^t || D_t^{N+1} f_N(\cdot, \tau) ||_s d\tau . \]

Therefore we can obtain the desired estimate. Q.E.D.

Proof of Proposition 2.1. For any \(i \) with \(m - k \leq i \leq m - 1 \), we calculate \(D_i v(x, 0) \) and let them \(v^i(x) \), \(m - k \leq i \leq m - 1 \). Next we define the \(\delta \)-translation \(Q_0^{\delta} \) of \(Q_0 \) by

(3.9) \[Q_0^{\delta}(x, t, D_x, D_t) = Q_0(x, t+\delta, D_x, D_t) \quad \text{for} \quad 0 \leq \delta \leq 1 . \]

Now we consider the following non-characteristic Cauchy problem:

(3.10) \[\begin{align*}
Q_0^{\delta} v_0(x, t) &= t^{m-k} f(x, t) \quad \text{in} \quad \mathbb{R}^n \times (0, T] \\
D_i v_0(x, t) \big|_{t=0} &= v^i(x) , \quad 0 \leq i \leq m - 1 \quad \text{on} \quad \mathbb{R}^n .
\end{align*} \]
For $\delta > 0$, (3.10) is H^∞-well-posed (cf. Uryu [16]). Further from Lemma 3.7, the following energy estimate holds uniformly in δ:

$$||v_{\delta}(\cdot, t)||_s \leq \text{const.} \left\{ \sum_{j=0}^{m+N} t^j \left(\partial_j^0 v_{\delta}(\cdot, 0) \right) ||_{s + t^N} \int_0^t ||D_{N+1}^j f_{\delta}(\cdot, \tau)||_{s} d\tau \right\}.$$

Therefore there exists a subsequence $\{v_{\delta_j}\}$ which converges weakly in $\mathcal{D}([0, T], H^s)$ as $\delta_j \to 0$. This limit function v is a unique solution of (2.6). Hence (1°) has proved.

In order to prove (2°), we note the following fact. For $\delta > 0$, initial surface $\{t = 0\}$ is non-characteristic with respect to Q^δ_0 and Q^δ_5 is invariant under the Holmgren transformation:

$$\begin{cases} x' = x \\ t' = t + |x|^2 \end{cases}.$$

Thus by the well-known method (for example, see Mizohata [10]), we find that the domain of dependence is finite, i.e. for any $(x_0, t_0) \in \mathbb{R}^n \times (0, T)$, if $f(x, t) \equiv 0$ in D_0 and $v^i(x) \equiv 0$ on $D_0 \cap \{(x, 0); x \in \mathbb{R}^n\}$, then $v_{\delta}(x, t) \equiv 0$ in D_0, where $D_0 = \{(x, t) \in \mathbb{R}^n \times (0, T); |x-x_0| < \lambda_{\max} \{(t_0+\delta)^{1-(t+\delta)^{1/2}}\}/\delta\}$.

Then the following fact holds for limit function $v(x, t)$. If $f(x, t) \equiv 0$ in D and $v^i(x) \equiv 0$ on $D \cap \{(x, 0); x \in \mathbb{R}^n\}$, then $v(x, t) \equiv 0$ in D, where $D = \bigcap_{\delta > 0} D_\delta$. Since we can easily see that $D = D_{\delta_0}$ (2°) is verified.

This completes the proof. Q.E.D.

§ 4. Energy Inequality for Q_0

The aim of this section is to show the following lemma.

Lemma 4.1. Let

$$W_r(t) = \sum_{k=0}^{m-1} \sum_a ||A^a \phi_k u||,$$

where A is the pseudo-differential operator with symbol $\langle \xi \rangle$. Then there exist constants c_4, $R > 0$ such that

$$\left(4.1\right) \quad t \frac{d}{dt} W_r(t) \leq c_4 \left(||A^r Q^\delta u|| + W_r(t) + t^s \sum_{j=1}^{r-1} \hat{R}^{j-1} (j-1)! \left(r^s \right) W_{r+1-j}(t) \right)$$

$$+ \sum_{j=1}^{r-1} \hat{R}^j j! \left(r^s \right) W_{r-j}(t) + \hat{R}^r t^s W_0(t).$$

Proof. For $r > 0$, operating A^r on both sides of (3.2), we get that
\[\partial_t A^r u = [\partial_t, A^r] \omega^* u + A^r \omega^*_{k+1} u + \sum_{j=1}^{k+1} \sum_{r} (C_{\gamma j} A^r \omega^*_{k+1-j} u + [A^r, C_{\gamma j}] \omega^*_{k+1-j} u). \]

Similar to the proof of Lemma 3.3, we have that for any \(k \) with \(0 \leq k \leq m-1 \),

\[
t \frac{d}{dt} \| A^r \omega^* u \| \leq c \{ \| A^r \omega^* u \| + \| [A^r, \partial_t] \omega^* u \| + \| A^r \omega^*_{k+1} u \| + \sum_{j=1}^{k+1} \sum_{r} (\| A^r \omega^*_{k+1-j} u \| + \| [A^r, C_{\gamma j}] \omega^*_{k+1-j} u \|) \}. \]

It follows from Lemma A.3 in Appendix that

\[
\| [A^r, \partial_t] \omega^* u \| \leq \alpha t^d \sum_{j=1}^{r^*} \hat{\rho} t^{j-1/2} (r^*)^j \| A^{r+j} \omega^* u \| + t^e \hat{\rho} r^{e} \| \omega^* u \|
\]

and

\[
\| [A^r, C_{\gamma}] \omega^*_{k+1-i} u \| \leq \sum_{j=1}^{r^*} \hat{\rho} t^{j-1/2} (r^*)^j \| A^{r-j} \omega^*_{k+1-i} u \| + t^e \hat{\rho} r^{e} \| \omega^*_{k+1-i} u \| .
\]

Therefore we obtain that

\[
t \frac{d}{dt} \| v(t) \| \leq c \{ \| A^{r+1} u \| + \| v(t) \| + \| \sum_{j=1}^{r^*} \hat{\rho} t^{j-1/2} (r^*)^j \| \}
\]

where \(r^* = \Gamma(r+1) \) and \(r^* \) is the lowest integer greater than or equal to \(r \),

\[Q.E.D.\]

Here \(r^* = \Gamma(r+1) \) and \(r^* \) is the lowest integer greater than or equal to \(r \),
where \(\Gamma(\cdot) \) is the gamma function.

\[\S 5. \ \text{Estimate of } A^r v(x, t)\]

We assume the existence of solutions of the following Cauchy problem:

\[
\begin{align*}
Q_0 v(x, t) &= g(x, t) \\
D_t^i v(x, t) \big|_{t=0} &= 0, \quad 0 \leq i \leq m-k-1,
\end{align*}
\]

where \(g(x, t) \in C([0, T], \Gamma^{(s)}) \) such that for any sufficiently large fixed integer \(s, D_t^i g(x, t) \big|_{t=0} = 0, \quad 0 \leq i \leq s-1. \)

Therefore we may assume that for any \(r \geq 0 \), there exist constants \(c, R, M > 0 \) such that

\[
\| A^r g(x, t) \| \leq c R^r t^s \exp (M R^* t^s).
\]

For simplification we use the notation
\[w_r(s, t, R) = R^r t^s \exp \left(M r^* t^\ell \right). \]

Lemma 5.1. For any \(r \geq 0 \), there exists a constant \(A' > 0 \) such that for sufficiently large \(R, M, s \),

\[\Psi_r(t) \leq c A' s^{-1} w_r(s, t, R). \]

Proof. We carry out the proof by induction on \(r \).

When \(r = 0 \), it follows from Lemma 3.6 and (5.1) that

\[t \frac{d}{dt} \Psi_0(t) \leq c_1 \{ c w_0(s, t, R) + \Psi_0(t) \}. \]

From this inequality,

\[\frac{d}{dt} (t^{-c_5} \Psi_0(t)) \leq c c_3 t^{-c_5-1} w_0(s, t, R). \]

If we note that \(s \) is sufficiently large,

\[\Psi_0(t) \leq t^s \int_0^t c c_5 t^{-c_5-1} d\tau = c c_3 t^s (s - c_3)^{-1} t^{-c_5} \leq c A' s^{-1} w_0(s, t, R), \]

if we choose \(A' \) such that \(A' \geq 2c_3 \).

We assume (5.2) is valid for any \(r \) such that \(0 \leq r \leq n \). Let us show that (5.2) is valid for \(n < r \leq n + 1 \). It follows from Lemma 4.1 that

\[\frac{d}{dt} \left\{ t^{-c_4} \exp \left(-c_4 r^* t^{\ell} / \ell \right) \Psi_r(t) \right\} \leq c_4 t^{-c_4-1} \exp \left(-c_4 r^* t^{\ell} / \ell \right) \{ ||A' Q_0|| \}
\]

\[+ t^\ell \sum_{j=2}^{r} \hat{R}^{j-1}(j-1)! e_{r-j}(r^*) \Psi_{r+1-j}(t) + \sum_{j=1}^{r-1} \hat{R}^j \Psi_{r-j}(t) + \hat{K}^r \Psi_0(t) \}. \]

Hence we get that

\[\Psi_r(t) \leq c_4 t^s \exp \left(c_4 r^* t^{\ell} / \ell \right) \int_0^t t^{-c_4-1} \exp \left(-c_4 r^* t^{\ell} / \ell \right) \{ ||A' Q_0|| \}
\]

\[+ t^\ell \sum_{j=2}^{r} \hat{R}^{j-1}(j-1)! e_{r-j}(r^*) \Psi_{r+1-j}(t) + \sum_{j=1}^{r-1} \hat{R}^j \Psi_{r-j}(t) + \hat{K}^r \Psi_0(t) \} d\tau \]

\[\leq c_4 t^s \exp \left(c_4 r^* t^{\ell} / \ell \right) \int_0^t t^{-c_4-1} \exp \left(-c_4 r^* t^{\ell} / \ell \right) \{ c w_r(s, \tau, R) \}
\]

\[+ t^\ell \sum_{j=2}^{r} \hat{R}^{j-1}(j-1)! e_{r-j}(r^*) c A' s^{-1} w_{r+1-j}(s, \tau, R) + \sum_{j=1}^{r-1} \hat{R}^j c A' s^{-1} w_{r-j}(s, \tau, R) \} d\tau \]

\[\leq c_4 t^s \exp \left(c_4 r^* t^{\ell} / \ell \right) \int_0^t t^{-c_4-1} \exp \left(-c_4 r^* t^{\ell} / \ell \right) \]

\[\times \{c \omega \rho (s, r, \tau) + \tau^j \sum_{j=1}^J (\hat{R}/R)^j \left(\frac{r^*}{j} \right)^{j-1} cA^s w_r(s, \tau, R) \]
\[+ \sum_{j=1}^J (\hat{R}/R)^j \left(\frac{r^*}{j} \right)^{j-1} cA^s w_r(s, \tau, R) + (\hat{R}/R)^j cA^s w_r(s, \tau, R) \} \, d\tau. \]

Let \(R \geq 2 \hat{R} \), then
\[\Psi_r(t) \leq c \tau^j \exp \left(c \tau^j t^j / j \right) \int_0^t \tau^{-c^*} \exp \left(-c \tau^j t^j / j \right) \times \{c \omega \rho (s, r, \tau) + \tau^j \tau^j cA^s w_r(s, \tau, R) + cA^s w_r(s, \tau, R) \} \, d\tau \]
\[\leq c \tau^j \exp \left(c \tau^j t^j / j \right) R^r t^j \exp \left\{ \left(M - c \omega \rho (s, r, \tau) \right) \int_0^t \tau^{-c^*} \, d\tau \right\} + cA^s w_r(s, \tau, R) \]
\[\leq cA^s w_r(s, t, R), \]
if we choose \(A' \) such that \(A' \geq 3c^* c_7 \) and note that \(s \) and \(M \) are sufficiently large.

Q.E.D.

Lemma 5.2. Let
\[\Phi_r(t) = \sum_{i+j \leq n} t^{i+j} || A' \{ \sigma(x)^{i+j} A^i D_v \} ||, \]
then
\[\Phi_r(t) \leq c g \left\{ \frac{1}{r^*} \right\} \Psi_r(t) + \hat{R}^r \Psi(t). \]

Proof. From Lemma 3.4 and Lemma 3.5, we get that
\[t^{i+j} || A' \{ \sigma(x)^{i+j} A^i D_v \} || = || A' \{ \sum_{k=0}^{t^j} \sum_{a} A_k(x, t, D_a) \omega^a_v \} || \]
\[\leq c g \sum_{k=0}^{t^j} \sum_{a} (|| A' \omega^a_v || + || A' A_k \omega^a_v ||). \]

Using Lemma A.3 in Appendix, we have
\[|| A' A_k \omega^a_v || \leq \sum_{j=1}^{r^*} \frac{1}{j} \hat{R}^j j^j \left(\frac{r^*}{j} \right)^{j-1} || A'^{-j} \omega^a_v || + \hat{R}^r \tau^j || \omega^a_v ||. \]

Thus we can obtain the desired inequality.

Q.E.D.

Corollary 5.1. For any \(r \geq 0 \), there exists a constant \(A' > 0 \) such that for sufficiently large \(R, M, s, \)
\[\Phi_r(t) \leq c A^s w_r(s, t, R). \]
Proof. Applying Lemma 5.1 to Lemma 5.2, we find that
\[\Phi_r(t) \leq c_6 \left\{ \sum_{j=0}^{r-1} \hat{R}^j r^j \left(\frac{r^*}{j} \right)^{cA' s^{-1} w_r(s, t, R) + \hat{R}^r r^r cA' s^{-1} w_0(s, t, R)} \right\} \]
\[\leq c_6 \left\{ \sum_{j=0}^{r-1} (\hat{R}/R) r^j \left(\frac{r^*}{j} \right)^{cA' s^{-1} w_r(s, t, R) + (\hat{R}/R)^r cA' s^{-1} w_r(s, t, R)} \right\} \]
\[\leq c \hat{A} s^{-1} w_r(s, t, R), \]
if we make \(R \geq 2 \hat{R} \) and choose \(\hat{A} \) such that \(\hat{A} \geq 3c_6 A' \). Q.E.D.

Lemma 5.3. For any \(r \geq 0 \) and \(i+j \leq m-1 \), there exists a constant \(A > 0 \) such that for sufficiently large \(R, M, s \),
\[(5.4) \quad t^{i+j} \| A' \{ \sigma(x)^{i+j} A^l D^j \} \| \leq cA s^{- (m-i-j)} w_r(s, t, R). \]

Proof. It follows from Corollary 5.1 that
\[\| A' \{ \sigma(x)^{i+j} A^l D^j \} \| \leq \int_0^t \cdots \int_0^t \| A' \{ \sigma(x)^{i+j} A^l D^j \} \| d\tau_1 \cdots d\tau_q \]
\[\leq c \hat{A} s^{-1} R^r t^r \exp (M r^* t^*) \int_0^t \cdots \int_0^t \tau_1^{-i} \cdots \tau_q^{-i} d\tau_1 \cdots d\tau_q \]
\[\leq c(2^q \hat{A}) s^{-(q+1)} w_r(s-i-l-j, t, R). \]
Hence we get that if we put \(q = m-i-j-1 \),
\[\| A' \{ \sigma(x)^{i+j} A^l D^j \} \| \leq \int_0^t \cdots \int_0^t \| A' \{ \sigma(x)^{i+j} A^l D^j \} \| d\tau_1 \cdots d\tau_q \]
\[\leq c \hat{A} s^{-1} R^r t^r \exp (M r^* t^*) \int_0^t \cdots \int_0^t \tau_1^{-i} \cdots \tau_q^{-i} d\tau_1 \cdots d\tau_q \]
\[\leq c(2^q \hat{A}) s^{-(q+1)} w_r(s-i-l-j, t, R). \]
If we set \(A = 2^q \hat{A} \), we get (5.4). Q.E.D.

Lemma 5.4. For any \(r \geq 0 \) and \(i, j \) such that \(i+j = 0, \cdots, m-1 \),
\[(5.5) \quad t^{i+j} \| \sigma(x)^{i+j} A^{r+i} D^j \| \leq c_0 cA w_{r+i}(s, t, R) \]
\[\times \sum_{k=0}^j s^{- (m-i-j+k)} \{ (r+i) \cdots (r+k+1) \}^{-i} \{ (r+k) \cdots (r+1) \}^{-i}. \]

Proof. We carry out the proof by induction on \(i \). When \(i=0 \), (5.5) is trivial from (5.4). Using (5.4) and Lemma A.3 in Appendix and noting \(\mu \geq 1 \), we obtain that
\[t^{i+j} \| \sigma(x)^{i+j} A^{r+i} D^j \| \]
\[\leq t^{i+j} \| A' \{ \sigma(x)^{i+j} A^l D^j \} \| + t^{i+j} \| [A', \sigma(x)^{i+j}] A^l D^j \| \]
\[\leq cA s^{- (m-i-j)} w_r(s, t, R) + \sum_{k=1}^j \hat{R}^k r^k t^k \left(\frac{r^*}{k} \right)^{t^{i+k} l_j \| \sigma(x)^{i+j} A^{r+i-k} D^j \|} \]
\[+ \sum_{k=1}^{i+j} \hat{R}^k r^k t^k \left(\frac{r^*}{k} \right)^t \| A^{r+i-k} D^j \| + \hat{R}^r r^r t^r \| A^l D^j \|. \]
\[
\sum_{k=0}^{i-1} s^{-(m-i-j+k)} \{(r+i-k) \cdots (r+k' +1)\}^{-\varepsilon} \{(r+k') \cdots (r+1)\}^{1-\varepsilon} \\
+ \sum_{k=0}^{i-1} \hat{R}^k k! \left(\frac{r+i}{k} \right) cA^{s-(m-i-j)} w_{r+i-k}(s, t, R) + \hat{R}^r r! cA^{s-(m-i-j)} w_i(s, t, R) \\
\leq cA^{s-(m-i-j)} \{(r+i) \cdots (r+1)\}^{-\varepsilon} w_{r+i}(s, t, R) + c_1 cA w_{r+i}(s, t, R) \\
\times \sum_{k=0}^{i-1} \sum_{k'=0}^{k} s^{-(m-i-j+k+k')} \{(r+i) \cdots (r+k+k'+1)\}^{-\varepsilon} \{(r+k+k') \cdots (r+1)\}^{1-\varepsilon} \\
+ cA^{s-(m-i-j)} w_{r+i}(s, t, R) \sum_{k=0}^{i-1} \hat{R}^k \left(\frac{r+i}{k} \right) \\
+ \hat{R}^r r! cA^{s-(m-i-j)} w_{r+i}(s, t, R) \\
\leq cA^{s-(m-i-j)} \{(r+i) \cdots (r+1)\}^{-\varepsilon} w_{r+i}(s, t, R) \\
+ c_1 cA w_{r+i}(s, t, R) \sum_{k=1}^{i} s^{-(m-i-j+k+k')} \{(r+i) \cdots (r+k+k'+1)\}^{-\varepsilon} \{(r+k+k') \cdots (r+1)\}^{1-\varepsilon} \\
+ cA^{s-(m-i-j)} \{(r+i) \cdots (r+1)\}^{-\varepsilon} w_{r+i}(s, t, R) \\
+ \hat{R}^r r! cA^{s-(m-i-j)} w_{r+i}(s, t, R) \\
\leq c_0 cA w_{r+i}(s, t, R) \sum_{k=0}^{i} s^{-(m-i-j+k+k')} \{(r+i) \cdots (r+k+k'+1)\}^{-\varepsilon} \{(r+k+k') \cdots (r+1)\}^{1-\varepsilon} \\
Q.E.D.
\]

\section{Estimate of $A^\varepsilon Q_v u(x, t)$}

Lemma 6.1. If $\sigma(x) \in \mathcal{B}(\mathbb{R}^n)$ and $0 \leq \nu < \mu$, then

\[
||\sigma(x)^\nu u|| \leq ||u||^{1-\nu/\mu} ||\sigma(x)^\mu u||^{\nu/\mu}.
\]

Proof. By Holder’s inequality,

\[
||\sigma(x)^\nu u||^2 = \int |\sigma(x)^\nu u|^2 dx = \int |u|^{2(1-\nu/\mu)} |\sigma(x)^\mu u|^{2\nu/\mu} dx \\
\leq \left(\int |u|^{2\nu/\mu} dx \right)^{1-\nu/\mu} \left(\int |\sigma(x)^\nu u|^2 dx \right)^{\nu/\mu} \\
= ||u||^{2(1-\nu/\mu)} ||\sigma(x)^\mu u||^{2\nu/\mu}. \quad Q.E.D.
\]

Lemma 6.2. Let

\[
\rho_\theta(\alpha, j) = \begin{cases}
\nu(\alpha, j)/|\alpha| \mu & \text{if } \nu(\alpha, j) < \mu s(\alpha, j) \\
\nu(\alpha, j) s(\alpha, j)/(|\alpha| \ell + \theta) & \text{if } \nu(\alpha, j) \geq \mu s(\alpha, j)
\end{cases}
\]

with respect to $0 < \theta \leq 1$, then for any $r \geq 0$,
(6.3) \[t^{(\alpha,j) + j} || \sigma(x)^{\nu(\alpha,j)} A^{\nu(\alpha,j)} D_1^j || \]
\[\leq c_1 \frac{c A}{\alpha + 1}(s + \varepsilon_1, t, R) \sum_{j=0}^{\infty} s^{-(m-j-(\alpha=1-k))\rho(\alpha,j)} \]
\[\times \{(r + |\alpha|) \cdots (r + k + 1)\}^{-\varepsilon_0(\alpha,j)} \{(r + k) \cdots (r + 1)\}^{-(\varepsilon_1-1)\rho(\alpha,j)} , \]
where \(\varepsilon_1 = \min \{ s(\alpha, j) - \nu(\alpha, j)/\mu, s\theta/(|\alpha| l + \theta) \} > 0. \)

Proof. First we consider the case that \(\nu(\alpha, j) < s(\alpha, j) \). If we use Lemma 5.4 and Lemma 6.1, we get

Next in the case that \(\nu(\alpha, j) \geq s(\alpha, j) \), we have

\[t^{(\alpha,j) + j} || \sigma(x)^{\nu(\alpha,j)} A^{\nu(\alpha,j)} D_1^j || \]
\[\leq \frac{c_1}{\alpha + 1}(s + \varepsilon_1, t, R) \sum_{j=0}^{\infty} s^{-(m-j-(\alpha=1-k))\rho(\alpha,j)} \]
\[\times \{(r + |\alpha|) \cdots (r + k + 1)\}^{-\varepsilon_0(\alpha,j)} \{(r + k) \cdots (r + 1)\}^{-(\varepsilon_1-1)\rho(\alpha,j)} \]

Next in the case that \(\nu(\alpha, j) \geq s(\alpha, j) \), we have

\[\nu(\alpha, j) = 0 \] or there exists a non-negative integer \(p(\alpha, j) \) such that \(p(\alpha, j) \times \mu < j \alpha(j) \leq p(\alpha, j) + 1 \mu \). And there exists a non-negative integer \(q(\alpha, j) \) such that \(q(\alpha, j) l < s(\alpha, j) \leq q(\alpha, j) + 1 l \).
Lemma 6.3. For any $r \geq 0$ and $|\alpha| > 0$,

\begin{equation}
(6.5) \quad t^{r(|\alpha|^j + j)||[A^r, \sigma(x)^{(|\alpha|^j)}a_{\alpha,j}(x, t)D_x^{|\alpha|^j}D_t^j]}||
\leq c_{r_2}c_{A^r}w_{r+|\alpha|}(s + \varepsilon_2, t, R) \sum_{k=0}^{|\alpha|^j+1} s^{-(m-j-\delta(|\alpha|^j, k))} \times \{(r+|\alpha|-k)+1\}^{-(\varepsilon_2-1)},
\end{equation}

where $h(\alpha, j) = \begin{cases} p(\alpha, j) & \text{if } \nu(\alpha, j) < \mu s(\alpha, j) \\ q(\alpha, j) & \text{if } \nu(\alpha, j) \geq \mu s(\alpha, j) \end{cases}$ and $\varepsilon_2 = s(\alpha, j) - \theta h(\alpha, j) > 0$.

Proof. First we consider the case that $\nu(\alpha, j) < \mu s(\alpha, j)$. Since

\[
\sigma([A^r, \sigma(x)^{(|\alpha|^j)}a_{\alpha,j}(x, t)D_x^{|\alpha|^j}]) = \sum_{|\beta|=|\alpha|}^{r+|\alpha|+1} \frac{1}{\beta!} \partial_x^{\beta} \sigma(x)^{(|\alpha|^j)}a_{\alpha,j}(x, t) D_x^{\beta} D_t^j
\]

and if we note that

\[
\nu(\alpha, j) - k = (p(\alpha, j) + 1 - k)\mu + (\nu(\alpha, j) - p(\alpha, j)\mu - 1) + (k-1)(\mu-1),
\]

then we obtain that

\[
I(\alpha, j) = t^{r(|\alpha|^j + j)||[A^r, \sigma(x)^{(|\alpha|^j)}a_{\alpha,j}(x, t)D_x^{|\alpha|^j}D_t^j]}||
\leq c_{r_2}c_{A^r}w_{r+|\alpha|}(s + \varepsilon_2, t, R) \sum_{k=0}^{|\alpha|^j+1} s^{-(m-j-\delta(|\alpha|^j, k))} \times \{(r+|\alpha|-k)+1\}^{-(\varepsilon_2-1)}.
\]

Using Lemma 5.4 and noting Remark 1.2,
The calculation of the case that $\mathcal{L}(\alpha, j) \triangleright \mu \mathcal{L}(\alpha, j)$ is quite similar to the first case. Q.E.D.

From $A'Q_1 = [A', Q_1] + Q_1 A'$, Lemma 6.2 and Lemma 6.3, we obtain

Lemma 6.4.

\[
\| A'Q_1 v \| \leq \tilde{c} c A \sum_{|\alpha| + j \leq m - 1} K_f^a(s, r) w_{r + |\alpha|}(s + \varepsilon, t, R),
\]

where $\tilde{c} > 0$, $\varepsilon \equiv \min \{\varepsilon_1, \varepsilon_2\} > 0$ and

\[
K_f^a(s, r) = \sum_{k=0}^{r+j+1} s^{-m-j-(|\alpha|-k)g(\alpha, j)} \times \{(r+|\alpha|)\cdots(r+k+1)\}^{-\kappa} \{r+k\cdots(r+1)\}^{-\kappa} \times \{(r+|\alpha|)\cdots(r+|\alpha| - p(\alpha, j)+k)\}^{-\kappa} \times \{(r+|\alpha| - p(\alpha, j)+k-1)\cdots(r+|\alpha| - p(\alpha, j))\}^{-\kappa}.
\]
§7. Proof of Theorem 2.1

In order to prove Theorem 2.1, we prepare several lemmas.

Lemma 7.1. For any \(f(x, t) \in \mathcal{B}([0, T], \Gamma^{(e)}) \) and \(u(x) \in \Gamma^{(e)} \), \(0 \leq i \leq m - k - 1 \), there exists a unique solution \(u(x, t) \in \mathcal{B}([0, T], \Gamma^{(e)}) \) of the equation:

\[
\begin{cases}
Q_d u(x, t) = t^{m-k} f(x, t) \\
D_i^t u(x, t) |_{t=0} = u^i(x), \quad 0 \leq i \leq m - k - 1.
\end{cases}
\]

And especially, if \(u^i(x) \equiv 0 \), \(0 \leq i \leq m - k - 1 \) and \(D_i^t f(x, t) |_{t=0} = 0 \), \(0 \leq i \leq s - 1 \), then we obtain that \(D_i^t u(x, t) |_{t=0} = 0 \), \(0 \leq i \leq m - k - 1 + s \), where \(s \) is a positive integer.

Proof. It follows from Proposition 2.1 that there exists a unique solution \(u(x, t) \in \mathcal{B}([0, T], H^m) \) of (7.1). Therefore let us show that \(u(x, t) \in \mathcal{B}([0, T], \Gamma^{(e)}) \).

From (A-4), we note that we can calculate the derivatives of \(u(x, t) \) at \(t=0 \) and each derivatives belongs to \(\Gamma^{(e)} \).

For any fixed integer \(s \geq 1 \), let

\[
u_s(x, t) = u(x, t) - \sum_{j=0}^{s-1} \frac{t^j}{j!} \partial_j^i u(x, 0),
\]

then \(u_s(x, t) \) satisfies the equation

\[
Q_d u_s(x, t) = f(x, t) - Q_d \left(\sum_{j=0}^{s-1} \frac{t^j}{j!} \partial_j^i u(x, 0) \right) \equiv f_s(x, t).
\]

Thus we get that \(f_s(x, t) \in \mathcal{B}([0, T], \Gamma^{(e)}) \) such that \(D_i^t f_s(x, t) |_{t=0} = 0 \), \(0 \leq i \leq s - 1 \). From the consequence of §5, it is easily seen that \(u_s(x, t) \in \mathcal{B}([0, T], \Gamma^{(e)}) \).

Hence \(u(x, t) \in \mathcal{B}([0, T], \Gamma^{(e)}) \).

The second assertion is clear from (A-4). Q.E.D.

Lemma 7.2. Let \(u_j(x, t) \) be the solution of (2.5) \(j \), then \(u_j(x, t) \in \mathcal{B}([0, T], \Gamma^{(e)}) \) for \(j \geq 0 \). Moreover there exists an integer \(s \geq 1 \) such that for \(j \geq 1 \), \(D_i^t u_j(x, t) |_{t=0} = 0 \), \(0 \leq i \leq m - k - 1 + s(j-1) \).

Proof. It follows from the first assertion of Lemma 7.1 that \(u_0(x, t) \in \mathcal{B}([0, T], \Gamma^{(e)}) \). If we remember (2.2)~(2.4), then we find that

\[
-Q_i u_0(x, t) = t^{m-k} f_0(x, t)
\]

such that \(f_0(x, t) \in \mathcal{B}([0, T], \Gamma^{(e)}) \). Using Lemma 7.1 once more, we can get that \(u_0(x, t) \in \mathcal{B}([0, T], \Gamma^{(e)}) \). Therefore repeating these steps, we have \(u_j(x, t) \in \mathcal{B}([0, T], \Gamma^{(e)}) \).
\(B((0, T], \Gamma^{(\nu)})\) for \(j \geq 0\).

Let us consider the second assertion. From (2.5), \(D_t^j u_t(x, t)|_{t=0} = 0, 0 \leq i \leq m-k - 1\). Put
\[
\tilde{s} = \min_{|\alpha| + f \leq m-1, |\alpha| \neq 0} \{s(\alpha, j)\} \geq 1.
\]
Thus from (2.4) and the second assertion of Lemma 7.1, we obtain that
\(D_t^j u_t(x, t)|_{t=0} = 0, 0 \leq i \leq m-k - 1 + \tilde{s}\). Similarly we conclude the second assertion of Lemma 7.2.

Q.E.D.

From Lemma 7.2, for any fixed integer \(s \geq 1\), there exists \(N = N(s) \in \mathbb{N}\) such that for any \(j \geq N-1\), \(D_t^j u_t(x, t)|_{t=0} = 0, 0 \leq i \leq s-1\).

Therefore we may assume that for any \(r \geq 0\), there exist positive constants \(c\) and \(R\) such that
(7.2)
\[||A'Q_s u_{N-1}|| \leq c w_r(s, t, R).\]

Lemma 7.3. Under (7.2), if \(1 \leq \varepsilon < \rho/(\rho-1)\), there exist constants \(\tilde{A}, B, q > 0\) which are independent of \(r\) such that
(7.3)
\[||A' u_{N+r}|| \leq c \tilde{A} B^q n^{-q} w_r(s, t, 2^r R)\]
for \(n = 0, 1, 2, \ldots\).

Proof. From (7.2) and Lemma 5.3, we get that
\[||A' u_N|| \leq c A s^{-n} w_r(s, t, R).\]
It follows from Lemma 6.4 that
\[||A' Q_s u_N|| \leq c \tilde{A} \sum_{|\alpha| + f \leq m-1, |\alpha| \neq 0} K^{|\alpha|}(s, r) w_{r+|\alpha|}(s+\varepsilon, t, R).\]
If we use Lemma 5.3, we have that
\[||A' u_{N+1}|| \leq c A^2 \sum_{|\alpha| + f \leq m-1, |\alpha| \neq 0} (s+\varepsilon)^{-m} K^{|\alpha|}(s, r) w_{r+|\alpha|}(s+\varepsilon, t, R).\]
Applying Lemma 6.4 again, we obtain that
\[||A' Q_s u_{N+1}|| \leq c^2 \tilde{A} \sum_{|\alpha| + f \leq m-1, |\alpha| \neq 0} \sum_{|\alpha| \neq 0} K^{|\alpha|}(s, r) K^{|\alpha|}(s+\varepsilon, r+|\alpha|) \times w_{r+|\alpha|+1}(s+2\varepsilon, t, R).\]
Using Lemma 5.3 again, we get that
\[||A' u_{N+2}|| \leq e^2 c A^3 \sum \sum (s+2 \varepsilon)^{-m} K_i^m(s, r) K_{j_1}^{m_2} (s, r) \nu_{r+|\alpha_1|+|\alpha_2|}(s+2 \varepsilon, t, R) , \]

where \(K_i^m(s, r) = K_i^m(s+\varepsilon, r+|\alpha_1|) \).

Setting
\[K_j^{m_2}(s, r) = K_j^m(s+(i-1)\varepsilon, r+|\alpha_1| + \cdots + |\alpha_{i-1}|) , \]

inductively we obtain that for any \(n \geq 0 \),
\[||A' u_{N+n}|| \leq c A(e A)^n \sum \sum K_i^m(s, r) K_{j_1}^{m_2}(s, r) \times \nu_{r+|\alpha_1|+\cdots+|\alpha_n|}(s+n \varepsilon, t, R) . \]

By the way,
\[K_j^{m_2}(s, r) \cdots K_i^m(s, r) \]
\[= \sum \cdots \sum s^{-\sigma_1(r+1)}^{k_1-\cdots-k_1 (r+|\alpha_1|)-b_1} \times (s+\varepsilon)^{-\sigma_2(r+|\alpha_1|+1)}^{k_2-\cdots-k_2 (r+|\alpha_1|+|\alpha_2|)-b_2} \times \cdots \times (s+(n-1)\varepsilon)^{-\sigma_n(r+1)+\cdots+|\alpha_n|}^{k_n-\cdots-k_n (r+|\alpha_1|+\cdots+|\alpha_n|)-b_n} , \]

where
\[a_d \in \{ m-j_d-(|\alpha_d| - k_d)\rho_\theta(\alpha_d, j_d), m-j_d-h(\alpha_d, j_d)-1+k_d \} \]
and
\[b_d^{k_d} \in \{ \kappa \rho_\theta(\alpha_d, j_d), (\kappa-1)\rho_\theta(\alpha_d, j_d), \kappa, \kappa-1, 0 \} . \]

We note the following.

(7.4) If \(a_d = m-j_d-(|\alpha_d|-k_d)\rho_\theta(\alpha_d, j_d) \), then \(b_d^k \), \(b_d^{k+1} \), \(b_d^{k+1} \) \(= \kappa \rho_\theta(\alpha_d, j_d) \).

(7.5) If \(a_d = m-j_d-h(\alpha_d, j_d)-1+k_d \), then \(b_d^k \), \(b_d^{k+1} \) \(= \kappa \rho_\theta(\alpha_d, j_d) \).

Let \(s \geq \varepsilon \) and \(a = \min \{ a_d \} \), and if we use Lemma A.4 in Appendix, then we have that
\[s^{-\sigma_1 \cdots (s+(n-1)\varepsilon)^{-\sigma_n} \leq e^{-\sigma_1 \cdots (n \varepsilon)^{-\sigma_n}} \leq e^{-a_n} A_1 R_1^n (-e_1-\cdots-e_n) . \]

Let \(r = 0 \) and using Lemma A.4 again,
\[(r+1)^{-k_1 \cdots (r+|\alpha_1|)^{-k_1} \cdots (r+|\alpha_1|+\cdots+|\alpha_n|+1)^{-k_1}} \]
\[\times (r+|\alpha_1|+\cdots+|\alpha_n|)^{-b_1} \]
\[\leq A_1 R_1^{|\alpha_1|+\cdots+|\alpha_n|} (b_1+b_2+\cdots+b_n) . \]
Further we estimate \(w_{r+\sum_{i=1}^{n} |\alpha_i|} (s+n \epsilon, t, R) \) as follows:

\[
R^{r+\sum_{i=1}^{n} |\alpha_i|} \lesssim R^R (m-1)^n,
\]

by Lemma A.5 in Appendix,

\[
(r+|\alpha_1|+\cdots+|\alpha_n|)! \lesssim 2^{(r+\sum_{i=1}^{n} |\alpha_i|)R} |(\alpha_1|+\cdots+|\alpha_n|)!^\epsilon
\]

\[
\lesssim 2^{2^{r+2(m-1)}\epsilon R} R^{2\eta (\sum_{i=1}^{n} |\alpha_i|)}
\]

and

\[
t^{1+\epsilon} \leq t^R \epsilon^n.
\]

Hence we find that

\[
\left| A^t u_{N+m} \right| \leq c A A_2^2 A_3 \left\{ c A R^2 R^m e^{-d R^m - T^m} \exp (M(m-1)T) \right\}^\epsilon w_{\epsilon}(s, t, 2^s R)
\]

\[
\times \sum \cdots \sum \eta^{(\sum_{i=1}^{n} |\alpha_i|+\sum_{j=1}^{n} |\alpha_j|)} \exp (-|\alpha_1|+\cdots+|\alpha_n|+|\epsilon^-1|\alpha_1^\epsilon+\cdots+|\epsilon^-1|\alpha_n^\epsilon)
\]

Let \(i \) be the number of \(\{m-j_d-\alpha_d|\alpha_d, j_d\} \) s in \{\alpha_d|1 \leq d \leq n\}. If we recall (7.4) and (7.5), then

\[
I = (a_1+\cdots+a_n)+(b_1+\cdots+b_n^\epsilon)
\]

\[
\equiv \{m-j_i-|\alpha_1| \rho_0(\alpha_1, j_1)\} + \cdots + \{m-j_i-|\alpha_i| \rho_0(\alpha_i, j_i)\}
\]

\[
+ \{m-j_{i+1}-h(\alpha_i, j_{i+1})-1+k_{i+1}\} + \cdots + \{m-j_n-h(\alpha_n, j_n)-1+k_n\}
\]

\[
+ (\epsilon-1) \rho_0(\alpha_i, j_i) k_i \exp \left\{ (|\alpha_1|+\cdots+|\alpha_n|+|\epsilon^-1|\alpha_1^\epsilon+\cdots+|\epsilon^-1|\alpha_n^\epsilon) \right\}
\]

Now recalling (6.2) and (6.4), then

\[
\{m-j-h(\alpha, j)-1+\epsilon h(\alpha, j)+\epsilon-|\alpha| \epsilon\} - \{m-j-|\alpha| \rho_0(\alpha, j)+|\alpha| \epsilon \rho_0(\alpha, j)-|\alpha| \epsilon\}
\]

\[
= (\epsilon-1) \left\{ h(\alpha, j)+1-|\alpha| \rho_0(\alpha, j) \right\}
\]

\[
= (\epsilon-1) \left\{ \rho(\alpha, j)+1-\nu(\alpha, j) \right\} \mu \quad \text{if} \quad \nu(\alpha, j) < \mu \epsilon \rho(\alpha, j)
\]

\[
\geq 0.
\]

Let us set
\[\rho_0 = \max_{|\alpha| + j \leq m-1} \{ |m-j| - \rho_0(\alpha, j)|/(m-j| - |\alpha|) \}. \]

If \(1 \leq \kappa < \rho_0/(\rho-1) \), then we find that
\[
I \geq \{ m-j-|\alpha_1| \rho_0(\alpha_1, j_1) + |\alpha_1| \kappa \rho_0(\alpha_1, j_1) - |\alpha_1| \} \]
\[+ \cdots + \{ m-l_n - |\alpha_n| \rho_0(\alpha_n, j_n) + |\alpha_n| \kappa \rho_0(\alpha_n, j_n) - |\alpha_n| \} \kappa \]
\[= (m-j_1-|\alpha_1|) [(m-j_1-|\alpha_1| \rho_0(\alpha_1, j_1))/(m-j_1-|\alpha_1|)] \]
\[- \{ (m-j_1-|\alpha_1| \rho_0(\alpha_1, j_1))/(m-j_1-|\alpha_1|) \} \kappa \]
\[\cdots + (m-j_n-|\alpha_n|) [(m-j_n-|\alpha_n| \rho_0(\alpha_n, j_n))/(m-j_n-|\alpha_n|)] \]
\[- \{ (m-j_n-|\alpha_n| \rho_0(\alpha_n, j_n))/(m-j_n-|\alpha_n|) \} \kappa \]
\[\geq n \{ \rho_0 - (\rho_0-1) \kappa \} > qn, \quad \text{where} \quad q > 0. \]

If we note that for fixed \(\kappa \) such that \(1 \leq \kappa < \rho/(\rho-1) \), we can choose \(0 < \theta \leq 1 \) such that \(1 \leq \kappa < \rho_0/(\rho-1) \leq \rho/(\rho-1) \), then this completes the proof. Q.E.D.

Corollary 7.1. If \(1 \leq \kappa < \rho/(\rho-1) \), the formal solution
\[u(x, t) = \sum_{j=0}^{\infty} u_j(x, t) \]
converges in \(\mathcal{B}([0, T], \Gamma^{(\kappa)}) \).

Proof. If we devide \(u(x, t) \) as
\[u(x, t) = \sum_{j=0}^{N-1} u_j(x, t) + \sum_{j=N}^{\infty} u_j(x, t), \]
then this corollary immeidiately follows from Lemma 7.2 and Lemma 7.3. Q.E.D.

Therefore we get the existence of solutions.

Next we shall show the uniqueness of solutions.

Lemma 7.4. If \(u(x, t) \in \mathcal{B}([0, T], \Gamma^{(\kappa)}) \) is a solution of the Cauchy problem:
\[
\begin{cases}
Lu(x, t) = 0 \\
D^i u(x, t)|_{t=0} = 0, \quad 0 \leq i \leq m-k-1,
\end{cases}
\]
where \(1 \leq \kappa < \rho/(\rho-1) \), then \(u(x, t) \equiv 0 \).

Proof. We may assume that for sufficiently large \(s \), there exist constants \(c, R > 0 \) such that
\[||A'u|| \leq c w_c(s, t, R) \quad \text{for any} \quad r \geq 0. \]
therefore similar to the proof of Lemma 7.3, we can obtain that
Let $n \to \infty$, then we find that $u(x, t) \equiv 0$. Q.E.D.

Finally we shall prove assertion (2°).

Lemma 7.5. If supp $u'(x) \subset K$, $0 \leq i \leq m - k - 1$ and supp $f(x, t) \subset C_\delta(K)$ for compact set $K \subset \mathbb{R}^d$, then supp $u(x, t) \subset C_\delta(K)$, where $u(x, t) \in \mathcal{B}([0, T], F^{(\epsilon)})$ is a solution of (1.6).

Proof. From (2°) in Proposition 2.1 and (2.5), supp $u_0(x, t) \subset C_\delta(K)$. Next if we note how to make Q_1 and that Q_1 is a differential operator, then

$$-Q_1 u_0(x, t) = t^{m-k} f_1(x, t),$$

where $f_1(x, t) \in \mathcal{B}([0, T], F^{(\epsilon)})$ and supp $f_1(x, t) \subset C_\delta(K)$. Hence using (2°) in Proposition 2.1 again, supp $u_j(x, t) \subset C_\delta(K)$. Repeating these steps, we obtain that supp $u_j(x, t) \subset C_\delta(K)$ for any $j \geq 0$. Thus from the convergence of the formal solution, we find that supp $u(x, t) \subset C_\delta(K)$. Q.E.D.

This completes the proof of Theorem 2.1.

Appendix

Following Igari [3] and Uryu [17], we introduce a certain class of pseudo-differential operators.

Definition A.1. (1) For any $m \in \mathbb{R}$ and $x > 1$, we denote by $S^m(x)$ the set of functions $h(x, \xi) \in C^\infty(\mathbb{R}^d \times \mathbb{R}^n)$ satisfying the property that for any α, β, there exist constants c_α and R such that

$$|\partial_\xi^\alpha D_\xi^\beta h(x, \xi)| \leq c_\alpha R^{\beta |\xi|} |\xi|^{|\xi|^\alpha} |\xi|^{m-|\alpha|} \quad \text{for} \quad (x, \xi) \in \mathbb{R}^d \times \mathbb{R}^n.$$

(2) For any $h(x, \xi) \in S^m(x)$, we shall define a semi-norm of $h(x, \xi)$ such that for any integer $\ell \geq 0$,

$$|h(x, \xi)|_\ell = \max_{|\alpha| + |\beta| \leq \ell} \sup_{|\xi| \leq R} |\partial_\xi^\alpha D_\xi^\beta h(x, \xi)| \langle \xi \rangle^{-m+|\xi|}.$$

Now we can define a pseudo-differential operator with a symbol $h(x, \xi) \in S^m(x)$ as follows:

$$H(x, D_x)u(x) = (2\pi)^{-\frac{d}{2}} \int \exp (ix \cdot \xi) h(x, \xi) u(\xi) d\xi.$$

Lemma A.1. (see Igari [3]). Let $h(x, \xi) \in S^m(x)$ and $r \geq 0$. Then
\[
\sigma(A' H) = \sum_{j=1}^{N} \frac{1}{|\alpha|} \partial_{x}^{*} \partial_{x}^{m} D_{x}^{*} h(x, \xi) + r_N(x, \xi),
\]

where \(N = r^* + m \). And for any integer \(\ell \geq 0 \), there exist constants \(c_{\ell}, R > 0 \) such that

\[
|D_{x}^{*} h(x, \xi)\partial_{x}^{m} D_{x}^{*} h(x, \xi)| \leq c_{\ell} R |x|^{-m}(|x| - m)^{\ell}
\]

and

\[
|r_N(x, \xi)| \leq c_{\ell} R^\ell |x|^\ell.
\]

The following lemma is well-known.

Lemma A.2. For any \(h(x, \xi) \in S^0 \), there exist a constant \(c \) and non-negative integer \(\ell \) dependent only on dimension \(n \) such that

\[
\|H(x, D_x)u\| \leq c \|h(x, \xi)|_\ell\|u\|.
\]

Lemma A.3. (see Uryu [17] and Igari [3]). Under the assumptions of Lemma A.1, if we denote \(h_j(x, \xi) \) by

\[
h_j(x, \xi) = \sum_{|\alpha|=j} \frac{1}{|\alpha|} \partial_{x}^{*} \partial_{x}^{m} D_{x}^{*} h(x, \xi),
\]

then there exist \(\hat{c}, \hat{R} > 0 \) such that

\[
\|H_j(x, D_x)u\| \leq \hat{c} \hat{R}^j |x|^{-m}(|x| - m)^{\ell}\|A^{r^*+\ell} u\| \quad \text{for} \quad 1 \leq j \leq r^*,
\]

\[
\|H_j(x, D_x)u\| \leq \hat{c} \hat{R}^j |x|^{-m}(|x| - m)^{\ell}\|A^{r^*+\ell} u\| \quad \text{for} \quad r^* + 1 \leq j \leq N - 1,
\]

and

\[
\|R_N(x, D_x)u\| \leq \hat{c} \hat{R}^j |x|^{\ell}\|u\|.
\]

Lemma A.4. Let \(\{i_1, \ldots, i_n\} \) be a subset of non-negative numbers \(a_1, \ldots, a_m \), then there exist constants \(A_1, R_1 > 0 \) such that

\[
n^{i_1+\cdots+i_n} \leq A_1 R_1! i_1^{1}2^{i_2} \cdots n^{i_n}.
\]

Proof. Set \(S = n^{i_1+\cdots+i_n}/1^{i_1} \cdots n^{i_n} \). Then

\[
S = (n/1)^{i_1} \cdots (n/n)^{i_n}
\leq (n/1)^{a} \cdots (n/n)^{a}
= (n^a/n!)^a, \quad \text{where} \quad a = \max \{a_1, \ldots, a_n\}.
\]

Using Stirling's formula, we can get the desired inequality. Q.E.D.

Lemma A.5. Let \(\{i_1, \ldots, i_n\} \subset \{1, \ldots, m-1\} \), then there exist constants \(A_2, R_2 > 0 \) such that
Proof. By Stirling’s formula, there exists $R_3 > 0$ such that

$$ (i_1 + \cdots + i_d)! \leq R_3^{i_1 + \cdots + i_d}.$$

By Stirling’s formula, there exists $R_3 > 0$ such that

$$ (i_1 + \cdots + i_d)! \leq R_3^{i_1 + \cdots + i_d}.$$

By Stirling’s formula, there exists $R_3 > 0$ such that

$$ (i_1 + \cdots + i_d)! \leq R_3^{i_1 + \cdots + i_d}.$$

By Stirling’s formula, there exists $R_3 > 0$ such that

$$ (i_1 + \cdots + i_d)! \leq R_3^{i_1 + \cdots + i_d}.$$

By Stirling’s formula, there exists $R_3 > 0$ such that

$$ (i_1 + \cdots + i_d)! \leq R_3^{i_1 + \cdots + i_d}.$$

By Stirling’s formula, there exists $R_3 > 0$ such that

$$ (i_1 + \cdots + i_d)! \leq R_3^{i_1 + \cdots + i_d}.$$

By Stirling’s formula, there exists $R_3 > 0$ such that

$$ (i_1 + \cdots + i_d)! \leq R_3^{i_1 + \cdots + i_d}.$$

By Stirling’s formula, there exists $R_3 > 0$ such that

$$ (i_1 + \cdots + i_d)! \leq R_3^{i_1 + \cdots + i_d}.$$

By Stirling’s formula, there exists $R_3 > 0$ such that

$$ (i_1 + \cdots + i_d)! \leq R_3^{i_1 + \cdots + i_d}.$$

By Stirling’s formula, there exists $R_3 > 0$ such that

$$ (i_1 + \cdots + i_d)! \leq R_3^{i_1 + \cdots + i_d}.$$

By Stirling’s formula, there exists $R_3 > 0$ such that

$$ (i_1 + \cdots + i_d)! \leq R_3^{i_1 + \cdots + i_d}.$$

By Stirling’s formula, there exists $R_3 > 0$ such that

$$ (i_1 + \cdots + i_d)! \leq R_3^{i_1 + \cdots + i_d}.$$

By Stirling’s formula, there exists $R_3 > 0$ such that

$$ (i_1 + \cdots + i_d)! \leq R_3^{i_1 + \cdots + i_d}.$$

By Stirling’s formula, there exists $R_3 > 0$ such that

$$ (i_1 + \cdots + i_d)! \leq R_3^{i_1 + \cdots + i_d}.$$

By Stirling’s formula, there exists $R_3 > 0$ such that

$$ (i_1 + \cdots + i_d)! \leq R_3^{i_1 + \cdots + i_d}.$$