A Gauge Theory for the Kadomtsev-Petviashvili System

By

Shôji Kanemaki*, Wiesław Królakowski** and Osamu Suzuki***

Abstract

A Lagrangian formalism of scalar fields is considered and a new concept of "connection" is introduced. By this a gauge-theoretic understanding of the Sato theory on the K.-P. system is obtained. Our gauge group \(\mathcal{G} \) is the group consisting of pseudo-differential operators of non-positive orders with certain growth conditions. Then it can be concluded that the space \(\mathbb{R}^n \) of elements of \(\mathcal{G} \) giving solutions of the K.-P. system defines a flat \(\mathbb{R}^n \)-connection which we call the K.-P. connection. This connection can be regarded as a special gauge field.

Introduction

It is well known that various soliton equations can be obtained by using the theory of isospectral deformations of linear differential operators. A remarkable unification of soliton equations has been established by M. and Y. Sato [5] in terms of isospectral deformations of \(D=d/dx \) in the category of pseudo-differential operators. This unified system of equations is called the Kadomtsev-Petviashvili system (=K.-P. system). They discovered the surprising fact: The space of solutions of the K.-P. system makes the Grassmann manifold of infinite dimension and moreover, any solution of the K.-P. system can be reduced to that of a system of certain linear equations. Several attempts of understandings on the Sato theory and its generalizations have been presented. Some of them are the method of Riemann-Hilbert transforms [10], the method of group-decompositions [4], [7] and the field-theoretic method [1]. The co-adjoint orbit method for the K.-P. system is given by

Communicated by M. Kashiwara, April 22, 1986.

* Department of Mathematics, Science University of Tokyo, Japan.
** Institute of Mathematics of the Polish Academy of Sciences, Łódź Branch, Narutowicza 56, PL-90-136, Łódź, Poland.
*** Department of Mathematics, College of Humanities and Sciences, Nihon University, Tokyo, Japan.
using groups of pseudo-differential operators [11]. Our attempt which we
present here is a new one, which we call a gauge-theoretic understanding.
Although the method in [11] is based on the notion of Hamiltonians rather
than connections, the result obtained there is in close relation to our discussion.

In this paper, we see that the K.-P. system can be understood in the view
point of Uchiyama's gauge theory [9]. We note that our gauge group is an
infinite dimensional Lie group. Hence our gauge theory for soliton equations
is contrasted with that of Yang-Mills equations and nonlinear Heisenberg
equation in dimensions of their gauge groups [3]. First, we consider the
Lagrangian action:

\[\mathcal{L} = \int_{\mathbb{R}} \bar{\psi} D\psi dx \quad (D = d/dx) \]

for scalar fields \(\psi, \bar{\psi} \), i.e., wave functions on the real line \(\mathbb{R} \). We analyse the
symmetry of \(\mathcal{L} \) and obtain as the gauge group of the first kind a group consisting
of invertible pseudo-differential operators with constant coefficients of the form:

\[\cdots + c_n D^n + \cdots + c_1 D + c_0 + c_{-1} D^{-1} + \cdots + c_{-n} D^{-n} + \cdots. \]

Secondly, we apply the Uchiyama's gauge theory to our Lagrangian formalism.
In this case, the gauge group of the second kind becomes a group consisting
of invertible pseudo-differential operators with function coefficients of the form:

\[\cdots + u_n(x) D^n + \cdots + u_1(x) D + u_0(x) + u_{-1}(x) D^{-1} + \cdots + u_{-n}(x) D^{-n} + \cdots. \]

Then in order to obtain a new Lagrangian action which is invariant under
this group, a connection, i.e., gauge field, necessarily arises in our considera-
tion. It has a worth mentioning that pseudo-differential operators with negative
orders, extended from usual differential operators, may be introduced
as elements of the gauge group of the first or the second kind.

In Section 1, from a gauge group of pseudo-differential operators we
introduce a new concept of "connection". Here we have to pay attention
to the fact that our connection has been defined not only for a subgroup but
also for a special subset \(R \) of the gauge group, although \(R \) does not admit
a structure of subgroup. We prove that the decomposition law of pseudo-
differential operators into the parts of non-negative and negative orders gives
rise to the flat connection (Theorem 1). This is our first step to a gauge-
theoretic understanding on the K.-P. system. In Section 2, we shall treat the
Lagrangian action of scalar fields \(\psi, \bar{\psi} \) with infinitely many parameters
A GAUGE THEORY FOR THE K.-P. SYSTEM

For this Lagrangian action we consider the gauge groups \(\tilde{G}_0, \tilde{G} \) of the first and the second kind, and then \(\tilde{G} \)-connections. Then we can conclude that the space \(R^* \) of elements of \(\tilde{G} \) giving solutions of the K.-P. system defines the flat \(R^* \)-connection which we call the K.-P. connection (Theorem 2).

Our discussions show that the space of solutions of soliton equations determines a special gauge field. Hence, we may expect to extend our discussions to the Yang-Mills equation and nonlinear Heisenberg equation by a gauge-theoretic version of the Sato theory on the Minkowski space-time [3].

The authors would like to express their hearty thanks to Profs. I. Furuoya, J. Lawrynowicz, S. Sakai, L. Wojtczak, and J. Yamashita for their valuable discussions.

§ 1. A Lagrangian Formalism and \(R \)-connections

We consider complex valued functions defined on the real line and a collection of pseudo-differential operators. A pseudo-differential operator is called an operator simply. Let \(\psi \) and \(\tilde{\psi} \) denote two functions. Here \(\tilde{\psi} \) may not be the complex conjugate of \(\psi \).

First, we deal with a Lagrangian action for \(\psi \) and \(\tilde{\psi} \) given by

\[
\mathcal{L}_t = \int_R \tilde{\psi} D\psi \, dx, \quad D = d/dx.
\]

For a function \(\psi \) and an operator \(\tilde{\psi} = \tilde{\psi} \cdot 1 \), identified with the function \(\tilde{\psi} \), we act an operator \(W \) on the pair as

\[
\psi \to \psi' = W\psi, \quad \tilde{\psi} \to \tilde{\psi}' = \tilde{\psi} W^{-1}.
\]

Under this action the function \(\tilde{\psi} \psi \) is invariant. We are interested in a set of invertible operators \(W \) which makes a group \(G_0 \) and preserves \(\tilde{\psi} D\psi \) invariant, equivalently satisfies \(WD = DW \). Choices of such groups are not unique. One of possible groups can be obtained by

\[
G_0 = \{ W \mid W = \sum_{n=0}^{\infty} c_n D^n \text{ with constant coefficients} \}.
\]

For an invertible operator \(W \) we put

\[
\psi_W = W\psi, \quad \tilde{\psi}_W = \tilde{\psi} W^{-1}.
\]
Proposition (1.5). The Lagrangian action

\[\mathcal{L}_0 = \int_R \overbar{\psi}^W D\psi^W dx , \quad W \in G_0 \]

is invariant under the action of the group \(G_0 \).

Proof. We choose arbitrary elements \(W \) and \(W' \) of \(G_0 \) and set \(\phi \) by \(W = \phi W' \), namely, \(\phi = WW'^{-1} \). Since

\[\psi^W = \phi \psi^{W'} , \quad \overbar{\psi}^W = \overbar{\psi}^{W'} \phi^{-1} , \]

we obtain

\[\overbar{\psi}^W D\psi^W = \overbar{\psi}^{W'} \phi^{-1} D\psi^{W'} = \overbar{\psi}^{W'} D\psi^{W'} . \]

The group \(G_0 \) is called the gauge group of the first kind. Next we proceed to a group

\[G = \{ W | W = \sum_{n=0}^{\infty} u_n(x) D^n \text{ with function coefficients} \} . \]

We call an element of \(G \) a formal pseudo-differential operator [5]. \(G \) is called the gauge group of the second kind. In order to obtain exact mathematical meanings, we have to restrict our considerations to special groups. For example, we may choose a group \(G \) consisting of elements \(W \) with the following condition: Every \(u_n(x) \) is analytic function and there exists an integer \(n_0 \) such that \(\text{ord } u_n(x) \geq n - n_0 \) for any sufficiently large \(n \) ([4], [7], [8]). For a complex valued analytic function \(u \) with the Taylor expansion

\[u = c_n x^n + c_{n+1} x^{n+1} + \cdots \quad (c_n \neq 0) , \]

the order of \(u \) is defined by \(\text{ord } u = n \). We have to pay attention to the fact that the Lagrangian action \(\mathcal{L}_0 \) is not invariant under \(G \), because the commutator \([D, W] = DW - WD \) does not vanish identically. Hence we note that the following equalities hold:

\[[D, W] = \sum (Du_n(x)) D^n \quad \text{for } W = \sum u_n(x) D^n \]

and

\[WDW^{-1} = -[D, W]W^{-1} + D \quad \text{for } W \in G . \]

The Uchiyama gauge theory [9] says that in order to get a new Lagrangian action which is invariant under the group of the second kind, a connection, i.e., a gauge field, has to be introduced. Then we can make the following definition:

Definition (1.11). Let \(G \) be a group of operators described in (1.8) and
let R be a subset of G. A collection $\{\mathcal{Q}(W) \mid W \in R\}$ of operators is called an R-connection if

(1) there exists a pair (G_1, ρ) constituted with an injective set-map $\rho : G_1 \rightarrow G$ of a group G_1 to G such that $R = \rho(G_1)$ and

(2) $L_\rho(W) \equiv D - \mathcal{Q}(W)$ satisfies

\[L_\rho(W) = \phi L_\rho(W') \phi^{-1} \quad \text{for} \quad W, W' \in R \quad \text{where} \quad W = \phi W'. \]

In particular, we call it a G-connection if in addition ρ is a group-isomorphism.

The following are examples of G-connections:

Examples

(1) $\mathcal{Q}(W) = D$.

(2) $\mathcal{Q}(W) = [D, W]W^{-1}$, in this case

\[L(W) \equiv L_\rho(W) = WDW^{-1}. \]

(3) Let G' be a subgroup of G and $\iota : G' \rightarrow G$ be the natural inclusion mapping. If $\mathcal{Q}(W)$ $(W \in G)$ is a G-connection, then $\mathcal{Q}(W)$ $(W \in G')$ becomes a G'-connection.

Immediately from (1.12) we see that if $\mathcal{Q}_1(W)$ and $\mathcal{Q}_2(W)$ are R-connections, then the relation

\[(1.13) \quad \mathcal{Q}_1(W) - \mathcal{Q}_2(W) = \phi(\mathcal{Q}_1(W') - \mathcal{Q}_2(W'))\phi^{-1} \]

holds for $W, W' \in R$ where $W = \phi W'$. This fact and Example (2) show that operators $\hat{\mathcal{Q}}(W)$ given by

\[(1.14) \quad \hat{\mathcal{Q}}(W) = W^{-1}([D, W]W^{-1} - \mathcal{Q}(W))W \quad \text{for} \quad W \in R \]

satisfy the condition $\hat{\mathcal{Q}}(W) = \hat{\mathcal{Q}}(W')$ for any pair of W and W' of R, namely $\hat{\mathcal{Q}}(W)$ does not depend on a choice of $W \in R$. Therefore, we may write as $\hat{\mathcal{Q}} = \hat{\mathcal{Q}}(W)$. We call $\hat{\mathcal{Q}}$ the connection form determined by $\mathcal{Q}(W')$. An R-connection is called to be flat if its connection form vanishes identically, namely $\mathcal{Q}(W) = [D, W]W^{-1}$.

By an application of Uchiyama theory to the Lagrangian action (1.6), we obtain

Proposition (1.16). Let $\mathcal{Q}(W)$ be a G-connection. The Lagrangian action

\[(1.17) \quad \mathcal{L} = \int_R \bar{\psi}^W(D - \mathcal{Q}(W))\psi_W d\chi \quad W \in G \]

is invariant under the group G.

Proof. For arbitrary elements W and W' where $W = \phi W'$ in G we have
which implies the invariance of \mathcal{L} under G.

The following group is important for a study on the K.-P. system. We put

\begin{equation}
G_+ = \{ \sum_{n=0}^{\infty} v_n(x)D^{-n} \in G \mid v_0(x) = 1 \} .
\end{equation}

Further we make the following definition:

Definition (1.19).

\begin{equation}
\mathfrak{g} = \{ \sum_{n=-\infty}^{\infty} u_n(x)D^n \} ,
\end{equation}

\begin{align*}
\mathfrak{g}_+ &= \{ \sum_{n=0}^{\infty} u_n(x)D^n \} \quad \text{and} \quad \mathfrak{g}_- = \{ \sum_{n=1}^{\infty} u_n(x)D^{-n} \} .
\end{align*}

Then the following decomposition holds:

\begin{equation}
\mathfrak{g} = \mathfrak{g}_+ + \mathfrak{g}_- ,
\end{equation}

which implies that any element S of \mathfrak{g} has the decomposition: $S = (S)_+ + (S)_-$ for $(S)_+ \in \mathfrak{g}_+$ and $(S)_- \in \mathfrak{g}_-$. Then we can prove

Theorem 1. $\omega(W)$ ($W \in G_-$) is the flat G_--connection if and only if

\begin{equation}
\omega(W) = -(L(W))_- \quad \text{for} \quad W \in G_- .
\end{equation}

Proof. For $W, W' \in G_-$, where $W = \phi W'$, it holds that

\begin{align*}
(L(W))_- &= (\phi L(W')\phi^{-1})_- = (\phi(L(W'))_+\phi^{-1})_- + (\phi(L(W'))_-\phi^{-1})_- \\
&= (\phi D\phi^{-1})_- + \phi(L(W'))_\phi^{-1} \\
&= (-[D, \phi]\phi^{-1} + D)_- + \phi(L(W'))_\phi^{-1} \quad \text{(by (1.10))} \\
&= -D + \phi D\phi^{-1} + \phi(L(W'))_\phi^{-1} ,
\end{align*}

which implies $D - \omega(W) = \phi(D - \omega(W'))\phi^{-1}$. Hence $\omega(W)$ is a G_--connection. Comparing the non-positive orders of the both sides of (1.10), we obtain $\omega(W) = -(L(W))_- = [D, W]W^{-1}$, i.e., $\omega(W)$ is flat. Conversely, if $\omega(W)$ ($W \in G_-$) is the flat G_--connection, then $\omega(W)$ reduces to $\omega(W) = [D, W]W^{-1} = -(L(W))_-$ by (1.10).

§ 2. A Gauge Theory for the K.-P. System

We consider a Lagrangian formalism for scalar fields, $\psi = \psi(x, t)$ and
\(\bar{\psi} = \overline{\psi}(x, t) \) defined on the real line \((x \in \mathbb{R})\) with infinitely many parameters

\[t = (t_1, t_2, \cdots) , \]

and for some collections of operators including \(D = d/dx \) and \(D_n = \partial / \partial t_n \). The total differential operator with respect to the parameters is denoted by

\[
(2.1) \quad d = \sum_{n=1}^{\infty} D_n dt_n .
\]

The Lagrangian action which we treat here is given by

\[
(2.2) \quad \mathcal{L}(t) = \int_{\mathbb{R}} \overline{\psi}(x, t) d\psi(x, t) dx
\]

for functions \(\psi \) and \(\bar{\psi} \). We proceed to our discussions analogous to the one done in the previous section. We are interested in invertible operators \(W = W(x, t) \), considering together with the action law for \(\psi \) and \(\bar{\psi} \):

\[
(2.3) \quad \psi \rightarrow \psi^\prime = W \psi \quad (= \psi_w) , \quad \bar{\psi} \rightarrow \bar{\psi}^\prime = \bar{\psi} W^{-1} \quad (= \bar{\psi}^w) .
\]

Hence, the function \(\bar{\psi} \psi \) is invariant under this action.

First, we consider a group

\[
(2.4) \quad \tilde{G}_0 = \{ W \mid W = \sum_{n=-\infty}^{\infty} c_n(x) D^n \} .
\]

In this case, we observe that coefficients \(c_n(x) \) are constant with respect to \(t \). Immediately, from \(Wd = dW \) we have

Proposition (2.5). *The Lagrangian*

\[
(2.6) \quad \mathcal{L}_0 = \int_{\mathbb{R}} \bar{\psi}^w d\psi_w dx , \quad W \in \tilde{G}_0 ,
\]

possesses the symmetry of the group \(\tilde{G}_0 \).

Following the Uchiyama theory, next we deal with a group

\[
(2.7) \quad \tilde{G} = \{ W \mid W = \sum_{n=-\infty}^{\infty} u_n(x, t) D^n \text{ with the property (*)} \}
\]

\[(*) \quad u_n(x, t) \quad (n = 0, \pm 1, \pm 2, \cdots) \] are analytic functions of \(x \) and \(t \) satisfying the following growth condition: There exists an integer \(n_0 \) such that \(\text{ord} u_n(x, t) n \geq n - n_0 \) for any sufficiently large \(n \)

(see [4], [7], [8]). The Lagrangian action (2.6) gives rise to a gauge group \(\tilde{G}_0 \) of the first kind and a gauge group \(\tilde{G} \) of the second kind respectively. \(\mathcal{L}_0 \) is not invariant under \(\tilde{G} \), since commutators
\[[D_m, W] = \sum (D_m u_m(x, t)) D^n \quad (m = 1, 2, \cdots) \]

for \(W = \sum u_n(x, t) D^n \), do not vanish identically, i.e., \([d, W] \neq 0\). Hence we have to make

\[D_n - \mathcal{Q}_n(W) = \phi(D_n - \mathcal{Q}_n(W'))\phi^{-1} \]

for \(W, W' \in \tilde{R} \), where \(W = \phi W' (\phi \in \tilde{G}) \). \(\mathcal{Q}_n(W) \) is called the partial connection of \(\mathcal{Q}(W) \).

We note that an \(\tilde{R} \)-multiconnection \(\mathcal{Q}(W) \) implies

\[d - \mathcal{Q}(W) = \sum \phi(D_n - \mathcal{Q}_n(W'))\phi^{-1} = \phi(d - \mathcal{Q}(W'))\phi^{-1} \]

for \(W, W' \in \tilde{R} \) with \(W = \phi W' \).

By use of Uchiyama’s theory, we obtain

Proposition (2.9). Let \(\mathcal{Q}(W) \) be a \(\tilde{G} \)-connection. The Lagrangian

\[\mathcal{L} = \int_{\tilde{R}} \tilde{g}^W (d - \mathcal{Q}(W))\psi_\psi \, dx \quad \text{for} \quad W \in \tilde{G} \]

is invariant under the group \(\tilde{G} \).

We set

\[(2.10) \quad \tilde{G}_+ = \left\{ \sum_{n=0}^{\infty} u_n(x) D^n \in G \mid u_0 \equiv 0 \right\}, \quad \tilde{G}_- = \left\{ \sum_{n=0}^{\infty} u_n(x) D^{-n} \in G \mid u_0 \equiv 1 \right\}. \]

Corresponding to \(\tilde{G}, \tilde{G}_+ \) and \(\tilde{G}_- \), we consider the spaces of operators \(\tilde{g} = \left\{ \sum_{n=0}^{\infty} u_n(x) D^n \right\} \), and its complementary subspaces

\[(2.11) \quad \tilde{g}_+ = \left\{ \sum_{n=0}^{\infty} u_n(x, t) D^n \right\}, \quad \tilde{g}_- = \left\{ \sum_{n=1}^{\infty} u_n(x, t) D^{-n} \right\}, \]

that is the direct sum \(\tilde{g} = \tilde{g}_+ \oplus \tilde{g}_- \). Hence, any element \(X \in \tilde{g} \) is written as \(X = (X)_+ + (X)_- \) for \((X)_+ \in \tilde{g}_+ \) and \((X)_- \in \tilde{g}_- \).

Here we recall the K.-P. system. The operator \(L = WD W^{-1} \) for \(W \in G_- \) derived from the flat connection implies that \(L^n = WD^n W^{-1} \) and its decomposition \(L^n = (L^n)_+ + (L^n)_- \). In this case, \((L^n)_+ \) is the \(n \)-th order differential operator. The K.-P. system is a system of equations defined by

\[(2.12) \quad \partial L / \partial t_n = [(L^n)_+, L] \quad (n=1, 2, \cdots). \]
When $W (\in \tilde{G}_+)$ is an element described in the solution $L = WDW^{-1}$ of the K.-P. system, we shall say that W gives a solution of the K.-P. system. It is known ([1], [5], [6]) that an element W of \tilde{G}_- gives a solution of the K.-P. system if and only if W satisfies

$$\frac{\partial W}{\partial t_n} + (L^n(W))_\cdot W = 0 \quad (n = 1, 2, \ldots).$$

The following theorem is our main result:

Theorem 2. Let R^* be the space of all elements of \tilde{G}_- each of which gives a solution of the K.-P. system. Then the set $\{Q_{K,P}(W) \mid W \in R^*\}$ defined by

$$Q_{K,P}(W) = \sum_n Q_n(W)dt_n, \quad Q_n(W) = -(L^n(W)).$$

becomes the flat R^*-connection (say, the K.-P. connection).

Remark. (1) The K.-P. connection is a direct generalization of the connection given in Theorem 1, when we identify t_1 with x and set $t_n=0$ $(n=2, 3, \ldots)$. (2) The flatness of the K.-P. connection is well known as the Zakharov-Shabat equation.

For the proof of this theorem we need the following two lemmas:

Lemma 1 (Mulase's decomposition theorem [4]). The group \tilde{G} described in (2.7) can be decomposed into

$$\tilde{G} = \tilde{G}_- \cdot \tilde{G}_+,$$

in a sense that any element $g \in \tilde{G}$ determines the unique pair of elements $g_1 \in \tilde{G}_-$ and $g_2 \in \tilde{G}_+$ such that $g = g_1 \cdot g_2$.

Lemma 2 ([4], [6]). There exists a one-to-one correspondence between the space R^* and the space Q of solutions U of the initial value problem:

$$\frac{\partial U}{\partial t_n} = [D^n, U], \quad U_{\mid t=0} = U_0 \in G_-,$$

where G_- is given in (1.18). The exact correspondence is described in the following manner: A solution U of (2.15) determines an element W of \tilde{G}_- by the decomposition $U = W^{-1}V$ in Lemma 1. Then $L(W) = WDW^{-1}$ gives a solution of (2.12). Conversely, for a solution W of (2.12), we can find a unique element V of \tilde{G}_+ such that $V_{\mid t=0}$=identity and $U = W^{-1}V$ gives a solution of (2.15).

The proof of Theorem 2. Let U_0 be any element of G_-. U_0 determines a unique solution $U (\in \tilde{G}_-)$ of (2.15) by Lemma 2. U can be decomposed uniquely as $U = W^{-1}V$ with $W \in \tilde{G}_-$ and $V \in \tilde{G}_+$ by Lemma 1. This gives rise
to a mapping $\rho: G_\rightarrow \tilde{\mathcal{G}}_-$ which maps U_0 to W. This mapping ρ is injective ([4], [6]). Then we see that $R^\ast = \rho(G_-).$ Next we show that $\mathcal{Q}_{K,\rho}(W)$ becomes an R^\ast-connection. Let W and W' be elements of R^\ast and set $\phi (\phi \in \tilde{\mathcal{G}}_-)$ by $W = \phi W'$. It follows from

$$\partial W/\partial t_n = (\partial \phi/\partial t_n)W' + \phi(\partial W'/\partial t_n)$$

and from (2.13) that

$$-(L^\ast(W))_- W = (\partial \phi/\partial t_n)W' - \phi(L^\ast(W'))_- W'.$$

Hence

$$\omega_n(W) = (\partial \phi/\partial t_n)\phi^{-1} + \phi \omega_n(W')\phi^{-1}$$

holds, which implies that $\omega_n(W) (W \in R^\ast)$ is a partial R^\ast-connection. Therefore, $\mathcal{Q}_{K,\rho}(W) (W \in R^\ast)$ is an R^\ast-connection. The flatness of the connection follows from (2.13):

$$0 = \sum_n (\partial W/\partial t_n + (L^\ast(W))_- W)dt_n = \sum_n (\partial W/\partial t_n - \omega_n(W)W)dt_n$$

$$= [d, W] - \mathcal{Q}_{K,\rho}(W) W.$$

References

