Cohomology of (H, C)-Groups

Dedicated to Professor Shigeo Nakano on his 60th birthday

By

Hideaki KAZAMA*

Introduction

In this paper we consider an n-dimensional connected complex Lie group G without nonconstant holomorphic functions (Such a Lie group is called an (H, C)-group). In the previous paper [8] we found a sufficient condition for $H^p(G, \mathcal{O}_G)$ to be finite-dimensional ($p \geq 1$), using the resolution: $0 \rightarrow \mathcal{O}_G \rightarrow \mathcal{A}^{0,0} \rightarrow \mathcal{A}^{0,1} \rightarrow \cdots$ where $\mathcal{A}^{p,q}$ denotes the sheaf of germs of real analytic (p, q)-forms on G. It was not possible to find a necessary and sufficient condition for $H^p(G, \mathcal{O}_G)$ to be finite-dimensional by the method of the paper [8]. Roughly speaking the cause of the above unsuccess is that the resolution by the sheaves of germs of real analytic forms is not good enough to calculate the ∂ cohomology groups of G.

The purpose of this paper is to establish the cohomology groups $H^p(G, \mathcal{O}_G)$ of an (H, C)-group G ($p \geq 1$), using some number theoretical property of G. It is known that every (H, C)-group G has a structure of C^\ast-principal bundle $\pi : G \rightarrow T^q$ over a q-dimensional complex torus $T^q (p + q = n)$ ([14]). We take the subsheaf \mathcal{H} of $\mathcal{A}^{0,0}$ so that $\mathcal{H} : = \{ f \in \mathcal{A}^{0,0} ; f$ is holomorphic along each fiber of $\pi \}$. First we shall prove a cohomology vanishing theorem for the sheaf \mathcal{H} on G in Section 2. Using the sheaf \mathcal{H}, we shall get the resolution:

$$0 \rightarrow \mathcal{O}_G \rightarrow \mathcal{H}^{0,0} \rightarrow \cdots \rightarrow \mathcal{H}^{0,q} \rightarrow 0$$
of ∂_G in Section 3 to calculate the ∂ cohomology groups $H^p(G, \partial_G)$ ($p \geq 1$). In Section 4 we shall find a necessary and sufficient condition for $H^p(G, \partial_G)$ to be finite-dimensional and calculate the dimension of $H^p(G, \partial_G)$ (Theorem 4.3). We can regard an (H, C)-group G as a quotient group C^*/Γ by a discrete subgroup Γ. The above necessary and sufficient condition is expressed by a Diophantine inequality with respect to the subgroup Γ of C^*. Unless the condition is fulfilled for Γ, then by Theorem 4.3, there exists j ($1 \leq j \leq q$) such that $H^j(G, \partial_G)$ is infinite-dimensional. Further we shall prove that $H^p(G, \partial_G)$ is not Hausdorff for all p ($1 \leq p \leq q$) (Theorem 4.4). By the theorems in Section 4 the cohomology groups $H^p(G, \partial_G)$ of an (H, C)-group G are completely determined by some number theoretical property of G and we have a classification of all (H, C)-groups as follows. Let C^*/Γ be an n-dimensional (H, C)-group. If Γ is generated by R-linearly independent vectors v_1, \ldots, v_{n+q}, then C^*/Γ is called an (H, C)-group of rank $n+q$ ([11]). Let $\mathcal{F}^{n,q}$ be the set of all n-dimensional (H, C)-groups of rank $n+q$. Then

$$\mathcal{F}^{n,q} = \{ C^*/\Gamma \in \mathcal{F}^{n,q} ; \dim H^p(C^*/\Gamma, \partial) < \infty, p \geq 1 \}$$

$$\cup \{ C^*/\Gamma \in \mathcal{F}^{n,q} ; H^p(C^*/\Gamma, \partial) \text{ is not Hausdorff for any } p \text{ satisfying } 1 \leq p \leq q \} \quad \text{(disjoint).}$$

The author is very grateful to Prof. S. Nakano who raised the question in 1975 whether the cohomology groups $H^p(G, \partial_G)$ for an (H, C)-group G are finite-dimensional.

§ 1. Preliminaries

In this paper we consider an n-dimensional connected complex Lie group G without nonconstant holomorphic functions. Such a Lie group G is said to be a toroid group or an (H, C)-group ([5], [9], [11]). We recall that G is abelian and then G is isomorphic onto C^*/Γ for some discrete subgroup Γ of C^* as a Lie group ([11]). We may assume that Γ is generated by R-linearly independent vectors $e_1, \ldots, e_m, v_1 = (v_{11}, \ldots, v_{1n}), \ldots, v_q = (v_{q1}, \ldots, v_{qn})$ of C^* ($1 \leq q \leq n$), where e_j is the j-th unit vector of C^*. Since every holomorphic function on $G=C^*/\Gamma$ is constant, $[v_1, \ldots, v_q]$ must satisfy the condition:

$$\max \{|\sum_{j=1}^q v_{ij} m_j - m_{n+1}| ; 1 \leq i \leq q\} > 0$$
for all \(m = (m_1, \ldots, m_n, m_{n+1}, \ldots, m_{n+q}) \in \mathbb{Z}^{n+q} - \{0\} \) ([9], [11]). Since \(\text{Im} \; v_i := (\text{Im} \; v_{i1}, \ldots, \text{Im} \; v_{in}) \), \(\ldots \), \(\text{Im} \; v_q := (\text{Im} \; v_{q1}, \ldots, \text{Im} \; v_{qn}) \) are \(R \)-linearly independent, we may assume \(\text{det} \; [\text{Im} \; v_{ij}; 1 \leq i, j \leq q] \neq 0 \) without loss of generality. Throughout this paper we assume that \(G = C^\ast/G \) and \(G \) denotes the discrete subgroup satisfying the above assumption and (1.1). Further we use the notations:

\[
K_{m,i} := \sum_{j=1}^{s} v_{ij} m_j - m_{n+i} \quad \text{and} \quad K_m := \max \{|K_{m,i}|; 1 \leq i \leq q\}
\]

for \(m \in \mathbb{Z}^{n+q} \). Then from (1.1) we have

\[
(1.2) \quad K_m > 0 \quad \text{for all} \quad m \in \mathbb{Z}^{n+q} - \{0\}.
\]

We denote the projection \(C^\ast \ni (x_1, \ldots, x_n) \mapsto (x_1, \ldots, x_q) \in C^q \) by \(\pi_q : C^\ast \longrightarrow C^q \). Let \(e_i^\ast := \pi_q(e_i), \quad v_i^\ast := \pi_q(v_i) \) for \(1 \leq i \leq q \) and \(\Gamma^\ast := \pi_q(G) \). Since \(e_i^\ast, \; v_i^\ast \) are \(R \)-linearly independent, we have a \(q \)-dimensional complex torus \(T^q = C^q/\Gamma^\ast \).

We recall the following proposition due to [14].

Proposition 1.1. The projection \(\pi_q : C^\ast \longrightarrow C^q \) induces the \(C^{n-q} \) principal bundle \(\pi_q : C^\ast/G \ni z + \Gamma \mapsto \pi_q(z) + \Gamma^\ast \in T^q \) over \(T^q \).

We put

\[
\begin{align*}
\alpha_{ij} &= \begin{cases} \text{Re} \; v_{ij} & (1 \leq i \leq q, \; 1 \leq j \leq n) \\ 0 & (q+1 \leq i \leq n, \; 1 \leq j \leq n) \end{cases} \\
\beta_{ij} &= \begin{cases} \text{Im} \; v_{ij} & (1 \leq i \leq q, \; 1 \leq j \leq n) \\ \delta_{ij} & (q+1 \leq i \leq n, \; 1 \leq j \leq n) \end{cases}
\end{align*}
\]

\([\gamma_{ij}; 1 \leq i, j \leq n] := [\beta_{ij}; 1 \leq i, j \leq n]^{-1} \) and \(v_i := \sqrt{-1} \; e_i \) for \(q+1 \leq i \leq n \). Since \(\{e_1, \ldots, e_n, v_1, \ldots, v_q\} \) are \(R \)-linearly independent, we have an isomorphism

\[
\phi : C^\ast \ni (x_1, \ldots, x_n) \mapsto (t_1, \ldots, t_{2n}) \in R^{2n}
\]

as a real Lie group, where \((x_1, \ldots, x_n) = \sum_{i=1}^{n} (t_i e_i + t_{n+i} v_i) \). Then we obtain the relations

\[
(1.3) \quad t_j = x_j - \sum_{k=1}^{n-j} y_k \gamma_{kj} \alpha_{ij} \quad \text{and} \quad t_{n+j} = \sum_{i=1}^{n} y_i \gamma_{ij}
\]

for \(1 \leq j \leq n \), where \(z_i = x_i + \gamma_{ij} y_j \) for \(1 \leq i \leq n \). \(\phi \) induces the isomorphism \(\phi^\ast : C^\ast/G \cong T^{n+q} \times R^{n-q} \) as a real Lie group, where \(T^{n+q} \) is a \(n+q \)-dimensional real torus. Henceforth we identify \(C^\ast/G \) with the real Lie group \(T^{n+q} \times R^{n-q} \) and use the real coordinate system \(\langle t_1, \ldots, t_{2n} \rangle \) according to the need. We make the following change of
Then we can regard \((\zeta_0, \ldots, \zeta_n) \) as a local coordinate system of \(C^n/\Gamma \) and we have global vector fields

\[
\frac{\partial}{\partial \zeta_i} = \sum_{j=1}^n \beta_{ij} \frac{\partial}{\partial \xi_j}
\]

and \((0, 1)\)-forms

\[
d\zeta_i = \sum_{j=1}^n \gamma_{ji} d\xi_j \quad (1 \leq i \leq n)
\]
on \(C^n/\Gamma \). It follows from (1.3) that

\[
(1.4) \quad \frac{\partial}{\partial \zeta_i} = \frac{1}{2} \left(\sum_{j=1}^n \beta_{ij} \frac{\partial}{\partial t_j} - \sqrt{-1} \sum_{j=1}^n \alpha_{ij} \frac{\partial}{\partial t_j} + \sqrt{-1} \frac{\partial}{\partial \tau_{n+i}} \right).
\]

Then for \(q+1 \leq i \leq n \) we have

\[
(1.5) \quad \frac{\partial}{\partial \zeta_i} = \frac{1}{2} \left(\frac{\partial}{\partial t_i} + \sqrt{-1} \frac{\partial}{\partial \tau_{n+i}} \right).
\]

Let \(\mathcal{A} \) be the sheaf of germs of (complex valued) real analytic functions on \(C^n/\Gamma \) and

\[
\mathcal{H}_0 := \left\{ f \in \mathcal{A} \mid \frac{\partial f}{\partial \zeta_i} = 0 \quad q+1 \leq i \leq n \right\}.
\]

Let \(f \in H^0(C^n/\Gamma, \mathcal{A}) \). Then we have the following Fourier expansion of \(f \):

\[
(1.6) \quad f(t_0, \ldots, t_{2n}) = \sum_{m \in \mathbb{Z}^{n+q}} c^m(t') \exp 2\pi \sqrt{-1} \langle m, t' \rangle,
\]

where \(t' = (t_0, \ldots, t_{n+q}) \in T^{n+q}, \quad t' = (t_{n+q+1}, \ldots, t_{2n}) \in R^{n-q}, \quad m = (m_0, \ldots, m_{n+q}) \in Z^{n+q}, \quad \langle m, t' \rangle = \sum_{i=0}^{n+q} m_i t_i \) and \(c^m(t') \) is real analytic in \(t' \in R^{n-q} \) for any \(m \in Z^{n+q} \). We put

\[
f^m(t) := c^m(t') \exp 2\pi \sqrt{-1} \langle m, t' \rangle.
\]

It follows from (1.4), (1.5) and (1.6) that

\[
(1.7) \quad \frac{\partial f^m}{\partial \zeta_i} = \begin{cases} \pi (\sum_{j=1}^n \nu_{ij} m_j - m_{n+i}) f^m = \pi K_{m,i} f^m, & 1 \leq i \leq q \\ \sqrt{-1} \left(\frac{\partial c^m(t')}{\partial \tau_{n+i}} + 2\pi m_i c^m(t') \right) \exp 2\pi \sqrt{-1} \langle m, t' \rangle, & q+1 \leq i \leq n. \end{cases}
\]

Furthermore suppose \(f \in H^0(C^n/\Gamma, \mathcal{H}) \). Since \(\frac{\partial f}{\partial \zeta_i} = 0 \quad (q+1 \leq i \leq n) \), we have, by (1.6) and (1.7),

\[
(1.8) \quad f(t) = \sum_{m \in \mathbb{Z}^{n+q}} c^m \exp (-2\pi \sum_{i=q+1}^{n+q} m_i t_{n+i}) \exp 2\pi \sqrt{-1} \langle m, t' \rangle,
\]

where \(c^m \) is complex constant for any \(m \in Z^{n+q} \).
§ 2. Cohomology Groups with Coefficients in the Sheaf \(\mathcal{H} \)

Let \(M \) be a paracompact real analytic manifold and \(\mathcal{A}_M \) be the sheaf of germs of real analytic functions on \(M \). By the result of [4] we can regard \(M \) as a closed real analytic submanifold of a complex manifold \(N \) and \(M \) has a Stein neighbourhood basis \(\{ U_i ; i \in I \} \) in \(N \). Since \(\text{ind. lim} \{ H^p(U_i, \mathcal{O}_N) ; U_i \supset M \} = 0 \), we have \(H^p(M, \mathcal{A}_M) = 0 \) for \(p \geq 1 \) ([10]).

In this section we treat cohomology groups as the following type. Let \(\mathcal{F} \) be the sheaf \(\{ f(z, t) \in \mathcal{A}_{C^k \times R} ; \frac{\partial f}{\partial z} = 0 \} \) on \(C \times R \). We wish to consider whether \(H^p(C \times R, \mathcal{F}) \) vanishes for \(p \geq 1 \). Using a power series expansion of a function \(f \in \mathcal{A}_{C^k \times R} \) we can prove that a homomorphism \(\frac{\partial}{\partial z} : \mathcal{A}_{C^k \times R} \rightarrow \mathcal{A}_{C^k \times R} \) is surjective. Then we have an exact sequence \(0 \rightarrow \mathcal{F} \rightarrow \mathcal{A}_{C^k \times R} \rightarrow \mathcal{A}_{C^k \times R} \rightarrow 0 \). From this exact sequence and the lemma of [6, Lemma 2, p. 25], we can regard \(H^p(C \times R, \mathcal{F}) \) as \(H^p(C, \mathcal{O}_E) \), where \(\mathcal{O}_E \) is the sheaf of germs of holomorphic functions with values in the locally convex space \(E := H^0(R, \mathcal{A}_R) \). Since \(E \) admits no structures of Frechet spaces, then we cannot apply the result of [1] and [2] to \(H^p(C \times R, \mathcal{F}) \). And since \(C \times R \) has no Stein neighbourhood bases in \(C \times C \), then we cannot prove the vanishing of \(H^p(C \times R, \mathcal{F}) \) by the same method of the proof of the theorem: \(H^p(M, \mathcal{A}_M) = 0 \). To get our purpose in this section, we must investigate a property of Stein open neighbourhood of \(C^k \times C^l \) in \(C^k \times C^l \).

We will use the following notations in the rest of this paper. For an \(m \)-tuple \(\xi = (\xi_1, \ldots, \xi_m) \), \(||\xi|| := \max \{ ||\xi_i|| ; 1 \leq i \leq m \} \). And the notation \{equalities and inequalities involving functions \(h_1, \ldots, h_m \)\} denotes the set of all points in the intersection of the domains of definition of \(h_1, \ldots, h_m \) satisfying the given equalities and inequalities.

Lemma 2.1. Let \(\pi : S \rightarrow C^k \times C^l \) be a (unramified Riemann) domain of holomorphy over \(C^k \times C^l \) \((k, l \geq 1)\), \(\Delta_\pi := \{(w_1, \ldots, w_l) \in C^l ; |w_j - a_j| < r_j, 1 \leq j \leq l\} \), where \(r = (r_1, \ldots, r_l) \), \(r_j > 0 \) and \((a_1, \ldots, a_l) \in C^l \) and let \(\varepsilon = (\varepsilon_1, \ldots, \varepsilon_l) \) for \(\varepsilon_j \geq 0 \) \((1 \leq j \leq l)\). Further assume there exist an open subset \(V_1 \) of \(S \) and \(\delta > 0 \) such that \(\pi|_{V_1} \) is biholomorphic into \(C^k \times C^l \) and \(\pi(V_1) \supset (C^k \times \Delta_\pi) \cup \{||z|| < \delta\} \times \Delta_{r+\delta} \), where \(\Delta_{r+\delta} := \)
Then there exists an open subset V_2 of S with $V_1 \subset V_2$ such that $\pi|_{V_2}$ is biholomorphic into $C^k \times C^l$ and $\pi(V_2) \supset C^k \times \Delta_{r+\epsilon}$.

Proof. We may assume $a_1 = \cdots = a_l = 0$. Let $f \in H^\infty(S \setminus \emptyset)$. Then f can be expanded in the power series $f(x) = \sum_{\nu, \mu} a_{\nu\mu} (z \circ \pi(x))^\nu (w \circ \pi(x))^\mu$, where $(z \circ \pi(x))^\nu = (z_1 \circ \pi(x))^{\nu_1} \cdots (z_k \circ \pi(x))^{\nu_k}$ and $(w \circ \pi(x))^\mu = (w_1 \circ \pi(x))^{\mu_1} \cdots (w_l \circ \pi(x))^{\mu_l}$. Then the power series $F(x, w) := \sum_{\nu, \mu} a_{\nu\mu} z^\nu w^\mu$ converges in $(C^k \times \Delta_r) \cup \{||z|| < \delta\} \times \Delta_{r+\epsilon}$. We put $D_d := \{(||z|| < d) \times \{||w|| < r_j, 1 \leq j \leq l\}\} \cup \{||z|| < \delta\} \times \{(||w|| < r_j + \epsilon_j, 1 \leq j \leq l\}\}$ for $d > \delta$. The envelope of holomorphy of D_d is the smallest logarithmically convex complete Reinhardt domain $\hat{D}_d := \{||z|| < d, \quad ||w|| < r_j + \epsilon_j, \quad \log ||w|| - \log r_j < \frac{\log d - \log ||z||}{\log d - \log \delta} (\log (r_j + \epsilon_j) - \log r_j)\}$ which contains D_d (for instance see [13]). Since F converges in D_d for all $d > \delta$, then F can be continued holomorphically in \hat{D}_d for any $d > \delta$. We take any point $(x, w) \in C^k \times \Delta_{r+\epsilon}$. Then we can find a sufficiently large positive number d_0 such that $\log ||w|| - \log r_j < \frac{\log d_0 - \log ||z||}{\log d_0 - \log \delta} (\log (r_j + \epsilon_j) - \log r_j)$. Then $(x, w) \in \hat{D}_{d_0}$. This implies that F converges in $C^k \times \Delta_{r+\epsilon}$. Since $\pi : S \rightarrow C^k \times C^l$ is a domain of holomorphy, we find an open subset V_2 of S satisfying the statements of the lemma (for instance see [6, Theorem 18, p. 55]).

The following lemma asserts that $C \times R$ admits no Stein open neighbourhood bases in $C \times C$. For instance we take an open neighbourhood $V := \{(z, w) \in C^2; \quad |\text{Im} w| < (1 + |z|)^{-1}\}$ of $C \times R$ in $C \times C$. Then we cannot find a Stein open subset V^* so that $C \times R \subset V^* \subset V$.

Lemma 2.2. Let $I_j := \{w_j \in C; \quad \text{Im} w_j = 0, \quad a_j < \text{Re} w_j < b_j\}$, where $-\infty \leq a_j < b_j \leq \infty$ (1 $\leq j \leq l$), $I := I_1 \times \cdots \times I_l \subset R^l \subset C^l$ and f a holomorphic function in a neighbourhood of $C^k \times I$ in $C^k \times C^l$. Then there exists a Stein open neighbourhood V of I in C^l such that f can be continued holomorphically to $C^k \times V$.

Proof. First we assume $l = 1$. Then $I = \{w \in C; \quad \text{Im} w = 0, \quad a < \text{Re} w < b\}$, where $-\infty \leq a < b \leq \infty$. We have an open and connected neighbourhood D of $C^k \times I$ in $C^k \times C$ so that f is holomorphic in D. Let $\pi : \hat{D} \rightarrow C^k \times C$ be the envelope of holomorphy of D which is given
by a Riemann domain over \(C^k \times C \). Then there exists a holomorphic injection \(j : D \longrightarrow \hat{D} \) such that \(\pi \circ j \) is identity and the mapping \(H^o(\hat{D}, \emptyset , g) \rightarrow H^o(D, \emptyset , g) \) is an isomorphism. Put \(U := j(D) \), for \(\varepsilon = \pm 1 \) \(\hat{D}_1 := \{ (z, w) \in D ; a < \text{Re} w < b \} \). Then \(\pi : \hat{D}_1 \longrightarrow C^k \times C \) is a domain of holomorphy. We identify \((z, w) \in D \) and \(x \in \hat{D} \) if \(j(z, w) = x \). Then for \(\varepsilon = \pm 1 \) we get Riemann domains

\[
\pi_{\varepsilon} : G^\varepsilon : \hat{D}_1 \cup D^\varepsilon \longrightarrow C^k \times C,
\]

where \(\pi_{\varepsilon}(x) := \pi(x) \) if \(x \in \hat{D}_1 \) and \(\pi_{\varepsilon}(z, w) := (z, w) \) if \((z, w) \in D^\varepsilon \).

Now we consider the case \(\varepsilon = 1 \). We put

\[
G^1 := G^1 \cap \pi_{1}^{-1}(C^k \times [a + t < \text{Re} w < b - t]) \text{ for } 0 < t < (b - a)/2.
\]

Since \(G^1 \) is \(\rho_t \)-convex in the sense of [3], \(G^1 = \bigcup_{0 < t < (b - a)/2} G^t_1 \) is a domain of holomorphy. We take \(x_0 \in U \) with \(\pi_1(x_0) = (z^0, w^0) \) for some \(w^0 \in I \). We put

\[
\tau_0 := 1/2 \text{ min } \{ w^0 - a, b - w^0 \} > 0
\]

\[
P_0 := C^k \times \{ |w - w^0 - \sqrt{-1} \tau_0| < \tau_0 \}.
\]

Then we have \(P_0 \subset D^1 \subset G^1 \). And there exist \(\delta_1 > 0 \) and an open subset \(U^1 \subset G^1 \) such that \(\pi_1|_{U^1} \) is biholomorphic into \(C^k \times C \) and \(\pi_1(U^1) \supset \{ ||z|| < \delta \} \times \{ |w - w^0 - \sqrt{-1} \tau_0| < \tau_0 + \delta \} \). By Lemma 2. 1 we have an open subset \(U_2 \) of \(G^1 \) with \(x_0 \in U_2 \) so that \(\pi_1|_{U_2} \) is biholomorphic into \(C^k \times C \) and

\[
\pi(U_2) \supset C^k \times \{ |w - w^0 - \sqrt{-1} \tau_0| < \tau_0 + \delta \}.
\]

Then \(\pi(\hat{D}_1 \cap U_2) \supset C^k \times \{ |w - w^0| < \delta_0 \} \). Applying the above method to the case \(\varepsilon = -1 \), we get \(\delta_1 > 0 \) and an open subset \(U_3 \) of \(G^1 \) with \(x_0 \in U_3 \) so that \(\pi_{-1}|_{U_3} \) is biholomorphic and \(\pi(\hat{D}^{-1}_1 \cap U_3) \supset C^k \times \{ |w - w^0| < \delta_0 \} \). Then there exists an open neighbourhood \(U_4 \) of \(x_0 \) in \(\hat{D} \) such that \(\pi|_{U_4} \) is biholomorphic into \(C^k \times C \) and \(\pi(U_4) \supset C^k \times \{ |w - w^0| < \text{min} \{ \delta_0, \delta_2 \} \} \). This means that \(f \) can be continued holomorphically to \(C^k \times V^* \) for some open neighbourhood \(V^* \) of \(I \) in \(C \). Then we complete the proof in the case \(l = 1 \). We can prove the assertion of the lemma for \(l \geq 3 \) similarly to the case \(l = 2 \). Then we shall only prove the lemma in the case \(l = 2 \). Let \(I := I_1 \times I_2 = \)}
{(w₁, w₂); Im w₁=0, a₁<Re w₁<b₁, i=1, 2} ⊆ R² ⊆ C², f a holomorphic function in a neighbourhood E of C⁺×I in C⁺×C² and ˜E the envelope of holomorphy of E. In general ˜E is given by a Riemann domain over C⁺×C². Using the same technique of the proof in the case l=1, we may treat ˜E as a univalent domain of holomorphy in C⁺×C² which contains E without loss of generality. We take (t₁₀, t₂₀) ∈ I₁ × I₂ and δ>0 satisfying δ<MIN{tᵢ₀−aᵢ, bᵢ−tᵢ₀; i=1, 2} and {||x||<δ} × {||wᵢ−tᵢ₀||<δ, i=1, 2} ⊆ E. Let I₁₀ := R ∩ {wᵢ∈C; |wᵢ−tᵢ₀|<δ} (i=1, 2), Iᵢ := Iᵢ₀ ∩ {||wᵢ−tᵢ₀||<δ/3} and ˜E(t₀):={(z, w₁)∈C⁺×C; (z, w₁, t₀)∈ ˜E, Re w₁∈I₁₀} for t₀∈I₂₀. And we put

\[˜E(t₀)⁺:= ˜E(t₀) ∪ C⁺× \{w₁; ε Im w₁≥0, Re w₁∈I₁₀\} \]

for ε=±1. Then ˜E(t₀)⁺ is a domain of holomorphy for s=±1 and t₀∈I₂₀. We have C⁺×{||wᵢ−tᵢ−\sqrt{-1}(δ/3)||<δ/3} ⊆ ˜E(t₀)⁺ and {||x||<δ} × {||wᵢ−tᵢ−\sqrt{-1}(δ/3)||<2δ/3} ⊆ ˜E(t₀)⁺ for t₀∈I₂₀ and tᵢ∈Iᵢ. It follows from Lemma 2.1 that

\[C⁺×{||wᵢ−tᵢ−\sqrt{-1}(δ/3)||<2δ/3} ⊆ ˜E(t₀)⁻¹ \]

for t₀∈I₁₀ and tᵢ∈Iᵢ. Similarly we have

\[C⁺×{||wᵢ−tᵢ+\sqrt{-1}(δ/3)||<2δ/3} ⊆ ˜E(t₀)⁻¹ \]

for t₀∈I₂₀ and tᵢ∈Iᵢ. We put V₁₀ := {w₁; |Im w₁|<δ/3, Re w₁∈I₁₀}. Then we have C⁺×V₁₀×I₁₀⊂ ˜E. We set

\[˜E₁:={(z, w₁, w₂)∈ ˜E; w₁∈V₁₀, Re w₂∈I₂₀}, \]

\[˜E₁⁺:= ˜E₁ ∪ C⁺×V₁₀× \{w₂; ε Im w₂≥0, Re w₂∈I₂₀\} \]

for ε=±1. Since C⁺×V₁₀×{w₂; ||wᵢ−tᵢ−\sqrt{-1}(εδ/2)||<δ/2} ⊆ ˜E₁⁺ and {||x||<δ} × V₁₀×{w₂; ||wᵢ−tᵢ−\sqrt{-1}(εδ/2)||<δ} ⊆ ˜E₁⁻ (ε=±1), it follows from Lemma 2.1 that

\[C⁺×V₁₀×{||wᵢ−tᵢ||<δ/2} ⊆ ˜E. \]

Since (t₁₀, t₂₀) is an arbitrary point of I, we find an open subset V of I in C² so that f can be continued holomorphically to C⁺×V. I has a Stein neighbourhood basis in C². Then we may regard V as a Stein open subset of C² ([4]).

Lemma 2.3. Let I be as in Lemma 2.2 and f a holomorphic function in a neighbourhood of C⁺⁺×I in C⁺⁺×C¹. Then there exists a Stein open neighbourhood V of I in C¹ such that f can be continued
holomorphically to $C^k \times V$.

Proof. It is sufficient to prove the lemma in the case $k=2$. Let $a_v(t) := 1/(2\pi \sqrt{\text{-}1})^{2} \int_{|z_1|=1} \int_{|z_2|=1} \frac{f(z_1, z_2, t)}{z_1^{v_1+1} z_2^{v_2+1}} \, dz_1 dz_2$ for $v = (v_1, v_2) \in \mathbb{Z}^2$ and $t \in I$. And we use the notations: $\Sigma = \Sigma_{v_1, v_2 = 0}, \Sigma_{\frac{1}{2}} = \Sigma_{v_1, v_2 < 0}, \Sigma_{\frac{1}{3}} = \Sigma_{v_1 < 0, v_2 = 0}, \Sigma_{\frac{1}{4}} = \Sigma_{v_1 < 0, v_2 < 0}$ and $f_k(z_1, z_2, t) := \sum_{v} a_v(t) z_1^{v_1} z_2^{v_2}$. Then we can apply Lemma 2.2 to each f_i. For instance we take $f_i^* (z, \zeta_2, t) := f_i (z^{-1}, \zeta_2^{-1}, t)$ which is holomorphic in $(\zeta_1, \zeta_2) \in C^2$.

By Lemma 2.2 f_i^* can be continued to $C^2 \times V$ for some Stein open neighbourhood V of I in C^1. Since $f = f_1 + f_2 + f_3 + f_4$, we get the proof of the lemma.

Let $\pi_q : C^n / \Gamma \equiv (z_1, \ldots, z_n) + \Gamma \longrightarrow (z_1, \ldots, z_n)$ and $\pi^* \in T^q = C^q / \Gamma^*$ be the $C^* \cdot q$-principal bundle over T^q as in Proposition 1.1. Since $\alpha_{ij} = 0$ for $1 \leq j \leq n, q+1 \leq i \leq n$ and $\gamma_{ij} = 0$ for $q+1 \leq i \leq n, 1 \leq j \leq q$, from (1.3) it follows that $t_j = x_j - \sum_{i=1}^n \sum_{i=1}^q y_i \gamma_{ij} \alpha_{ij}$ and $t_{n+j} = \sum_{i=1}^q y_i \alpha_{ij}$ for $1 \leq j \leq q$. This relation induces an isomorphism $\sigma : T^q \equiv (z_1, \ldots, z_q) + \Gamma^* \longrightarrow (\exp 2\pi \sqrt{-1} t_1, \ldots, \exp 2\pi \sqrt{-1} t_q)$ which is holomorphic in $(\zeta_1, \zeta_2) \in C^2$.

By Lemma 2.2 f_i^* can be continued to $C^2 \times V$ for some Stein open neighbourhood V of I in C^1. Since $f = f_1 + f_2 + f_3 + f_4$, we get the proof of the lemma.

Let $\pi_q : C^n / \Gamma \equiv (z_1, \ldots, z_n) + \Gamma \longrightarrow (z_1, \ldots, z_n)$ and $\pi^* \in T^q = C^q / \Gamma^*$ be the $C^* \cdot q$-principal bundle over T^q as in Proposition 1.1. Since $\alpha_{ij} = 0$ for $1 \leq j \leq n, q+1 \leq i \leq n$ and $\gamma_{ij} = 0$ for $q+1 \leq i \leq n, 1 \leq j \leq q$, from (1.3) it follows that $t_j = x_j - \sum_{i=1}^n \sum_{i=1}^q y_i \gamma_{ij} \alpha_{ij}$ and $t_{n+j} = \sum_{i=1}^q y_i \alpha_{ij}$ for $1 \leq j \leq q$. This relation induces an isomorphism $\sigma : T^q \equiv (z_1, \ldots, z_q) + \Gamma^* \longrightarrow (\exp 2\pi \sqrt{-1} t_1, \ldots, \exp 2\pi \sqrt{-1} t_q)$ which is holomorphic in $(\zeta_1, \zeta_2) \in C^2$.

By Lemma 2.2 f_i^* can be continued to $C^2 \times V$ for some Stein open neighbourhood V of I in C^1. Since $f = f_1 + f_2 + f_3 + f_4$, we get the proof of the lemma.

Let $\pi_q : C^n / \Gamma \equiv (z_1, \ldots, z_n) + \Gamma \longrightarrow (z_1, \ldots, z_n)$ and $\pi^* \in T^q = C^q / \Gamma^*$ be the $C^* \cdot q$-principal bundle over T^q as in Proposition 1.1. Since $\alpha_{ij} = 0$ for $1 \leq j \leq n, q+1 \leq i \leq n$ and $\gamma_{ij} = 0$ for $q+1 \leq i \leq n, 1 \leq j \leq q$, from (1.3) it follows that $t_j = x_j - \sum_{i=1}^n \sum_{i=1}^q y_i \gamma_{ij} \alpha_{ij}$ and $t_{n+j} = \sum_{i=1}^q y_i \alpha_{ij}$ for $1 \leq j \leq q$. This relation induces an isomorphism $\sigma : T^q \equiv (z_1, \ldots, z_q) + \Gamma^* \longrightarrow (\exp 2\pi \sqrt{-1} t_1, \ldots, \exp 2\pi \sqrt{-1} t_q)$ which is holomorphic in $(\zeta_1, \zeta_2) \in C^2$.

By Lemma 2.2 f_i^* can be continued to $C^2 \times V$ for some Stein open neighbourhood V of I in C^1. Since $f = f_1 + f_2 + f_3 + f_4$, we get the proof of the lemma.
\[\{ j = (e_0, \ldots, e_q) ; e_i = \pm 1 \} \] and for \(j = (e_0, \ldots, e_q) \in J \) \(U_j : = \{ \exp 2\pi \sqrt{-1} t_0, \ldots, \exp 2\pi \sqrt{-1} t_q, \exp 2\pi \sqrt{-1} t_{n+1}, \ldots, \exp 2\pi \sqrt{-1} t_{n+q} \} \subset T^{2q}; \ -1/2 \leq t_0, t_{n+1} \leq 1/2, t_{n+i} \neq e_i/4, t_i \neq e_i/4 \text{ for } 1 \leq i \leq q \}. \] Then we have open coverings \(\mathcal{U} : = \{ C^{*+q} \times U_j ; j \in J \} \) and \(\mathcal{S} : = \{ \phi^{-1}(C^{*+q} \times U_j) ; j \in J \} \) of \(C^{*+q} \times T^{2q} \) and \(C^* / \Gamma \), respectively.

Proposition 2.4. Let \(H^p(\mathcal{S}, \mathcal{F}) \) be the \(p \)-th Čech cohomology group of the covering \(\mathcal{S} \) of \(C^* / \Gamma \). Then

\[H^p(\mathcal{S}, \mathcal{F}) = 0 \quad \text{for } p \geq 1. \]

Proof. We have an isomorphism \(\phi^* : H^p(\mathcal{U}, \mathcal{F}) \longrightarrow H^p(\mathcal{S}, \mathcal{F}) \) by (2.1). Then we may prove \(H^p(\mathcal{U}, \mathcal{F}) = 0 \) for \(p \geq 1 \). We regard \(T^{2q} \) as the closed analytic submanifold \(\{ (w_0, \ldots, w_q) ; \ |w_i| = 1, 1 \leq i \leq 2q \} \) of \(C^q \). Let \(C \) be any connected component of \(U_{i_0} \cap \ldots \cap U_{i_p} \) in \(C^q \) and \(\phi \) be the biholomorphic mapping \(\phi : V \ni (w_0, \ldots, w_q) \longmapsto (\exp \frac{2\pi}{T} w_0, \ldots, \exp \frac{2\pi}{T} w_q) \in C^q \). We take \(\{ c_{i_0}, \ldots, c_{i_p} \} \in \mathcal{Z}^p(\mathcal{U}, \mathcal{F}) \). In virtue of such mapping \(\phi \) and by Lemma 2.3 there exist a Stein and connected open neighbourhood \(U^*_{i_0} \cap \ldots \cap U^*_{i_p} \) of \(U_{i_0} \cap \ldots \cap U_{i_p} \) in \(C^q \) and a unique holomorphic function \(c_{i_0} \cdots c_{i_p} \) in \(C^{*+q} \times U^*_{i_0} \cap \ldots \cap U^*_{i_p} \) such that \(c_{i_0} \cdots c_{i_p} | C^{*+q} \times U^*_{i_0} \cap \ldots \cap U^*_{i_p} \). Since each \(U_j \) admits a Stein neighbourhood basis in \(C^q \), we can choose a Stein neighbourhood \(U^*_{i_0} \cap \ldots \cap U^*_{i_p} \) so that \(U_{i_0} \cap \ldots \cap U_{i_p} \subset U^*_{i_0} \cap \ldots \cap U^*_{i_p} \). We take \(\varepsilon \) (\(0 < \varepsilon < 1 \)) satisfying \(A_\varepsilon = \{ |w_i| < 1 + \varepsilon, 1 \leq i \leq 2q \} \subset \cup U_{i_0} \). Then we have \(\{ c_{i_0} \cdots c_{i_p} \} \subset C^{*+q} \times U^*_{i_0} \cap \ldots \cap U^*_{i_p} \cap A_\varepsilon \). Since \(C^{*+q} \times A_\varepsilon \) is a Stein open set, there exists \(\{ \delta \{ d_{i_0} \cdots d_{i_p} \} \} \subset C^{*+q} \times U^*_{i_0} \cap \ldots \cap U^*_{i_p} \cap A_\varepsilon \). This completes the proof.

Let \(f \in H^p(C^* / \Gamma, \mathcal{F}) = Z^p(\mathcal{S}, \mathcal{F}) \). From (1.8) we have \(f(t) = \sum_{m \in \mathbb{Z}^{n+q}} c^m \exp \left(-2\pi \sum_{i=q+1}^{n+q} m_i t_{n+i} \right) \exp 2\pi \sqrt{-1} \langle m, t \rangle \),

(2.2) \[f = \phi^{-1}(\xi, \eta) = \sum_{m \in \mathbb{Z}^{n+q}} c^m \xi_1^{m_{q+1}} \cdots \xi_{n-q}^{m_{n+1}} \eta_{q+1}^{m_{q+1}} \cdots \eta_{2q}^{m_{2q}} \]

for \((\xi, \eta) \subset C^{*+q} \times T^{2q} \). Observing the proof of Proposition 2.4 and by Lemma 2.3, we have the following

Proposition 2.5. There exists \(\varepsilon > 0 \) such that the Laurent series
expansion:
\[
\sum_{m=0}^{n+q} c^m z_1^{m+1} \cdots z_{n-q}^{m+1} \cdots w_0^m w_{n+1}^m \cdots w_{2q}^m
\]
which induced by (2.2) converges for all \((\xi, \omega) \in C^{*n-\delta} \times \Delta_v\), where \(\Delta_v = [1-\epsilon < |w_i| < 1+\epsilon]\).

§ 3. A Special Resolution of the Structure Sheaf \(\mathcal{O}\) of \(C^n/\Gamma\)

Let \(U\) be an open subset of \(C^l\), \(\mathcal{A}\) be the sheaf of germs of real analytic functions on \(C^{*k} \times U\). We consider the sheaf \(\mathcal{V} := \{f \in \mathcal{A} : \frac{\partial f(z, \omega)}{\partial z_j} = 0, 1 \leq j \leq k\}\), where \((z, \omega) \in C^{*k} \times U\) and \(\mathcal{V}^{0,p} := \{(1/p!) \sum_{\sum_{i_p = 1}} f_{i_1} \cdots i_p d\omega_{i_1} \wedge \cdots \wedge d\omega_{i_p} : f_{i_1} \cdots i_p \in \mathcal{V}\}\) for \(0 \leq p \leq l\). Here any form treated in the rest of this paper is written skew-symmetrically in all indices.

Let \(f \in H^0(C^{*k} \times U, \mathcal{V})\) and \(\omega^0 = (\omega^0_1, \ldots, \omega^0_l) \in U\). By Lemma 2.3 there exists an open neighbourhood \(U^0\) of \(\omega^0\) in \(U\) such that \(f\) has the following expansion:
\[
(f(z, \omega) = \sum_{\alpha} \sum_{\beta} a_{\alpha, \beta} z^{\alpha}(\omega - \omega^0)^{\beta} \] which converges for all \((z, \omega) \in C^{*k} \times U^0\), where \((\omega - \omega^0)^{\alpha} = (\omega_1 - \omega^0_1)^{\alpha_1} \cdots (\omega_l - \omega^0_l)^{\alpha_l}\) and \((\omega - \omega^0)^{\beta} = (\omega_1 - \omega^0_1)^{\beta_1} \cdots (\omega_l - \omega^0_l)^{\beta_l}\).

Lemma 3.1. Let \(f = 1/p! \sum_{\sum_{i_p = 1}} f_{i_1} \cdots i_p d\omega_{i_1} \wedge \cdots \wedge d\omega_{i_p} \in H^0(C^{*k} \times U, \mathcal{V}^{0,p})\) with \(\partial f = 0\) \((p \geq 1)\). For any \(\omega^0 \in U\) choose an open neighbourhood \(U^0\) of \(\omega^0\) so that any \(f_{i_1} \cdots i_p\) can be expanded in \(C^{*k} \times U^0\) as in (3.1). Then there exists \(g^0 \in H^0(C^{*k} \times U^0, \mathcal{V}^{0,p-1})\) such that \(\partial g^0 = f\).

Proof. Let \(m\) be the least integer such that the explicit representation of \(f\) in coordinate form involves only the conjugate differentials \(d\omega_1, \ldots, d\omega_m\). The proof will be by induction on \(m\). First we consider \(m = p\). Then \(f = f_{12} \cdot p d\omega_1 \wedge \cdots \wedge d\omega_p\) and we have an expansion \(f_{12} \cdot p = \sum \alpha_{\alpha, \beta} z^{\alpha}(\omega - \omega^0)^{\beta} \) in \(C^{*k} \times U^0\) as in (3.1). Since \(\partial f = 0\), \(f_{12} \cdot p\) must be holomorphic in \(\omega_{p+1}, \ldots, \omega_l\). Putting \(\xi_{12} \cdot p-1 = \sum \alpha_{\alpha, \beta}(\beta_{p+1} \cdots \beta_l) z^{\alpha}(\omega - \omega^0)^{\beta}(\omega_{p+1} - \omega^0_{p+1}) \wedge \cdots \wedge d\omega_{p+1} \wedge \cdots \wedge d\omega_{p-1}\), \(\xi_{12} \cdot p-1\) is also holomorphic in \(\omega_{p+1}, \ldots, \omega_l\) and \(\partial g = f\). Using the standard argument for the Dolbeault lemma (for instance
see [6, the proof of Theorem 3, p. 27]), we can complete the proof.

Observing the proof of Proposition 2.4, we have the following lemma.

Lemma 3.2. Let \(\{U_i\} \) be a locally finite open covering of \(U \subset \mathbb{C}^l \) and each \(U_i \) is a rectangular open subset \(\{a_j^{(i)} < \text{Re} \ w_j < b_j^{(i)}, c_j^{(i)} < \text{Im} \ w_j < d_j^{(i)} : 1 \leq j \leq l \} \) for some \(a_j^{(i)}, b_j^{(i)}, c_j^{(i)} \) and \(d_j^{(i)} \in \mathbb{R} \). Take the open covering \(\mathcal{U} := \{C^k \times U_i\} \) of \(C^k \times U \). Then \(H^p(\mathcal{U}, \mathcal{O}^{-1}) = 0 \) for \(p \geq 1 \), \(0 \leq s \leq l \).

By Lemmata 3.1 and 3.2 we have the following lemma.

Lemma 3.3. Let \(U \) be a Stein open subset of \(\mathbb{C}^l \) and \(f \in H^0(\mathbb{C}^k \times U, \mathcal{O}^{-1}) \) with \(\partial f = 0 \). Then there exists \(g \in H^0(\mathbb{C}^k \times U, \mathcal{O}^{-1}) \) such that \(\partial g = f \).

Proof. By Lemma 3.1 we have a Stein covering \(\{U_i\} \) and \(g_i \in H^0(\mathbb{C}^k \times U_i, \mathcal{O}^{-1}) \) with \(\partial g_i = f \). We put \(h^{(i)}_{t_0} := g_i - g_i^0 \). Then \(\partial h^{(i)}_{t_0} = 0 \). Further by Lemma 3.1 we get \(g_i^{(1)} \in H^0(\mathbb{C}^k \times U_i^1, \mathcal{O}^{-1}) \) with \(\partial g_i^{(1)} = h^{(i)}_{t_0} \), where we use the notation \(U_{i_0, \ldots, i_s} := U_{i_0} \cap \ldots \cap U_{i_s} \). We set \(\{h^{(1)}_{t_0}\} := \partial \{g^{(1)}_{t_0}\} \). Then \(\partial h^{(2)}_{t_0} = 0 \). Inductively we find sequences \(\{g^{(s)}_{t_0, \ldots, i_s}\} \in C^s(\mathcal{U}, \mathcal{O}^{-1}) \) for \(1 \leq s \leq p \) and \(\{h^{(s)}_{t_0, \ldots, i_s}\} \in C^s(\mathcal{U}, \mathcal{O}^{-1}) \) for \(1 \leq s \leq p \), \(\mathcal{U} := \{C^k \times U_i\} \) so that \(\partial h^{(p)}_{t_0, \ldots, i_p} = 0 \), \(\{h^{(p)}_{t_0, \ldots, i_p}\} = \delta \{g^{(p)}_{t_0, \ldots, i_p}\} \) and \(\delta g^{(p)}_{t_0, \ldots, i_p} = h^{(p)}_{t_0, \ldots, i_p} \). Since \(\{h^{(p)}_{t_0, \ldots, i_p}\} \in Z^p(\mathcal{U}, \mathcal{O}) \) and \(\mathcal{U} \) is a Stein covering of the Stein open set \(C^k \times U \), then there exists \(\{f^{(p)}_{t_0, \ldots, i_p}\} \in C^p(\mathcal{U}, \mathcal{O}) \) such that \(\partial h^{(p)}_{t_0, \ldots, i_p} = \delta \{f^{(p)}_{t_0, \ldots, i_p}\} \). Then \(\{f^{(p)}_{t_0, \ldots, i_p}\} \in Z^p(\mathcal{U}, \mathcal{O}) \). By Lemma 3.2 we get \(\{f^{(p-2)}_{t_0, \ldots, i_p-2}\} \subset C^{p-2}(\mathcal{U}, \mathcal{O}^{-1}) \) so that \(\{g^{(p-1)}_{t_0, \ldots, i_p-1} - f^{(p-1)}_{t_0, \ldots, i_p-1}\} \in Z^{p-1}(\mathcal{U}, \mathcal{O}^{-1}) \). We have \(\delta \{g^{(p-1)}_{t_0, \ldots, i_p-1} - f^{(p-1)}_{t_0, \ldots, i_p-1}\} = \delta \{g^{(p-2)}_{t_0, \ldots, i_p-2}\} = \delta \{f^{(p-1)}_{t_0, \ldots, i_p-1}\} = \delta \{f^{(p-2)}_{t_0, \ldots, i_p-2}\} \). Then \(\{g^{(p-2)}_{t_0, \ldots, i_p-2} - f^{(p-2)}_{t_0, \ldots, i_p-2}\} \in Z^{p-2}(\mathcal{U}, \mathcal{O}^{-1}) \). Repeating the above argument, finally we find \(\{f^{(p)}\} \subset B^p(\mathcal{U}, \mathcal{O}^{-1}) \) so that \(\partial h^{(p)}_{t_0} = g_i - g_{i_0} = \delta f^{(p)}_{t_0} - \partial f^{(p)}_{t_0} \). We put \(g := g_i - \partial f^{(p)}_{t_0} \). Then \(g \in H^0(\mathbb{C}^k \times U, \mathcal{O}^{-1}) \) and \(\partial g = f \).

Now we need the sheaf \(\mathcal{H} = \{f \in \mathcal{A} : \frac{\partial f}{\partial s_j} = 0 \quad q + 1 \leq j \leq n \} \) on \(C^* / \Gamma \) defining in Section 1. Further we consider the sheaf

\[
\mathcal{H}^{0,p} := \{1/p! \sum_{1 \leq i_1, \ldots, i_p \leq q} f_{i_1, \ldots, i_p} \frac{\partial^p}{\partial s_{i_1} \ldots \partial s_{i_p}} \wedge \ldots \wedge \frac{\partial^p}{\partial s_{i_1} \ldots \partial s_{i_p}} ; f_{i_1, \ldots, i_p} \in \mathcal{H} \}.
\]
of germs of \mathcal{H}-forms of type $(0, p)$ which involves only the differentials $d\zeta_0, \ldots, d\zeta_p$.

Proposition 3.4. The sequence

\[0 \to \mathcal{H}^0(C^n/\Gamma, \mathcal{O}) \to \mathcal{H}^0(C^n/\Gamma, \mathcal{O}) \to \cdots \to \mathcal{H}^0(C^n/\Gamma, \mathcal{O}) \to 0 \]

is exact. And $H^p(C^n/\Gamma, \mathcal{O})$ is isomorphic to the quotient space \{ f : $f \in H^0(C^n/\Gamma, \mathcal{H}^{0, q})$, $\partial f = 0$ \} / \{ \tilde{g} : $g \in H^0(C^n/\Gamma, \mathcal{H}^{0, p-1})$ \} for $p \geq 1$.

Proof. We can regard $(\zeta_1, \ldots, \zeta_n)$ as a local coordinate system of C^n/Γ. Let f be a germ belonging to a stalk H_f at $\zeta^0 \in C^n/\Gamma$. f has an expansion

\[f = \sum a_{\alpha} \zeta^\alpha \left(\partial \zeta_1, \ldots, \partial \zeta_n \right) \left(\zeta_1 - \zeta_1^0 \right)^{a_1} \cdots \left(\zeta_q - \zeta_q^0 \right)^{a_q} \left(\zeta_1 - \zeta_1^0 \right)^{a_1} \cdots \left(\zeta_q - \zeta_q^0 \right)^{a_q} \]

which is similar to (3.1) and converges in a small neighbourhood U^0 of ζ^0 in C^n/Γ, where a_{α} is holomorphic in ζ^0. Applying the method of the proof of Lemma 3.1 to this expansion of $f \in \mathcal{H}_\zeta$, we can prove the exactness of the sequence of the proposition. We put $\text{Ker} \delta_k := \text{Ker} \{ \partial : \mathcal{H}^{0, k+1} \to \mathcal{H}^{0, k} \}$ and $\text{Im} \delta_k := \text{Im} \{ \partial : \mathcal{H}^{0, k+1} \to \mathcal{H}^{0, k} \}$. Then we have $\text{Im} \delta_k = \text{Ker} \delta_{k+1}$ and the short exact sequences

\[\text{Im} \delta_k \to \mathcal{H}^{0, k} \to \text{Ker} \delta_k \to 0 \]

for $0 \leq k \leq q$.

Let $\mathfrak{N} = \{ \phi^{-1}(C^{*n-q} \times U_j) \}$ be the same locally finite covering of C^n/Γ as in Proposition 2.4. Since $\phi^{-1}(C^{*n-q} \times U_j)$ is biholomorphic to $C^{*n-q} \times U_j$, it follows from Lemma 3.3 that

\[\partial : C^p(\mathfrak{N}, \mathcal{H}^{0, k}) \to C^p(\mathfrak{N}, \text{Im} \delta_k) \]

is an epimorphism. Then we have an exact sequence

\[0 \to C^p(\mathfrak{N}, \text{Im} \delta_k) \to C^p(\mathfrak{N}, \mathcal{H}^{0, k}) \to C^p(\mathfrak{N}, \text{Ker} \delta_k) \to 0. \]

From (3.2) there exists a long exact sequence

\[0 \to H^0(\mathfrak{N}, \text{Ker} \delta_k) \to H^0(\mathfrak{N}, \mathcal{H}^{0, k}) \to H^0(\mathfrak{N}, \text{Im} \delta_k) \to H^1(\mathfrak{N}, \text{Ker} \delta_k) \to H^1(\mathfrak{N}, \mathcal{H}^{0, k}) \to \cdots \]

Using this exact sequence and the result of Proposition 2.4, we have $H^s(\mathfrak{N}, \mathcal{H}^{0, k}) = 0$ for $s \geq 1$, $H^p(C^n/\Gamma, \mathcal{O}) = H^p(\mathfrak{N}, \mathcal{O}) = H^p(\mathfrak{N}, \text{Im} \delta_k)$ and $H^{p-k}(\mathfrak{N}, \text{Ker} \delta_k) = H^{p-k-1}(\mathfrak{N}, \text{Im} \delta_k)$ for $0 \leq k \leq p - 1$. Then we obtain

\[H^p(C^n/\Gamma, \mathcal{O}) \cong H^1(\mathfrak{N}, \text{Ker} \delta_{p-k}) \cong H^p(\mathfrak{N}, \text{Im} \delta_{p-k}) / \text{Im} \{ \partial : H^p(\mathfrak{N}, \mathcal{H}^{0, p-k-1}) \to H^p(\mathfrak{N}, \text{Im} \delta_{p-k-1}) \}. \]

This coincides with the quotient space asserted in this proposition.
Remark. By Proposition 3.4 we obtain $H^p(C^*/\Gamma, \mathcal{O}) = 0$ for $p \geq q+1$. This comes from the result of [7] directly, since we showed in [7] that C^*/Γ is strongly $(q+1)$-complete in the sense of Andreotti and Grauert.

§ 4. $\tilde{\partial}$ Cohomology Groups of (H, C)-Groups

Let $f \in H^0(C^*/\Gamma, \mathcal{O})$. By (1.8) we have the Fourier expansion: $f = \sum_{m \in \mathbb{Z}^{n+q}} c^m \exp(-2\pi \sum_{i=q+1}^n m_i t_{n+i}) \exp 2\pi \sqrt{-1} \langle m, t' \rangle$. For $m = (m_1, \ldots, m_n+q) \in \mathbb{Z}^{n+q}$ we put $m' = (m_1, \ldots, m_q, m_{n+1}, \ldots, m_{n+q})$, $m^* = (m_{q+1}, \ldots, m_n)$, $||m'|| = \max\{|m_i|, |m_{n+i}|; 1 \leq i \leq q\}$ and $||m^*|| = \max\{|m_j|; q+1 \leq j \leq n\}$. Then we have the following

Lemma 4.1. The following conditions on a sequence $\{c^m \in C; m \in \mathbb{Z}^*\}$ are equivalent.

(a) The Fourier expansion $\sum_{m \in \mathbb{Z}^{n+q}} c^m \exp(-2\pi \sum_{i=q+1}^n m_i t_{n+i}) \exp 2\pi \sqrt{-1} \langle m, t' \rangle$ converges to a function in $H^0(C^*/\Gamma, \mathcal{O})$.

(b) There exists $\varepsilon > 0$ such that for all $a > 0$
$$C(a) := \sup \{|c^m| \exp(\varepsilon ||m'|| + a ||m^*||); m \in \mathbb{Z}^{n+q}\} < \infty.$$

Proof. We first prove $(a) \implies (b)$. Put $f(t) := \sum_{m \in \mathbb{Z}^{n+q}} c^m \exp(-2\pi \sum_{i=q+1}^n m_i t_{n+i}) \exp 2\pi \sqrt{-1} \langle m, t' \rangle \in H^0(C^*/\Gamma, \mathcal{O})$, (w_1, \ldots, w_q):
$$= (\exp 2\pi \sqrt{-1} t_1, \ldots, \exp 2\pi \sqrt{-1} t_q, \exp 2\pi \sqrt{-1} t_{n+1}, \ldots, \exp 2\pi \sqrt{-1} t_{n+q}) \in \{ |w_i| = 1, 1 \leq i \leq 2q \} \subset C^q \text{ and } \xi_i := \exp 2\pi \sqrt{-1} (t_i + \sqrt{-1} t_{n+i}) \subset C^*$, $1 \leq i \leq n-q$. Then by Proposition 2.5 we have $\delta > 0$ so that $f^*(\xi, w) := \sum_{m \in \mathbb{Z}^{n+q}} c^m \xi^m w^m$ is holomorphic in $(\xi, w) \in C^{*\times q} \times [1 - \delta < |w_j| < 1 + \delta]$, where $\xi^m = \xi_1^{m_1+1} \cdots \xi_{n-q}^{m_{n-q}}, w^m = w_1^{m_1} \cdots w_q^{m_q} w_{n+1}^{m_{n+1}} \cdots w_{n+q}^{m_{n+q}}$. Put $\varepsilon := 1/2 \min\{-\log (1 - \delta), \log (1 + \delta)\}$. Then for any $a > 0$
$$\sup \{|c^m| \xi_1^{m_1+1} \cdots \xi_{n-q}^{m_{n-q}} |w_1|^{m_1} \cdots |w_q|^{m_q} |w_{n+1}|^{m_{n+1}} \cdots |w_{n+q}|^{m_{n+q}}; m \in Z^{n+q}, \exp(-a) \leq |\xi_i| \leq \exp a, \exp(-\varepsilon) \leq |w_i| \leq \exp \varepsilon\} < \infty.$$ Conversely assume (b) holds. Then $\sum_{m \in \mathbb{Z}^{n+q}} c^m \xi^m w^m$ converges uniformly on every compact subset of $C^{**\times q} \times [\exp(-\varepsilon) < |w_j| < \exp \varepsilon]$. This implies (a).

For $m \in \mathbb{Z}^{n+q}$ we use the notation: $||m^*|| = \max\{|m_i|; 1 \leq i \leq n\}$.

Lemma 4.2. The following conditions (0) and (1) are equivalent.

...
(0) For any \(\varepsilon > 0 \) there exists a positive number \(a = a(\varepsilon) \) such that
\[
\sup_{m \neq 0} \exp \left(-\varepsilon \| m' \| - a \| m' \| \right) / K_m < \infty.
\]

(1) There exists \(a > 0 \) such that
\[
\sup_{m \neq 0} \exp \left(-a \| m^* \| \right) / K_m < \infty.
\]

Proof. Since \(K_m = \max \left(\sum_{j=1}^q \Re v_{ij} m_j - m_{n+i} \right)^2 + \sum_{j=1}^q \Im v_{ij} m_j \right)^2 \) and the \(q \times q \)-matrix \([\Im v_{ij}; 1 \leq i, j \leq q] \) is non-singular, we can find \(C_1, C_2 > 0 \) so that \(S := \{ m; m \neq 0, \| K_m \| \leq 1 \} \subset \{ m; m \neq 0, \| m' \| \leq C_1 \), \(C_2 \| m^* \| \} \). We shall show that the statement (1) is equivalent to the following

(*) There exists \(a > 0 \) such that \(\sup_{m \neq 0} \exp \left(-a \| m^* \| \right) / K_m < \infty. \)

Since \(\| m^* \| \leq \| m^* \| \), the implication (*) \(\Rightarrow \) (1) is trivial. Assume (1) holds. We have \(\| m^* \| \leq \| m' \| + \| m^* \| \leq C_1 + (C_2 + 1)\| m^* \| \) for \(m \in S \). We put \(b := (C_2 + 1)a > 0 \). Then \(\sup_{m \in S} \exp \left(-b \| m^* \| \right) / K_m \leq \exp \left(bC_1 / (C_2 + 1) \right) \) \(\sup_{m \in S} \exp \left(-a \| m^* \| \right) / K_m < \infty \). This implies (*) holds. We prove (0) \(\Rightarrow \) (*). Assume (0) holds. We get \(a > 0 \) such that \(\sup_{m \neq 0} \exp \left(-\| m' \| - a \| m^* \| \right) / K_m < \infty \). We have \(\exp \left(-(C_1 + C_2 \| m^* \| - a \| m^* \| \right) / K_m \leq \exp \left(-\| m' \| - a \| m^* \| \right) / K_m \) for \(m \in S \). This implies the statement (*) holds. The implication (*) \(\Rightarrow \) (0) is trivial.

Remark. The condition (0) depends on our assumption that \(\det [\Im v_{ij}; 1 \leq i, j \leq q] \neq 0 \). But the condition (1) is independent on that.

Let \(\rho = 1/\rho ! \sum_{1 \leq i_1 \cdots i_p \leq q} \rho_{i_1 \cdots i_p} d\xi_{i_1} \wedge \cdots \wedge d\xi_{i_p} \in H^p(C^\infty / \Gamma, \mathcal{H}^{p,q}) \). We expand each \(\rho_{i_1 \cdots i_p} \) as in (1.8): \(\rho_{i_1 \cdots i_p} = \sum_{m \in \mathbb{Z}^{n+q}} b^n_{i_1 \cdots i_p} \exp \left(-2\pi \sum_{i=t+1}^m m_i t_{n+i} \right) \) \(\exp 2\pi \sqrt{-1} \left< m, t' \right> \). We put \(\rho^n_{i_1 \cdots i_p} = b^n_{i_1 \cdots i_p} \exp \left(-2\pi \sum_{i=t+1}^m m_i t_{n+i} \right) \) \(\exp 2\pi \sqrt{-1} \left< m, t' \right> \). Then \(\rho = 1/\rho ! \sum_{1 \leq i_1 \cdots \leq i_p \leq q} \rho^n_{i_1 \cdots i_p} \). Suppose \(\rho \) is \(\delta \)-exact. Namely there exists a \((0, p-1) \)-form \(\lambda = \sum_{m \in \mathbb{Z}^{n+q}} \lambda^m \in H^0(C^\infty / \Gamma, \mathcal{H}^{0,p-1}) \) such that \(\rho = \delta \lambda \). Then we have \(\rho^m = \delta \lambda^m \) for any \(m \in \mathbb{Z}^{n+q} \). We write \(\lambda^m = 1/(p-1)! \sum_{1 \leq i_1 \cdots \leq i_p \leq q} \lambda^n_{i_1 \cdots i_p} \) \(\exp 2\pi \sqrt{-1} \left< m, t' \right> \). The equation \(\rho^m = \delta \lambda^m \) implies
Combining (4.1) with (1.7), we have for any $m \in \mathbb{Z}^{\ast+q}$

\[(4.2)\]

\[b_{i_1, \ldots, i_p}^m = \sum_{k=1}^p (-1)^{k+1} \frac{\partial^2 \rho_{i_1, \ldots, i_k}^m}{\partial \xi_{k, i_k}^m}.\]

Now suppose $\phi = \sum_{m \in \mathbb{Z}^{\ast+q}} \phi_m \in H^0(C^n/\Gamma, A^{p,q})$ is δ-closed. From $\delta \phi = 0$ and (4.2) it follows that

\[(4.3)\]

\[\pi \sum_{k=1}^p (-1)^{k+1} K_{m,i_k} \phi_{i_1, \ldots, i_k}^m = 0,\]

where we denote $\phi_m = \frac{1}{p!} \sum_{1 \leq i_1 < \cdots < i_p \leq q} \phi_{i_1, \ldots, i_p}^m \exp(-2\pi \sum_{s=1}^m t_{i_s+i}) \exp \frac{2\pi i}{\sqrt{-1}} \langle m, t \rangle \prod_{1 \leq i_1 < \cdots < i_p \leq q} d\xi_{i_1}^m \wedge \cdots \wedge d\xi_{i_p}^m.$

We put

\[i(m) := \min \{ i ; |K_{m,i}| = K_{m,i} \leq i \leq q \}\]

and the indices $(i(m), i_1, \ldots, i_p)$ in the place of (i_1, \ldots, i_{p+1}) of the formula (4.3), then we have

\[(4.4)\]

\[\pi K_{m,i(m)} \phi_{i_1, \ldots, i_p}^m = \pi \sum_{s=1}^p (-1)^{s+1} K_{m,i_s} \phi_{i_1, \ldots, i_i}^m \]

Since $K_{m,i(m)} > 0$ for $m \neq 0$ by (1.2), we can put

\[(4.5)\]

\[\phi_m = \frac{1}{p!} (p-1)! \sum_{1 \leq i_1 < \cdots < i_p \leq q} c_{i_1, \ldots, i_p}^m / K_{m,i(m)} \exp(-2\pi \sum_{s=q+1}^m t_{s+i}) \exp \frac{2\pi i}{\sqrt{-1}} \langle m, t \rangle \prod_{1 \leq i_1 < \cdots < i_p \leq q} d\xi_{i_1}^m \wedge \cdots \wedge d\xi_{i_p}^m\]

for $m \neq 0.$ Observing (4.2), it follows from (4.4) and (4.5) that

\[(4.6)\]

\[\phi_m = \delta \phi_m \text{ for any } m \neq 0.\]

\textbf{Remark.} For any δ-closed $(0, p)$-form $\phi = \sum \phi_m$ we have always a formal solution $\sum_{m \neq 0} \phi_m$ for the δ-equation $\delta \sum_{m \neq 0} \phi_m = \sum_{m \neq 0} \phi_m$ by (4.6).

Here we need to topologize $H^0(C^n/\Gamma, A^p).$ Let $A^p(R)$ be the vector space of real analytic functions on $R.$ We regard R as a closed real analytic submanifold of C under the natural inclusion. We take a compact subset K of R and an open and connected neighbourhood U_j of K in $C,$ $1 \leq j \leq \infty$ satisfying $U_{j-1} \subset U_j$ and $\bigcap_j U_j = K.$ We denote by $\mathcal{H}(U_j)$ the space of bounded holomorphic functions on $U_j,$ $j \geq 1.$ Put $||f|| := \sup \{|f(z)| : z \in U_j\}, f \in \mathcal{H}(U_j).$ This norm makes $\mathcal{H}(U_j)$ into a Banach space.
By the inductive limit: $\mathcal{A}(K) = \operatorname{ind} \lim \mathcal{H}(U_i)$ we regard $\mathcal{A}(K)$ as a (D, F, S)-space. The restriction mapping $\mathcal{A}(K_2) \rightarrow \mathcal{A}(K_1)$ induces the projective limit: $\mathcal{A}(R) = \operatorname{proj} \lim \mathcal{A}(K)$. It is known that the above locally convex topology on $\mathcal{A}(R)$ is complete and semi-Montel. Similarly to the topology of $\mathcal{A}(R)$ we can make the vector space $H^0(C^*/\Gamma, \mathcal{A})$ into a locally convex space. Then $H^0(C^*/\Gamma, \mathcal{A})$ is regarded as a closed subspace of $H^0(C^*/\Gamma, \mathcal{A})$ and itself a locally convex space. And we have the locally convex topology of $H^0(C^*/\Gamma, \mathcal{A})$, induced by $H^0(C^*/\Gamma, \mathcal{A})$. Further by Proposition 3.4 we have the locally convex topology of $H^p(C^*/\Gamma, \mathcal{O})$, using the quotient topology.

The following theorem gives a characterization of an (H, C)-group C^*/Γ whose cohomology groups $H^p(C^*/\Gamma, \mathcal{O})$ $(p \geq 1)$ are finite-dimensional.

Theorem 4.3. Let C^*/Γ be an (H, C)-group, where Γ is generated by $\{e_i, \ldots, e_m, v_1, \ldots, v_q\}$, $K_{m,i} = \sum_{j=1}^o v_im_j - m_{i+1}$ $(1 \leq i \leq q)$ and $K_m := \max \{ |K_{m,i}|; 1 \leq i \leq q\}$ for $m \in \mathbb{Z}^+$. Then the following statements (1), (2), (3) and (4) are equivalent.

1. There exists $a > 0$ such that $
\sup_{m \neq 0} \exp(-a||m^*||)/K_m < \infty,$
where $||m^*|| = \max \{ |m_i|; 1 \leq i \leq n\}$.

2. $\dim H^p(C^*/\Gamma, \mathcal{O}) = \begin{cases} \frac{q!}{(q-p)! \cdot p!} & \text{if } 1 \leq p \leq q \\ 0 & \text{if } p > q. \end{cases}$

3. $\dim H^p(C^*/\Gamma, \mathcal{O}) < \infty$ for any $p \geq 1$.

4. $\delta(H^0(C^*/\Gamma, \mathcal{A}))$ is a closed subspace of $H^0(C^*/\Gamma, \mathcal{A})$ for any $p \geq 1$.

Proof. Assume (1) holds. Then by Lemma 4.2 we may suppose that the statement (0) of Lemma 4.2 holds. We take a δ-closed form $\phi = 1/p! \sum_{m \in \mathbb{Z}^+} \sum_{i_1 \leq \ldots \leq i_p \leq m} \phi_{i_1 \ldots i_p} \delta_{e_{i_1} \ldots} \ldots \delta_{e_{i_p}} \in H^0(C^*/\Gamma, \mathcal{A})$, where $\phi_{i_1 \ldots i_p} = c_{i_1 \ldots i_p}$, $i_p \exp(-2\pi i \sum_{i=1}^n m_{i+1}) \exp(2\pi i - 1 < m, t')$. By Lemma 4.1 there exists $\varepsilon_0 > 0$ such that for any $a > 0 \ C(a) = \sup \{|c_{i_1 \ldots i_p}| \exp(\varepsilon_0 ||m^*|| + a ||m^*||); m \in \mathbb{Z}^+\} < \infty$ $(1 \leq i_1, \ldots, i_p \leq q)$. By the statement (0) of Lemma 4.2 we find $a_0 > 0$ such that
Then for any $a > 0$, $m \neq 0$ and $1 \leq i_1, \ldots, i_p \leq q$, \(|c_{i_1}^{m_n} \exp(\varepsilon_0/2||m'|| |a_0||m'^||)|/K_m \leq C_0\). This means that $\Sigma_{m=0} \phi^m$ given by (4.5) converges to a $(0, p-1)$-form ψ in $H^0(C^*/\Gamma, \mathcal{H}^{0,p-1})$. And by (4.6) we have $\phi - \delta \psi = \phi^0 + \Sigma_{m=0} (\phi^m - \tilde{\phi}^m) = \sum_{1 \leq i_1, \ldots, i_p \leq q} c_{i_1}^{m_n} d\zeta_{i_1} \wedge \ldots \wedge d\zeta_{i_p}$. This shows (2) holds.

It is obvious that (2) \implies (3) \implies (4). Finally we prove (4) \implies (1).

By Lemma 4.2 we may prove that (4) implies the statement (0) of Lemma 4.2 instead of (4) \implies (1). Suppose that $\{K_m; m \in Z^{s+q}\}$ doesn't satisfy the statement (0) of Lemma 4.2. Then there exists $\varepsilon_0 > 0$ such that we can choose $\{m_v; \nu \geq 1 \in Z^{s+q} - [0]\}$ satisfying exp($-\varepsilon_0 ||m_v'|| \nu ||m_v'^||)/K_m \geq \nu$ for any $\nu \geq 1$. We put

$$
\delta_n = \begin{cases}
\exp(-\varepsilon_0 ||m_v'|| \nu ||m_v'^||)/K_{m_v} & \text{if } m = m_v \text{ for some } \nu \geq 1, \\
0 & \text{otherwise}
\end{cases}
$$

and $\phi_n := \delta_n \exp(-2\pi \sum_{j=1}^{s+q} m_j \lambda_{n+1})$ exp $2\pi \sqrt{-1} \langle m, t' \rangle$ for any $m \in Z^{s+q}$. Since $\delta \phi_n = \sum_{j=1}^{s+q} \pi K_{m_v} \exp(-\varepsilon_0 ||m_v'|| \nu ||m_v'^||)/K_{m_v} \exp 2\pi \sqrt{-1} \langle m, t' \rangle d\zeta_j$, if $m = m_v$ for some $\nu \geq 1$ and $|K_{m_v}/K_{m}| \leq 1$, then $\Sigma_n \delta \phi_n$ converges to a form $\phi \in H^0(C^*/\Gamma, \mathcal{H}^{0,1})$. By the choice of the sequence $\{m_v\}$, $\Sigma_n \phi_n$ cannot converge to any function in $H^0(C^*/\Gamma, \mathcal{H}^{0,0})$. Suppose $\phi = \delta \lambda$ for some $\lambda = \sum_n \lambda_n \in H^0(C^*/\Gamma, \mathcal{H}^{0,0})$, then $\lambda = \phi_n$ for $m \neq 0$. It is a contradiction. Then $\phi = \lim_{N \to \infty} \delta (\Sigma_n ||m|| < \theta \phi_n)$ belongs not to $\delta (H^0(C^*/\Gamma, \mathcal{H}^{0,0}))$, but to the closure of $\delta (H^0(C^*/\Gamma, \mathcal{H}^{0,0}))$ in $H^0(C^*/\Gamma, \mathcal{H}^{0,0})$. This contradicts the statement (4).

By the above proof of the implication (4) \implies (1), if $\{K_m; m \in Z^{s+q}\}$ doesn't satisfy the statement (1) of Theorem 4.3, then $H^1(C^*/\Gamma, \emptyset)$ is a non-Hausdorff locally convex space and then infinite-dimensional. Further in the above situation we shall prove that $H^p(C^*/\Gamma, \emptyset)$ are also non-Hausdorff spaces for all p satisfying $2 \leq p \leq q$.

Theorem 4.4. Every (H, C)-group C^*/Γ satisfies either of the following statements (a) and (b).

(a) $H^p(C^*/\Gamma, \emptyset)$ is finite-dimensional for any p.

(b) $H^p(C^*/\Gamma, \emptyset)$ is a non-Hausdorff locally convex space for any p satisfying $1 \leq p \leq q$.

Further the statement (b) is equivalent to the following

(c) \(\sup_{m \neq 0} \exp(-a||m^*||)/K_m = \infty \) for any \(a > 0 \),

where \(||m^*|| = \max \{|m_i|; 1 \leq i \leq n\} \).

Proof. By Lemma 4.2 and Theorem 4.3, we must prove (b) holds on the assumption that \(\{K_m\} \) doesn't satisfy the statement (0) of Lemma 4.2. We choose \(\epsilon_i > 0 \), the sequence \(\{m_n\} \) and \(\delta^m \) as in the proof of (4) \(\Rightarrow (1) \) in Theorem 4.3. We can find \(i_0 \) so that \(1 \leq i_0 \leq q \) and \(\sup \{\nu; |K_{m_{i_0}}| = K_{m_{i_0}} = \infty \} \). We may assume \(i_0 = q \) without loss of generality. We take a \((0, p - 1)\)-form

\[\phi^m := \delta^m \exp(-2\pi \sum_{i=q+1}^n m_i t_{q+i}) \exp 2\pi \sqrt{-1} \langle m, t \rangle d\xi_1 \wedge \ldots \wedge d\xi_{p-1}. \]

Then \(\sum_m \phi^m \) cannot converge to any \((0, p - 1)\)-form in \(H^0(C^n/\Gamma, \mathcal{H}^{0, p-1}) \). On the other hand \(\sum_m \delta\phi^m \) converges to a \((0, p)\)-form \(\phi = \sum_m \sum_{i=p}^n \pi K_{m_i} \delta^m \exp(-2\pi \sum_{i=q+1}^n m_i t_{q+i}) \exp 2\pi \sqrt{-1} \langle m, t \rangle d\xi_1 \wedge d\xi_2 \wedge \ldots \wedge d\xi_{p-1} \neq 0 \). Suppose \(\phi = \delta\lambda \) for some \(\lambda = \sum_m \lambda^m \in H^0(C^n/\Gamma, \mathcal{H}^{0, p-1}) \). Then \(\delta\phi^m = \delta\lambda^m \). We write

\[\lambda^m = 1/(p-1)! \sum_{i_1, \ldots, i_p} b_{i_1, \ldots, i_p}^m \exp(-2\pi \sum_{i=q+1}^n m_i t_{i}) \exp 2\pi \sqrt{-1} \langle m, t \rangle d\xi_1 \wedge \ldots \wedge d\xi_{p-1}. \]

Comparing the term of \(\delta\phi^m \) with that of \(\delta\lambda^m \) involving only the exterior differential \(d\xi_1 \wedge \ldots \wedge d\xi_{p-1} \) of type \((0, p)\), we have

\[\pi K_{m_{i_1}} b_{i_1, \ldots, i_p}^m + \sum_{i=q+1}^n (-1)^i K_{m_{i_1}} b_{i_1, \ldots, i_{p-1}} = \pi K_{m_{i_1}} \delta^m \]

Then \(\delta^m = b_{i_1, \ldots, i_p} \) for \(\nu \geq 1 \). Since \(\sup \{\nu; |K_{m_{i_1}}| = K_{m_{i_1}} = \infty \} \), we can choose a subsequence \(\{m_n^\nu\} \) of \(\{m_n\} \) so that \(|K_{m_{i_1}}| \leq 1 \) for any \(1 \leq i \leq q \) and that

\[\lim_{\nu \to \infty} (b_{i_1, \ldots, i_p}^m + \sum_{i=q+1}^n (-1)^i b_{i_1, \ldots, i_{p-1}}^m K_{m_{i_1}}^\nu / K_{m_{i_1}}^\nu = 0. \]

This contradicts that \(\lim \delta^m = \infty \). Hence \(\phi \) belongs not to \(\delta(H^0(C^n/\Gamma, \mathcal{H}^{0, p-1})) \) but to the closure of \(\delta(H^0(C^n/\Gamma, \mathcal{H}^{0, p-1})) \).

Remark. When the author was making the preprint for this paper, he got the following information which was given by S. Takeuchi. Independently C. Vogt [15] showed in his Dissertation that the statements (a) and (b) are equivalent.

(a) There exist \(C > 0 \) and \(a > 0 \) such that \(K_m \geq C \exp(-a||m^*||) \).
(b) \(\dim H^0(C^n/\Gamma, 0) < \infty \).
By Theorem 4.3 and 4.4 we have the following

Corollary 4.5. The statements (1), (2), (3) and (4) in Theorem 4.3 are equivalent to each of the following statements (5) and (6).

(5) For some \(p \ (1 \leq p \leq q) \) \(\dim H^p(C^n/\Gamma, \mathcal{O}) < \infty. \)

(6) For some \(p \ (1 \leq p \leq q) \) \(\delta(H^p(C^n/\Gamma, \mathcal{H}^{0,b-1})) \) is a closed subspace of \(H^p(C^n/\Gamma, \mathcal{H}^{0,b}) \).

Remark. We constructed an example of an \((H, C) \)-group \(C^n/\Gamma \) so that \(H^1(C^n/\Gamma, \mathcal{O}) \) is not Hausdorff ([7]). By Corollary 4.5 we can show \(H^p(C^n/\Gamma, \mathcal{O}) \) are not Hausdorff for this \((H, C) \)-group \(C^n/\Gamma \) \((2 \leq p \leq q)\).

References

Supplementary notes:

After this paper was submitted, the referee informed the author the following results.
By another method L. C. Piccinini showed implicitly that $C \times R$ admits no Stein neighbourhood bases in $C \times C$ in the article:

[16] Non surjectivity of $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ as an operator on the space of analytic functions on R^3, \textit{Lecture Notes of the Summer College on Global Analysis}, Trieste, August 1972,

and C. Vogt has published the paper:

In [17] he showed independently that the statements (1) and (2) of Theorem 4.3 of this paper are equivalent.