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Applications of Valued
Set Theory to Abstract Analysis

on Locally Compact Groups

By

Hirokazu NlSHIMURA*

The main purpose of this paper is to extend Takeuti's [23] Boolean valued treatment of abstract
harmonic analysis on locally compact abelian groups to locally compact groups (neither abelian nor
compact in general). The distinctive feature of our approach, compared with traditional treatments
of the subject, is that we can establish many important theorems without resort to direct integrals
or to the theory of Banach algebras. By way of illustration, we will give such a proof of renowned

Bochner's theorem. This paper is not intended to be exhaustive at all but hopefully to be suggestive.
How far we can proceed in this direction yet remains to be seen.

Abstract harmonic analysis has two origins. One is the classical Fourier analysis

set forth, e.g., in Bochner [3] and Zygmund [31]. The other is the algebraic theory

of finite groups and their representations, whose modern and comprehensive

treatment can be seen, e.g., in Curtis and Reiner [5]. Indeed the spirit of abstract

harmonic analysis is to do Fourier analysis on topological groups as general as

possible, guided by the representation theory of finite groups while using the modern

techniques of functional analysis.

The most central technique in the study of topological groups, which are usually

assumed to be locally compact at least, is their unitary representations (on some

appropriate Hilbert spaces) and, in particular, their irreducible unitary representa-

tions. As for compact groups, it is well known that their irreducible unitary

representations are finite-dimensional and any unitary representation of such a
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group decomposes discretely Into Irreducible ones. As for locally compact abellan

groups, their Irreducible representations are all one-dimensional, which simplifies

their study considerably. However, the decomposition of a unitary representation of

a locally compact group is continuous In general and Its Irreducible representations

may be infinite-dimensional. This is one of the main reasons why the study of

ral locally compact groups had been left almost untouched for fairly a long time even

after we got to know compact groups and locally compact abellan ones pretty well.

One of the most familiar examples of continuous decomposition theories Is

celebrated von Neumann's reduction theory In operator algebras, where the notion

of a direct integral plays a fundamental role. And It Is quite natural that this notion

should have been applied successfully to unitary representations of locally compact

groups. See, e.g., Godement [7, 8], Mackey [12], Mautner [13], [8, 9], Tomlta

[26], Tsuji [27] and Yoshizawa [28].

The principal deficiency of a direct Integral Is that this notion seems to be

Involved too much in separability conditions. Recently, Takeuti [25] proposed to

replace this notion with a Boolean valued approach, which was then applied

successfully to continuous geometries and the like by Eda [4] and Nishimura [15].

The mam purpose of this paper Is to show how to apply this new method to the study

of locally compact groups.

After reviewing the rudiments of Boolean valued set theory In Section 2, we will

see in Section 3 that any unitary representation jr of a locally compact group G Is

irreducible in a Boolean valued universe V(^\ where & Is a Boolean algebra of

projections that Is maximal with respect to the property that every projection of ^

commute with ^rx for all x ^ G. We then apply this result, by way of illustration,

to obtain a simple proof of Bochner's theorem In Section 4.

§ 20 The of Vataei Set Tine©iry

Let ̂  be a complete Boolean algebra. We define V ( f } by transfinlte induction

on ordinal a as follows :

(1)

(2) V?>={u\ u:

Then the Boolean valued universe V(^ of Scott-Solovay is defined as follows :
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= U V(f\ where On is the class of all ordinal numbers.
«eOn

can be considered to be a Boolean valued model of set theory by defining

and [#=0] for u, v^. F(J>) with the following properties

(1) [uGv]= sup
y^&(v

(2) {u = vl= inf (u(jr)=>lre»])A inf

and by assigning a Boolean value [p] to each formula ^ without free variables

inductively as follows : •

(2 )

(3)

(5 )

The following theorem is fundamental to Boolean valued analysis.

Theorem 201L I f t p i s a theorem of ZFC, then so is [0>] =1.

Now we present several elementary properties of Vw without proofs.

(1) \3x^u9(x}l= sup (
jr6j9(f f )

(2) [VJce«?iU)]= inf (

The class V of all sets can be embedded into F(JO by transfinite induction as

follows.

...(1) .
0 otherwise,
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(2) U_flJ' '*-?
0 otherwise.

A subset {ba} of ^is called a partition of unity ifsupba=l and ba/\b/3 = ® fora
any # =£$. Given a partition of unity {ba} and a subset {^<J of F(Jf)

s it can be

proved easily that :

Proposition 2.4. There exists an element u of Vw such that lu=ual ^ba

for any a. Furthermore this u is determined uniquely in the sense that {u = vl =

1 for any v^ F(Jf) with the above property.

The above u is denoted by ̂ uaba or uaibai + m" + uanban if {ba} is a finite set
a

Then we have

Proposition 2o5o \<p(^uaba)\ =sup([0>(wff)] A ba).a

The techniques of partitions of unity give the following two propositions.

Proposition 2.6 (The Maximum Principle). Let q> be a formula. Then there

exists a u^ Vw such that [^(M)] = \3x ^(z)].

Proposition 207« Let <p(x} be a formula with only x as a free variable and

{<p(u)l=\ for some u^ Vw. Then

(1) lVz(^U)=^0(z))]- inf
ly>(tt)J=

(2) [3 j r (pU)A < J (x) ) ]= sup [#
Q>(M)Jl=l

We define the interpretation Xw of X= {z | <p(x )} with respect to F(^) to be

]^!}, assuming that it is not empty. For technical convenience,

if X is a set, then Xw is usually considered to be a set by choosing a representative

from an equivalence class {v^ Vw\lu = v}= 1}. Then, by Proposition 2.7, we have

and [X =

Let DC 7<-*). A function g: D -+ V(^ is called extensional ifld=d']

= g(df)l for any rf, df^D. A ^-valued set ^e F(^ is said to be definite if

= 1 for any d^^(u). Then we have the following characterization theorem of
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extenslonal maps.

Theorem 2M» Let u, v^ V(J3n be definite and D = &(u). Then there is a

bijective correspondence between /GE V(J^ satisfying If : u-^ v}= 1 and extensional

maps <p : D^>vw
y where v(^)={u\lu^vl = l}. The correspondence is given by the

relation \f(d)=v(d)l=l for any

Now we restrict our consideration to more concrete complete Boolean algebras.

Let H be a Hilbert space. A set & of projections of H is called a Boolean algebra

of projections if it satisfies the following conditions :

( i ) both the identity and zero operators are members of & and members of ^

are pairwise commutable ;

( i i ) if Pi and P2 are members of&, so are Pl VP2( = Pi + P2-PiP2) and

A Boolean algebra & of projections is said to be complete if ^ is not only
complete as a Boolean algebra but also whenever P — supPa, the range of P is the

a

closure of the linear space spanned by all the ranges of Pa's.

From now on, let ^ be a complete Boolean algebra of projections. A self-

adjoint operator T whose spectral resolution is JAdE* is said to be in (&) if every

E* belongs to 3f . A normal operator T which can be written as Ti + iT2 for

self-adjoint Ti, T2 is said to be in (&) if both Ti and T2 are in (&). The real

numbers in V(^ correspond to self- adjoint operators in (^0, the complex numbers

of absolute value 1 correspond to unitary operators in (.^) and the complex numbers

correspond to normal operators in (^).

Recently Ozawa [16] succeeded in showing that the Hilbert space H can be

embedded in V(*} as a Hilbert space H simply by changing the truth value of the

equality between vectors in such a way as

[f = yl=sup {Pej^: Px=Py} for any x, y^H.

We say that the complete Boolean algebra 3? reduces a bounded operator T if

PT= TP for any Pe &. The characterization of bounded operators on H is a bit

cumbersome, but the partial isometry operators on H have a simple characterization

as follows :

Ttieorem 209o Partial isometry operators on H correspond to partial isometry
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operators on H that & reduces,

In this paper we are Interested almost exclusively In projection operators and

unitary operators, both of which are subsumed under partial Isometry operators.

Thus this theorem is sufficient for our purpose.

§ 3* Unitary Eepresentatioias Valuei Analysis

Let G be an arbitrary locally compact group. A unitary representation of G is

a homomorphism from G into the group of unitary operators of a Hllbert space H.

An unitary representation y of G assigning a unitary operator <^x to each je G,

is called continuous^ if for any g^H and any £>0, there exists an open

neighborhood U of e ( = the identity element of G) such that

II rxS-jryf || < s provided x~lye U.

In the sequel, every unitary representation is assumed to be continuous unless stated

to the contrary. A unitary representation ^ of G on a Hilbert space H is called

irreducible if {0} and H are the only closed subspaces of H that are Invariant under

all Tx. Otherwise ^ is called reducible. It is well-known that the following three

conditions on ir are equivalent:

( I ) jr is irreducible;

(ii) every nonzero vector in H is a cyclic vector for Y* (i.e., the closed linear

span of {2Tr<f : x^G] for each nonzero vector g^H is H itself);

(iii) the only bounded operators on H commuting with all Yx are of the form

al, where a is a complex number and I is the identity operator.

Let & be a complete Boolean algebra of projections on a Hilbert space H and

let G be a locally compact group with & as its family of open sets and % as an open
V V V

basis at e. It Is easy to see that G Is a group In Vw. & is not a topology of G In
V V

general, but fortunately % can be an open basis of e making G a topological group
V

in F(J2?). We denote this topological group also by G. As Takeuti did In [23], we
V

consider the completion of G with respect to the two-sided uniformity, denoted by

J) See Hewitt and Ross [9, (22.20)] for the equivalence of various continuities of
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G, to obtain a locally compact group (cf. Kelley [11, p. 210]).

The following two theorems follow readily form Theorem 2.9 and the fact that

w-convergence Implies strong convergence for unitary operators (cf. Takeutl [21, 23,

24]).

Theorem 3ote Every unitary representation T* of G which & reducesl}

corresponds to a unitary representation of G in

Conversely9

3o2o Every unitary representation of G in F(J?) corresponds to a

unitary representation of G which ^ reduces.

Theorems 3.1 3.2 show that unitary representations of G which & reduces

and unitary representations of G in F(J2° are the things from different

viewpoints. Our applications of Boolean valued set theory to abstract harmonic

analysis are based almost solely on this simple but overwhelmingly powerful

principle as well as

Tlae©ff©m 3o3o Let ^ be a unitary representation of G and let & be a

maximal Boolean algebra of projections contained in {^x :zG G}'2). Then T*

corresponds to an irreducible unitary representation in

Proof, Any projection operator which reduces 5^ In V(^} must correspond to

a projection operator In the standard universe V which reduces ^ and which &

reduces. But the maxlmallty of <& implies readily that such a projection operator

belongs to ^

§ 4o A Bdpolesim Valued! Approach to B©dnmeir9§ Theorem

Let G be a locally compact group. A continuous complex-valued function q>

on G Is said to be positive definite If the Inequality

2

1} I. e., TxP = P<2rx for any x^G and any .
2> For a set S of bounded operators, S' denotes the commutant of S.



188 HIROKAZU NISHIMURA

holds for all finite sequences xi, aa*,xm of distinct elements of G and complex

numbers a\, ..., am> We remark that a positive definite function q> Is always left

uniformly continuous, since \<p(x)— <p(y)\2^2<p(e)[<p(e)—Ref^Ci:"1^)]] for x, y^

G, as Is well-known.

A positive definite function <p on G is called normalized if <p(e)= 1. Given two

positive definite functions <pi, <p2 on G, the function q>± is said to be dominated by

the function <pz if <p2— <p\ Is a positive definite function. A positive definite function

<p is called elementary if every positive definite function dominated by the function

<p is a multiple of <p. We denote by F the set of all normalized elementary positive

definite functions on G, which is called the dual space of G.

It is easy to see that any cyclic unitary representation 5^ of G on H with a cyclic

vector f yields a positive definite function p(x) = (T'x$, f>, which gives a one-to-

one correspondence between positive definite functions on G and cyclic unitary

representations of G up to unitary equivalence. Under this correspondence,

elementary positive definite functions on G correspond to irreducible unitary

representations of G. Since \q>(x)\^<p(e) for any x^G and any positive definite

function <p on G7 the set F can be considered to be a subset of the conjugate space

Loo(G) of Li(G) and so the weak closure F of F Is weakly compact.

If IJL Is a bounded complex regular measure on 71, a function /? on G defined by

is called the Fourier transform of /*. It is easy to see that /? is a positive definite

function provided p. is non-negative. The converse of this Is celebrated Bochner's

theorem, for which we shall give a simple proof, using Boolean valued analysis.

Theorem 4elo Every positive definite function on G is the Fourier transform

of a suitable non-negative regular Borel measure on P.

Proof. Let q> be an arbitrary positive definite function on G. We can assume

without loss of generality that <p Is normalized. As we have remarked before, <p can

be expressed as <p(x) = (T*x%, <?> for a suitable unitary representation ^ of G on a

Hilbert space H and a vector f eU. Let $? be a maximal Boolean algebra of

projections contained In {^x ' x€=G}'. Then ^ becomes irreducible unitary

representation In V(*\ as Theorem 3.3 shows, and so <p becomes elementary In
V _

?). Therefore q> belongs to F In Vm. By the way, F Is a compact Hausdorff
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space and so it is a uniform space in the unique way (cf. Kelley [11, pp. 197-200]).

Therefore there must exist a J?-valued regular Borel measure E such that E(N) =
V _

[0?£EJVl for any Borel subset N of F, as Takeuti [24, § 1] showed. Let ju(N) =

(E(N)£, <?>. Then IJL is a non-negative regular Borel measure on F and n(r — P)

=0. A similar discussion of Takeuti [24, Theorem 2 of § 1] establishes easily that

9 =P.

This proof suggests typically how Boolean valued analysis can supersede not

only direct integrals but also the theory of Banach algebras in some important

theorems of abstract harmonic analysis. To establish a theorem on G3 we have often

had to make a detour through Li( G), to which we can apply the theory of Banach

algebras.
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