On the Cohomology of Algebraic K-Spectra
over Finite Fields

By

Koichi HIRATA*

§ 1. Introduction

In [5], D. Quillen showed that the classifying space of the algebraic K-theory of a finite field F_q is the homotopy fibre of $1-\psi^q: BU \to BU$ where $q=p^d$ for some prime p and ψ^q is the Adams operation. And by Fiedorowicz-Priddy [4] we know that the map $1-\psi^q$ is an infinite loop map with coefficient $\mathbb{Z}[1/p]$. So we can regard the spectrum which represents algebraic K-theory for F_q is a homotopy fibre of $1-\psi^q$.

Let bu be the spectrum which represents the (-1)-connected complex K-theory. Let l be a prime number, and A be either the ring \mathbb{Z}_l of l-adic integers or the ring $\mathbb{Z}_{(l)}$ of localized at l. We can introduce coefficient A into any spectrum X by setting

$$X_A = MA \wedge X$$

where MA is the Moore spectrum for the group A. Let $\phi: bu_A \to bu_A$ be a (degree 0) map of spectra. Then the purpose of this paper is to determine the mod l cohomology group of the homotopy fibre of ϕ over the mod l Steenrod algebra. Especially when $\phi=1-\psi^q$, the homotopy fibre is the spectrum representing the algebraic K-theory for F_q localized at a prime l.

Our main theorems are stated in Section 5.

The paper is organized as follows:
In Section 2 we recall the Adams splitting $bu_A = g_1 \vee \cdots \vee g_{l-2}$. In Section 3 we state certain properties of a spectral sequence associated with the Postnikov system of a spectrum. In the next section we consider the

Communicated by N. Shimada, October 2, 1982.

* Research Institute for Mathematical Science, Kyoto University, Kyoto 606, Japan.
homotopy fibre of $\phi: g_\bullet \to \mathbf{g}_\bullet$. In Section 5 we state our main theorem and applications to the algebraic K-theory.

Throughout this paper we use the following notations: for a spectrum X, $X(m,n)$ denotes that term in the Postnikov system of X whose homotopy groups π_r are the same as those of X for $m \leq r \leq n$ and zero for other values of r. If $m = n$, then $X(m,n)$ is simply denoted by $X(n)$. We write $EM(\pi, m)$ for the Eilenberg-MacLane spectrum of type (π, m).

I would like to thank Dr. Kono for his encouragements and advices during the preparation of this paper.

§ 2. Splitting of bu_Δ

First we recall the splitting of bu_Δ. (cf. [1]). We can write

$$bu_\Delta \cong g_2 \vee g_1 \vee \cdots \vee g_{l-2}$$

where the homotopy groups of g_j ($0 \leq j \leq l-2$) are

$$\pi_n(g_j) \cong \begin{cases} A & n \geq 0 \text{ and } n = 2j \pmod{2l-2} \\ 0 & \text{otherwise.} \end{cases}$$

By $i_j: g_j \to bu_\Delta$ and $p_j: bu_\Delta \to g_j$ we denote the canonical inclusion and projection respectively. Then i_j and p_j induce isomorphisms of homotopy groups on degree $2n$ such that $n = j \pmod{l-1}$.

Let $\phi: bu_\Delta \to bu_\Delta$ be a map of spectra. We put $\phi_j = p_j \circ \phi \circ i_j$ ($0 \leq j \leq l-2$) and $\phi' = (\phi_0, \ldots, \phi_{l-2}): bu_\Delta \to bu_\Delta$. Then we have

Proposition 2.1. ϕ' is homotopic to ϕ.

Proof. By Corollary 6.4.8 of Adams [2], we know that ϕ and ϕ' are homotopic if and only if they have the same actions on the homotopy groups $\pi_*(bu_\Delta)$. The construction of ϕ' implies that ϕ and ϕ' have the same actions on homotopy groups. This completes the proof.

As a corollary of the above proposition we can easily show

Corollary 2.2. The homotopy fibre of $\phi: bu_\Delta \to bu_\Delta$ is a wedge sum of the homotopy fibres of $\phi_j: g_j \to g_j$ ($0 \leq j \leq l-2$).
Remark 2.3. By the Bott periodicity theorem $g_0 = \Omega^2 g_0$. So if we write F_{ϕ_j} and F_{at_0} for the homotopy fibre of

$$\phi_j: g_j \to g_j,$$

and

$$\Omega^2 \phi_j: g_0 \to g_0,$$

respectively, then we have

$$F_{\phi_j} = \sum^n F_{at_0},$$

and

$$H^* (F_{\phi_j}) = H^{*-n} (F_{at_0}).$$

Henceforth, from now on we will concentrate our attention to the case of $j=0$; that is the homotopy fibre of $\phi: g_0 \to g_0$.

§ 3. Spectral Sequence Associated with Postnikov System

We write A for the mod l Steenrod algebra. We have $Q_0 = \beta_0$ and $Q_1 = \mathcal{P}_1 \beta_1 - \beta_1 \mathcal{P}_1$, as usual; if $p=2$ we write Q_1 as $Sq^1 Sq^2 + Sq^2 Sq^1$. The graded module $\sum^m M$ is defined by regarding M so that an element of degree n in M appears as an element of degree $n+m$ in M. For any spectrum X, we put $H^* (X) = H^* (X; \mathbb{Z} / l)$.

For a spectrum X, we introduce a spectral sequence to compute $H^* (X)$ as in [3]. We filter X by considering its Postnikov system, but for our purpose its filtration is a little different from [3]. The E_1-term of our spectral sequence is

$$\bigoplus_n H^* (X(2n-1, 2n)).$$

Assume $X = g_0$ in Section 2. Then

$$g_0(2n-1, 2n) = \left\{ \begin{array}{ll}
EM(A, 2n) & n \geq 0 \text{ and } n \equiv 0 \text{ (mod } l-1) \\
0 & \text{otherwise.}
\end{array} \right.$$

and

$$H^* (EM(A, 2n)) = \sum^n A / AQ_0.$$

Thus the E_1-term of the spectral sequence for g_0 is
By the dimensional reason, the differential d_r (1 ≤ r < l − 1) is trivial and $E_1 = E_2 = \cdots = E_{l−1}$. We know $d_{l−1}(a) = aQ_1$ where $a \in \sum_{r=0}^{m(r-1)} A/AQ_0$ (cf. [3]), whence the $E_{l−1}$-term of the spectral sequence is a long exact sequence

$$\cdots \rightarrow \sum_{r=0}^{m(r-1)} A/AQ_0 \xrightarrow{Q_1} \sum_{r=0}^{m(r-1)} A/AQ_0 \xrightarrow{Q_1} A/AQ_0.$$

So we have $H^*(g_0) \cong E_0 \cong E_1 \cong A/(AQ_0 + AQ_1)$.

Let $\phi: g_0 \rightarrow g_0$ be a map of spectra. Let $a_{n(l-1)}(n\geq 0)$ be an element of A such that $\phi_*: \pi_{2n(l-1)}(g_0) \rightarrow \pi_{2n(l-1)}(g_0)$ is a multiplication by $a_{n(l-1)}$. Then we have the following:

Proposition 3.1. $a_0 \in IA$ if and only if $a_{n(l-1)} \in IA$ for any $n \geq 0$.

Proof. By induction on n we need only show that $a_{n(l-1)} \in IA$ if and only if $a_{n(l+1)}(l-1) \in IA$. Since the spectral sequence considered above has a naturality for maps of spectra, we have a commutative diagram:

$$\begin{array}{ccc}
H^*(g_0(2(n+1)(l-1))) & \xrightarrow{d_{l−1}} & H^*(g_0(2n(l-1))) \\
\phi^*_{(n+1)(l-1)} \downarrow & & \downarrow \phi^*_{n(l-1)} \\
H^*(g_0(2(n+1)(l-1))) & \xrightarrow{d_{l−1}} & H^*(g_0(2n(l-1)))
\end{array}$$

where we write $\phi^*_{n(l-1)}$ for the restriction of ϕ on $g_0(2n(l-1))$ ($n \geq 0$). Here $\phi^*_{n(l-1)}$ is trivial if $a_{n(l-1)} \in IA$ and an isomorphism if $a_{n(l-1)} \not\in IA$ for any $n \geq 0$. Since $d_{l−1}$ is not trivial, $\phi^*_{n(l-1)} = 0$ if and only if $\phi^*_{(n+1)(l-1)} = 0$ and the result follows.

As a corollary of the above proposition we have

Corollary 3.2. Let $\phi: bu_\Delta \rightarrow bu_\Delta$ be a map and a_n be an element of A such that $\phi_*: \pi_{2n}(bu_\Delta) \rightarrow \pi_{2n}(bu_\Delta)$ is a multiplication by a_n. Then $a_n \in IA$ for some $n \geq 0$ if and only if $a_{n+m(l-1)} \in IA$ for any $m \geq 0$.

§ 4. Cohomology of the Homotopy Fibre of $\phi: g_0 \to g_0$

In this section we consider the spectral sequence for the homotopy fibre of $\phi: g_0 \to g_0$.

Let $a_{n(1-1)}$ be as in previous section.

For the case of $a_0 \in LA$, $\phi_*: \pi_* (g_0) \to \pi_* (g_0)$ is an isomorphism by Proposition 3.1. So ϕ is a homotopy equivalence and the homotopy fibre of ϕ is trivial. Henceforth in this section we assume $a_0 \in LA$, that is $a_{n(1-1)} \in LA$ for any $n \geq 0$.

First recall the following lemma which can be easily proved by standard connectivity argument:

Lemma 4.1. Let x, y and z be spectra and $x \xrightarrow{i} y \xrightarrow{j} z$ a fibration. For $m \leq n$ we have that $x(m, n) \xrightarrow{i} y(m, n) \xrightarrow{j} z(m, n)$ is a fibration if and only if

(i) $\pi_n(x) \xrightarrow{i_*} \pi_n(y)$ is a monomorphism and

(ii) $\pi_m(y) \xrightarrow{j_*} \pi_m(z)$ is an epimorphism.

We write $\mathcal{f} \phi$ for the homotopy fibre of $\phi: g_0 \to g_0$. Then we have fibrations:

(4.2) \[\begin{array}{c} \mathcal{f} \phi \xrightarrow{i} g_0 \xrightarrow{\phi} g_0, \end{array} \]

and

(4.3) \[\begin{array}{c} \sum^{-1} g_0 \xrightarrow{\delta} \mathcal{f} \phi \xrightarrow{i} g_0. \end{array} \]

Considering the homotopy exact sequence of (4.2) we have

Lemma 4.4. For $n \geq 0$

\[\pi_{2n(l-1)}(\mathcal{f} \phi) \cong \begin{cases} A & \text{if } a_{n(l-1)} = 0, \\ \{0\} & \text{if } a_{n(l-1)} \neq 0, \end{cases} \]

\[\pi_{2n(l-1)-1}(\mathcal{f} \phi) \cong \begin{cases} A & \text{if } a_{n(l-1)} = 0, \\ A/a_{n(l-1)} & \text{if } a_{n(l-1)} \neq 0, \end{cases} \]

and all the other homotopy groups of $\mathcal{f} \phi$ are trivial.
Next, we apply the spectral sequence to the fibration (4.3). Since \(\sum^{-1} g_0(2n, 2n-1) \rightarrow f\phi(2n, 2n-1) \rightarrow g_0(2n, 2n-1) \) is a fibration by Lemma 4.1 and \(f^* \) is trivial, we have a commutative diagram

\[
\begin{array}{ccc}
0 & \rightarrow & \sum^{4l-4} A/AQ_0 \rightarrow H^*(f\phi(4l-5, 4l-4)) \\
& \downarrow & \downarrow \\
A/AQ_0 & \rightarrow & \sum^{4l-5} A/AQ_0 \\
& \downarrow & \\
0 & \rightarrow & H^*(f\phi(-1, 0)) \\
& \downarrow & \\
& \rightarrow & \sum^{-1} A/AQ_0 \\
\end{array}
\]

where the horizontal sequences are short exact and vertical sequences are the \(E_{i-1} \) terms of the spectral sequences. Then we have

Lemma 4.6. With notation as above

\[
H^*(f\phi) \cong \text{Coker}(H^*(f\phi(2l-3, 2l-2)) \xrightarrow{d_{i-1}} H^*(f\phi(-1, 0))).
\]

Proof. Since the left and right vertical sequences in diagram (4.5) are exact, so is the middle sequence by considering the homology long exact sequence of the three chain complexes. Hence the spectral sequence for \(f\phi \) becomes trivial after the differential \(d_{i-1} \), and this proves the lemma.

Next, we consider the two fibrations:

\[
f\phi(2l-3, 2l-2) \rightarrow EM(A, 2l-2) \rightarrow EM(A, 2l-2),
\]

and

\[
f\phi(-1, 0) \rightarrow EM(A, 0) \rightarrow EM(A, 0),
\]

which induce bottom two short exact sequences in diagram (4.5). Let \(x \) and \(x' \) be generators of \(H^*(EM(A, 0)) \cong A/AQ_0 \) and \(H^*(EM(A, 2l-2)) \cong \sum^{4l-3} A/AQ_0 \) respectively such that \(d_{i-1}(x') = Q_i x \). Then we can set generators of \(H^*(f\phi(2l-3, 2l-2)) \) and \(H^*(f\phi(-1, 0)) \) as follows:
(i) \(u', \ v' \in H^* (f \Phi (2l-3, 2l-2)) \) such that \(i^*(x') = u' \) and \(\delta (v') = x' \).

(ii) \(u, \ v \in H^* (f \Phi (-1, 0)) \) such that \(i^*(x) = u \) and \(\delta (v) = x \).

Put \(\alpha_{n+1} \) \((n \geq 0)\) be the element in \(\mathbb{Z}/l \) such that \(\alpha_{n+1} = \alpha_{n+1} l \) \((\mod l)\). We know that \(\beta_{n+1} (v') = u' \) and \(\beta_n (v) = u \) if \(a_{n+1} \neq 0 \) and \(a_0 \neq 0 \) (cf. for example [5]). So we have \(\beta_i v' = \alpha_{i-1} u' \) and \(\beta_i v = \alpha_{i} u \). Note that this holds even when \(a_0 = 0 \) and \(a_{i-1} = 0 \).

Now we can calculate \(d_{i-1} \) images of \(u \) and \(v \).

Lemma 4.7. We have

(i) \(d_{i-1} (u') = \xi u \) and

(ii) \(d_{i-1} (v') = -\alpha_{i-1} \partial_1 u + \beta_i \partial_1 v \).

Proof. Commutativity \(d_{i-1} \circ i = i \circ d_{i-1} \) implies (i). For (ii) we put \(d_{i-1} (v') = \xi \partial_1 u + \eta \beta_i \partial_1 v \) since \(\partial_1 \beta_i v = \alpha_{i} \partial_1 u \). Then we have

\[
Q_i x = d_{i-1} (x') = d_{i-1} \circ \delta (v') = -d_{i-1} \circ \delta (v')
\]

\[
= -d (\xi \partial_1 u + \eta \beta_i \partial_1 v) = -\eta \beta_i \partial_1 v = \eta Q_i v
\]

in \(A/ AQ_{i} \). So, \(\eta = 1 \). On the other hand

\[
\alpha_{i-1} Q_i u = d_{i-1} (\alpha_{i-1} u') = d_{i-1} (\beta_i v')
\]

\[
= \xi \beta_i \partial_1 u = -\xi Q_i u
\]

in \(A/ AQ_{i} \). Hence \(\xi = -\alpha_{i-1} \). This completes the proof.

To state our main theorem in this section, we need following definition:

Definition 4.8. Let \(\xi \) and \(\eta \) be any elements in \(\mathbb{Z}/l \). By \(M(\xi, \eta) \) we denote the \(A \)-module generated by \(u \) and \(v \) (\(\deg (u) = 0 \) and \(\deg (v) = -1 \)) with the relations as follows:

\[
\beta_i u = 0, \quad Q_i u = 0,
\]

\[
\beta_i v = \xi u \quad \text{and} \quad \beta_i \partial_1 v = \eta \partial_1 u.
\]

By Lemma 4.6 and 4.7 we have
Theorem 4.9. Let $\phi: g_l \to g_l$ be a map of spectra whose action on the homotopy group $\pi_{n(l-1)}(g_l)$ is multiplication by $a_{n(l-1)}l A \, (n \geq 0)$. Let $\alpha_{n(l-1)} \in \mathbb{Z}/l$ be such that $a_{n(l-1)} = \alpha_{n(l-1)}l \pmod{l}$. Then the cohomology of the homotopy fibre $f\phi$ is $M(\alpha_n, \alpha_{l-1})$.

Remark. As A-module $M(\xi, \eta)$ is as follows:

(i) $M(0, 0) \cong A/(A\beta_0 + A\beta_1) \oplus \sum_{-1}^{-1} A/(A\beta_0 + A\beta_1)$,

(ii) if $\eta \neq 0$ then $M(0, \eta) \cong (A/(A\beta_0 + A\beta_1) \oplus \sum_{-1}^{-1} A/A\beta_0) / A((\mathbb{P}^1, \beta_1 \mathbb{P}^1))$,

(iii) if $\xi \neq 0$ then $M(\xi, 0) \cong \sum_{-1}^{-1} A/(A\beta_1 \mathbb{P}^1 + A\beta_1 \mathbb{P}^1 \beta_1)$ and

(iv) if $\xi \neq 0$ and $\eta \neq 0$ then $M(\xi, \eta) \cong \sum_{-1}^{-1} A/A(\frac{\eta}{\xi} \beta_1 \mathbb{P}^1 - \beta_1 \mathbb{P}^1)$.

§ 5. Statement and Proof of Main Theorem

In this section we go back to the study of $\phi: bu_A \to bu_A$.

First we state our main theorem.

Theorem 5.1. Let $\phi: bu_A \to bu_A$ be a map of spectra. Let $f\phi$ be the homotopy fibre of ϕ. Then

$$H^*(f\phi) \cong \bigoplus_{0 \leq j < l-1} \sum_{a_j} M(\alpha_j, \alpha_{j+1-1}),$$

where a_n is the element of A such that $\phi*: \pi_{2n}(bu_A) \to \pi_{2n}(bu_A)$ is a multiplication by a_n and α_n is an element of \mathbb{Z}/l such that $a_n = \alpha_n l \pmod{l}$.

Proof. Put $\phi_j = p_j \circ \phi \circ i_j \, (0 \leq j \leq l - 2)$ as in Section 2. Let $f\phi_j$ be the homotopy fibre of $\phi_j: g_j \to g_j$. By Corollary 2.2 we have

$$H^*(f\phi) \cong \bigoplus_{0 \leq j < l-1} H^*(f\phi_j).$$

If $a_j \not\in lA$, then by Theorem 4.9 and Remark 2.3, we have

$$H^*(f\phi_j) \cong \sum_{a_j} M(\alpha_j, \alpha_{j+1-1}).$$
This proves the theorem.

Next, we will consider a special case of ϕ. Let F_q be a finite field of order q such that l does not divide q. Put $\phi^* = 1 - \phi^q$ where ϕ^q is the Adams operation. Then the action of ϕ^* on the homotopy group $\pi_n(bu_4)$ is the multiplication by $1 - q^n$. Let r be the least integer ≥ 1 such that $1 = q^r \pmod{l}$. Let ρ be the element of \mathbb{Z}/l such that $1 - q^r = \rho l \pmod{l^r}$.

Then as a corollary of Theorem 5.1 we have

Corollary 5.2. If we write $f\phi^q$ for the homotopy fibre of $1 - \phi^q$: $bu_4 \rightarrow bu_4$, then

$$H^*(f\phi^q) \simeq \bigoplus_{0 \leq kr < l-1} \sum_{s \leq kr < s + 1 - 1} M(k \rho_s, (k + \frac{l-1}{r})\rho).$$

Proof. Since $q^r = 1 - \rho l \pmod{l^r}$, we have $q^{kr} = 1 - k\rho l \pmod{l^r}$. Thus $a_{kr} = 1 - q^{kr} = k\rho l$ and $\alpha_{kr} = k\rho$. If r does not divide n, then $a_n \not\in I\Lambda$. So, Theorem 5.1 implies Corollary 5.2.

By Bott periodicity and the fact that $f\phi^q(2n-1, \infty)$ is the homotopy fibre of $1 - \phi^q$: $bu_4(2n, \infty) \rightarrow bu_4(2n, \infty)$, we have

Corollary 5.3. If $n \geq 0$ then

$$H^*(f\phi^q(2n-1, \infty)) \simeq \bigoplus_{s \leq kr < s + 1 - 1} \sum_{r' \geq 1} M(k \rho', (k + \frac{l-1}{r'})\rho').$$

Next, let bo be the spectrum which represents (-1)-connected real K-theory. We write $f\phi^q o$ for the homotopy fibre of $1 - \phi^q$: $bo_4 \rightarrow bo_4$, then we have

Corollary 5.4. If $l \neq 2$ and $n \geq 0$, then

$$H^*(f\phi^q o(2n-1, \infty)) \simeq \bigoplus_{\rho' \geq 1} \sum_{s \leq l} M(k \rho', (k + \frac{l-1}{r'})\rho'),$$

where r' is the least even integer ≥ 1 such that $q^{r'} = 1 \pmod{l}$ and ρ' is the element of \mathbb{Z}/l such that $1 - q^{r'} = \rho' l \pmod{l^r}$.
Proof. Recall that $bo_d \cong g_0 \vee g_2 \vee \cdots \vee g_{d-3}$ and $(1 - \psi^p)_\# : \pi_{4n}(bo_d) \to \pi_{4n}(bo_{d+1})$ is the multiplication by $1 - q^2$. Thus proof of Corollary 5.4 is analogous to the proof of Corollary 5.3.

References