A Remark on the Segal-Becker Theorem

Dedicated to Professor Minoru Nakaoka on his 60th birthday

By
Kazumoto KOZIMA*

§ 1. Introduction

Let CP^∞ be the infinite dimensional complex projective space and BU the classifying space of stable complex vector bundles. Then there is the natural inclusion $j: CP^\infty \to BU$ and the structure map of the infinite loop space structure defined by the Bott periodicity $\xi: Q(BU) \to BU$ where $Q(\) = \text{Colim}_n \Omega^n\Sigma^n(\)$. Let $\lambda: Q(CP^\infty) \to BU$ be the composition $\xi \circ Q(j)$. The results of Segal [8] and Becker [2] show us that there exists a map $s: BU \to Q(CP^\infty)$ such that $\lambda \circ s = \text{id}$.

The main result of this paper is to show that one can take s satisfying that $s \circ j \simeq \text{inclusion}: CP^\infty \to Q(CP^\infty)$.

To show this, we will use the results of Brumfiel–Madsen [4] for the evaluation of the transfer map.

§ 2. The Construction of the Splitting

Let $U(n)$ be the unitary group and T^n its maximal torus. Let NT^n be the normaliser of T^n in $U(n)$. We also define homogeneous spaces of $U(2n)$:

$$E_n = U(2n)/U(n) \quad \text{and} \quad E'_n = U(n+1)/U(n).$$

Then the construction of splitting in [2] can be reformulated as follows.

Let $r: Q(X_+) \to Q(X)$ be the map induced by the canonical projection and $a: Q(X) \to Q(X_+)$ the right adjoint of r. Let $t_n: E_n/U(n)_+$

* Department of Mathematics, Kyoto University, Kyoto 606, Japan.
$\longrightarrow Q(E_n/NT^n_*)$ the Becker–Gottlieb transfer ([2], [3]) associated with the smooth fiber bundle

$$U(n)/NT^n \longrightarrow E_n/NT^n \longrightarrow E_n/U(n).$$

E_n/T^n has the action of $NT^n/T^n = \Sigma_n$ which sends eT^n to enT^n where $e \in E_n$ and $n \in NT^n$. $(X)^n$ is also a Σ_n–space by the permutation of the coordinates.

Since the elements of E_n can be considered as the n–frames in C^{2n}, we define a Σ_n–equivariant map

$$h_n : E_n/T^n \longrightarrow (CP^{2n-1})^n$$

by corresponding each vector to its representative element in CP^{2n-1}.

Also, since $E_n/T^n \longrightarrow E_n/NT^n$ is a principal Σ_n–bundle, there is a Σ_n–equivariant map

$$\epsilon_n : E_n/T^n \longrightarrow E\Sigma_n$$

which covers the classifying map of this principal bundle where $E\Sigma_n$ is the contractible free Σ_n–space. Thus we obtain a map

$$k_n = (\epsilon_n \times h_n) / \Sigma_n : E_n/NT^n \longrightarrow (E\Sigma_n \times (CP^{2n-1})^n) / \Sigma_n.$$

There is also the Barratt–Quillen map

$$w_n : (E_n \times (X))^n / \Sigma_n \longrightarrow Q(X_+).$$

Notice that the composition $X \overset{i_1}{\longrightarrow} (E\Sigma_n \times (X))^n / \Sigma_n \overset{\epsilon_n}{\longrightarrow} Q(X_+)$ is homotopic to the composition $X \overset{\text{incl.}}{\longrightarrow} Q(X) \overset{\epsilon}{\longrightarrow} Q(X_+)$ where i_1 is the map defined by the equation

$$i_1(x) = (\ast_{E_n}, (x, \ast_x, \ast_x, \cdots, \ast_x)) \text{ for } x \in X.$$

So the following Lemma is clear.

Lemma 2.1. The composition

$$CP^n = E_n / S^1 \longrightarrow E_n / NT^n \overset{w_n \ast k_n}{\longrightarrow} Q(CP^{2n-1})$$

is homotopic to the composition $CP^n \longrightarrow CP^n \overset{\text{incl.}}{\longrightarrow} Q(CP^{2n-1})$.

Remark. One can easily show that the composition $w_n \circ k_n : E_n / NT^n \longrightarrow Q(CP^{2n-1})$ agrees with the composition of the Kahn–Priddy pre-transfer $t : E_n / NT^n \longrightarrow Q(E_n / NT^n \times S^n)$ associated with the n–fold covering $E_n / NT^n \times S^n \longrightarrow E_n / NT^n$ and the map $Q(E_n / NT^n \times S^n) \longrightarrow Q(CP^{2n-1})$ which is induced from the quotient map. (Compare
Now we are ready to define the splitting s. Let us consider the composition

$$s_n : E_n/U(n) \to E_n/U(n) + t_n \to Q(E_n/NT^*_+) \to Q(CP^{2n-1})$$

where $w_n \circ k_n$ is the pointed extension of $w_n \circ k_n$ and ζ is the structure map of the infinite loop space $Q(CP^{2n-1})$. As in [2] and [9], t_n is compatible with n. So, since all the constructions are compatible with n, by taking the limit, we obtain $s : BU \to Q(CP^n)$.

§ 3. The Proof of the Main Result

By virtue of (2.1), we have only to prove that the diagram

$$E_n'\to E_n'/S^1_+ \xrightarrow{\text{incl.}} Q(E_n'/S^1_+)$$

$$E_n/U(n) + t_n \to Q(E_n/NT^*_+)$$

commutes up to homotopy where the vertical maps are induced from the inclusion $E_n' \to E_n$.

We need the evaluation of the transfer.

Proposition 3.1. The following diagram is homotopy commutative;

$$E_n/T^*_+ \to E_n/NT^*_+$$

where the maps with no name are induced from the canonical projections.

This proposition is a corollary of Brumfiel and Madsen [4]. (See Theorem 3.5 of [4].)

Since the diagram

$$E_n'/S^1_+ \to Q(E_n'/S^1_+)$$

$$E_n/T^*_+ \xrightarrow{\text{incl.}} Q(E_n/T^*_+)$$

$$E_n/NT^*_+ \xrightarrow{\text{incl.}} Q(E_n/NT^*_+)$$
commutes up to homotopy, we get the main result:

\[CP^n - E_n/S^1 \xrightarrow{\text{incl}} E_n/U(n) \xrightarrow{s_n} Q(CP^n) \]

commutes up to homotopy.

Thus \(s \circ j \) is homotopic to the canonical inclusion as an element of \(\lim_n \text{Map}(CP^n, Q(CP^n)) \). Then \(\lambda \circ s \circ j \) is homotopic to \(j \) on the finite skeleton. So one can easily show that \(\lambda \circ s : BU \to BU \) induces identities on the \(K \)-homology groups and on the \(K \)-cohomology groups, by using the fact that \(s \) is an \(H \)-map. (See [9].) Thus our \(s \) is a splitting.

Let \(P^m(\) \) be the \(m \)-th term of the cohomology defined by \(Q(CP^n) \). Then we have the Milnor exact sequence

\[0 \to \lim_i P^{-1}(CP^n) \to P^0(CP^n) \to \lim_i P^0(CP^n) \to 0. \]

As in [5], one can easily prove that \(P^{-1}(CP^n) \) is finite. So \(\lim_i - \) term vanishes and we have the main theorem:

Theorem 3.2. The composition

\[s \circ j : CP^\infty \to BU \to Q(CP^\infty) \]

is homotopic to the canonical inclusion.

References

