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Actions on Invariant Spheres around Isolated
Fixed Points of Actions of Cyclic Groups

By

Masayoshi KAMATA*

§ 1. Introduction

Fix a prime number p and let Zp be a cyclic group of order p.

We consider a pair (M, 0) consisting of a compact simply connected al-

most complex manifold M without boundary and a smooth Zp-action 0:

ZPX M—>M preserving the almost complex structure of M. We suppose

that M is given an invariant Riemannian metric. If a(eM) is an isolated

fixed point, then the induced action of Zp on the tangent space at a gives

a complex Zp-module Va which has no trivial irreducible factor. Let f :

EZp—*BZp be a universal principal Zp-bundle and let f (Vtt) : EZpXzp Va

—>BZP be the V0-bundle associated with ?. If a and b are isolated fixed

points, we compare the cobordism Euler classes 0(f (Va)) and e(£ (Vb))

which belong to the complex cobordism group MU* (BZP) of the classify-

ing space BZP of Zp. Let .PV be the universal formal group law over

MU*9 and write

For a positive integer n, \ri\F (x) is inductively defined by

and

It is known that the cobordism ring MU* (BZP) is formal power series

algebra Mf7*[[:r]] over Mf7* modulo an ideal generated by [p]p(^)
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[15]. Let us write

where a& tE MU~2i, and

Let S denote the multiplicative set in MU* (BZP) consisting of cobordism

Euler classes e(g (V)), V the non trivial complex Zp-module, and let 1:

MU*(BZP)-^S-1MU^(BZP) be the canonical map [9]. In this paper

we show the following

Theorem A. Assume that Hl (BZP\ {^(M)}) ^0 for !<>i<2n

-1 (cf. [4, p. 355]), and J(a) =*(£( VB) )/*(£( V6)). Then for any

Landweber-Novikov operation S%, (0=£(Q) [14], [17], S% (a) belongs

to an ideal generated by xn and (pyF(x) in MU* (BZP) , where x —

e($(L)) and L is the canonical one dimensional complex Zp-module

with an action of Zp given by multiplication by p = exp (2ni/p) on C1.

The action of Zp on M induces a natural action on a unit sphere

S(Va) in a tangent space Va at an isolated fixed point a which is equiv-

alent to the action of Zp on a sphere around the fixed point. The

action (/>a: ZPX S(Va) — >5(Va) determines a weakly complex bordism class

\_S(Va),$a] °f the bordism group MU*(Zp) of fixed point free Zp actions

preserving a weakly complex structure, which is generated as an MU*-

module by the set of Zp-manifolds {[<S'2n+1, 0]}, where the action 0 of

Zp on a sphere S2n+1dCn+1 is defined by (j>(g,z)=pz, g a generator of

Zp [6], [11]. Kasparov in [13] showed that the weakly complex bord-

ism class [5(Va),0a] is computable. By making use the Kasparov theo-

rem and Theorem A, we obtain the following

Theorem B. Assume that H{ (BZP; {^(M)}) ^0 for l<i<2n-l.

If ya = LZl©'-.0Z> and Vb = Lm>®'~@Lm\ then

= Tii \_S2k~\ ?] + JB, [52fc-5, ? ] + .- + 2fc-i [S
1, ?]

^vhere fii, fiz, '--, fin-i belong to an ideal generated by p,
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ap}, .-. in MU*.

In Section 2 we investigate ^-actions on a product space SZn+1X

S2m+i of spheres and equivariant maps between the S^spaces. In Section

3 the Umkehr homomorphism of some map between the orbit spaces

(52n+1x52w4"1)/S1 is computed to give a slightly different proof of the

Kasparov theorem [13] in Section 4. In Section 5 we discuss about

relations among cobordism characteristic classes [7] of £(V0) and ?(Vb)

and give a proof of Theorem A. Section 6 is devoted to prove Theorem

B. In Section 7 we study the isolated fixed point set of Zractions.

Bredon in Section 10 of Chapter VI of [4] compared representations

at two fixed points of a smooth action, by using equivariant X-theory.

§2. On Orbit Spaces of S*m+1xS*1l+1 with Respect to S1

We define 0(4, /i, • • • , 4) : ^xS2^1 xS2n+1-*S2m+lX S2n+1 by

0(4, /i, • • • , 4) (z, (HO, MI, • • • , ««), (VD, ^i, •", ̂ n))

This is differentiate and the orbit space (S2m+1xS2n+1)/0(4, • • - , 4) is an

orientable smooth manifold. Let S1 act on S*m+1xCl by

The orbit space induces a complex line bundle over the complex pro-

jective space

which is denoted by ^. The total space 5(^lo0-"0^Zn) of the sphere

bundle associated with tflo0-»0vl" is diffeomorphic to (SZm+l X52714"1)/

0(4, • • • , 4)« The structure of the integral cohomology group J

•••0^")) is determined as follows in [18].

Proposition 2.1. (1) If m<ji9 then H2j (S(rf°®~>®yl »)) =

H2j'(CPm) and

(2) JjT
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0

H23(CPm}, J<M

0

The map /: S2m+1xS2n^->S2m+l xS2n+1 defined by

\ °' ' m ' r

induces a map of the orbit spaces

Denote by [M] the fundamental class of a compact orientable manifold

M. Then we have

Proposition 2. 2. /.[(S-^xS*"")/^!, -, 1)]

,, -, 4)].

Proof, f is a fiber preserving map of sphere bundles

and S(ylo@)~'@7]ln), as ^z°0---0^Zn is isomorphic to a bundle of an orbit

space of an ^-action on S2™+1
xCn+1 defined by

Let /I be a fiber preserving map from (w + 1)^ to ^Zo©---©^Zn defined

by

/Xw, (v0, — , UB)) - (u, (v\\ • •- , t;Ln))

which induces a map between the Thorn complexes

where T(4, • • • , 4) =E(lQf • • - , 4)/{E(/0, ••- , l^ -the zero section}, and jE(/0,

••- ,4) is the total space of ^°©---©^n. -S'C^0©-"©^71) and £(/0, ••- ,

4) - {£Ae 2:̂ 7*0 section} are of the same homotopy type, and the following

diagram is homotopy commutative



ACTIONS OF CYCLIC GROUPS 443

-E(l, • • - , 1) — {the zero section} - > E(1Q, • • • , In) — {the zero section}

Let £(4, "-,4) be the Thorn class of ^0©---0^71. Then we have

/i*(£(4, •", 4)) = loli' -lntQj • • • , 1). Since the coboundary homomorphism

5: ^2m+2n+1(5f(^°©...©^))->H2m+2ri+2(T(4, • • • , 4)) is isomorphic, the

fundamental class of (S2m+1 xS2n+1)/0(4, — , 4) is the dual class of

r^aCP771]*) IU(4, •", 4)}, where TT: E(4, -, 4) ~>CPm is the pro-

jection and [CPm]* is the dual of [CPTO]. Then the assertion follows.

Suppose that Mm and Nn are orientable manifolds0 A continuous

map h: Mm-^Nn determines the Umkehr homomorphism

D h* D-1

where D is the Poincare duality.

Proposition 2. 3. Assume that g is an embedding of (52m+1

XS2n+1)AKl, ••-,!) into SN for a large N. Then the Umkehr homo-

morphism of

F=fxg: (S2-+1x52^)/0(l, •», l)-+(SZm

fxg(x) = (f(x) , g (x) ) , satisfies

-where [5^]* z's ^Ag Jwa/ o/ [5^].

Proof. The Umkehr homomorphism satisfies J^. (J^* (a) U ̂ ) = a U

f [8] . We calculate using Proposition 2. 2,

..I)]

]xi)

Q.E.D.
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If m^?i9 then we get a short exact sequence

n*
0-+MU* (CPm) -*MU*(S G?'1© • • • ©5?'") )

and 8: MU2n+1 (S(7]l°@.'.®i}l«))^l^2n+2(T(l0, —,4 ) ) is isomorphic.

In this case we may determine the ring structure of MU* ((S2m^xS2n+1) /

, -, 4)) (cf. [18]).

Proposition 2.4. If m<ji, then MU* ((SZm+1 xSZn+l) /(/>(1Q, • • - , 4))

is MU*[x, y\/(xm+l, y2) -where x is the first cobordism Chern class

Cutfy) and y is an element of MUZn+l(S(rfQ@-->®r]l»)') such that dy

is the Thorn class of rf°®-~@rfn.

Proof. MU* (S(y]l°®--®rfn)) is isomorphic to the direct sum of

MU*(CPm) and Mf/*(T(4, -,4)). We have

(cf. Chapter 13 of [20]), and M7*(5(^°0 — 0Vn)) is a free MU*-

module generated by {(TT*^)^ z = l,2, • • • , m} and {(?r*.r)* U y, z = l, 2,

..-, m}. It follows from Proposition 2. 1 that MC72(2n+1) (5(^0 — 0v£»))

is zero. Q.E.D.

§ 3. On the Umkehr Homomorphism of f

with the MU*-Orientation

For any set a)= (ilt • • - , ir) of positive integers, let £] ^1---^ r be the

symmetric polynomial of variable tj, ^<^j<n to be the smallest symmetric

polynomial containing the monomial £i la"4r> which is expressible uniquely

as a polynomial with integral coefficients in the elementary symmetric

polynomials @i, @2, ••• ,©» of the ^'s and write

For an ^-dimensional complex vector bundle C over X9 we define

and c5.-.o)(C) =1, where ^(C) are the ordinary cohomology Chern classes.
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Suppose that x^MUk(X) is represented by

g:S2N-kX+-*MU(N).

We define

where 0: H* (BU(N)) -»H* (MU(N)) is the Thorn isomorphism, ffk~2N

denotes (k — 2A^)-fold iterated suspension isomorphism and JN is the N-

dimensional universal complex vector bundle. The ring H# (MU) is

isomorphic to Z\_ti9 t29 ""]• Let

f t )= ( l , • • - , 1,2, • • - , 2 , • • • , £ , • • - , £ )

and we define

and

.CD _ .ti .i2 yLijt
f — tl f 2 *•* •

There exists a multiplicative natural transformation

defined by

which is called Boardman map (cf. [1]). &H: MU* (5°) -+H* (MU) is

the Hurewicz homomorphism which is injective [16], Given x GE Aft/ * ( X)

with o:=[g: 52Ar-fcX+->Mt/(AT)], the Thorn homomorphism ^:MUk(X)

is defined by f i ( x ) =ffk-2Ng*® (I) =Sfti,,..,Q, (x) .

Proposition 3. 1. Suppose that a finite CW-complex X has no

torsion in its integral cohomology, then the Boardman map @H is

injective.

Proof. Since the cohomology of X has no torsion, the Thorn homo-

morphism is surjective. Suppose that y^n\ y^n\ • • • , yff are the basis of

/fn(X), then we can take uf* with ju(itf^ — y^\ The correspondence
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-*Yibfuf yields an isomorphism H

(cf. [5]). We see

Let &r(2 by*uf>) = 0, and we can derive inductively that &y(6jn)) =0 and

*Jn) = 0. Q.E.D.

For an n-dimensional complex vector bundle C over X, consider a

formal power series of £'s:

This satisfies the naturality and cf (Ci0C2) =c? (CO ^f (CE) • Suppose that

X and Af are weakly almost complex manifolds. An embedding h: M

— >X with the normal vector bundle V equipped with the complex struc-

ture induces the Umkehr homomorphisms:

and

h?:H*(M) [[ft, ft,, ...]]-»>#* (X) [[ft, ft, ...]].

Now we recall the following (cf. [19])

Theorem 3. 2. 0a (h, (1) ) = h? (c? (v) ) .

Proof. A composition of a collapsing map c of the Thorn construction

and a classifying map g, for V

8f,:X-^-> TOO -^MU(k')

represents /ii(l) eMU*(X). By making use of the following commuta-

tive diagram:

D
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we calculate

Q.E.D.

M7*(JBC7(1)) is isomorphic to MU*\\_xMU\], xMU = c\r(rl}. The

first cobordism Chern class c\j (fT) of the &-fold tensor product of Yi is

described as

= kxinr+

Let g: X— »J3£7(1) be a classifying map for a complex line bundle C over

X. We see

(c]j (C) ) = fir* {k + a

The map /: (52ra+1x52"+1)/^(l, .... 1) -> (52m+1x52"+I)/0(4, -, 4) de-

fined by

/([(«.,-,«.), (f.,-,f.)]

and an embedding h: (S2m+l X 52B+1)/0(1, • • - , 1) -*52JV for a large JV de-

termine a bordism class \_(S2m+1xSzn+1) /<£(!, • • - , 1), /X A] of MU*((S2m+1

XS2"+1)AK4, -, 4) x52Ar). The projection K: (S^'xS2^1)/^, -, 4)

is defined by Tt\u,v~\ = [u\. Then we have

Theorem 3. 3. Suppose that m<n. Then it follows that

, •-,!), /x A]

^W)-<OX^W)) x

-where P— {a point\ and DMU is the Atiyah-Poincare isomorphism [3].
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Proof. If m<Ln, then H * ((S2m+1xS2n+1)/0(4, — , 4)) has no tor-

sion from Propositions 2. 1 and 3. 1 implies that

$H:MU*((S2m+1xS2n+l)/<t>(lQ9 -.., 4)

->H*((S*™+lxS2n+1)/<t>(l0, -, 4) xS2*) [A, ft, •••]

is injective. The tangent bundle of (S2m+1xS27l+1)/0(4, — , 4) is stably

isomorphic to 7T!(r (CPm} ®ylo®'-@yln) where y is the Hopf bundle over

CPm and r(M) denotes the tangent bundle of M [18]. The normal

vector bundle v for /xA satisfies that v©r ((S2m+1 X52n+1)/0(l, • • • , 1))

is isomorphic to fr((S2m+1xS2n+1)/(f>(lQ, - • • , /»)) ©2Afe, where £ is a trivial

real line bundle. It follows directly from the definition that

and

cf(„)= n* {cfO? l ')"-cfO?g>)l ?

since the following diagram is commutative

By using Theorem 3. 2 and Proposition 2. 3 we have

X[S2*]*

On the other hand, we see that

and

Ar C^1^ (7*) ) = Ar «*>!• (^ (7?) ) • cj, (V) ) = A* «*>^ (^ (?) ) ) & (

Therefore we have
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Noting that /?„ maps D^p ( [P c S2"] ) to [52Ar]*, we obtain

X ZVff ( [P c S2N] )

This completes the proof.

§ 4. Another Proof of the Kasparov Theorem

Let /0, /!, • • • , 4 be integers prime to p. An action of Zp on S2m+l

XS2n+l is defined by

0J»(A>, •", W (^ ((«0, '", O, (^0, •", ^n)))

where p = exp(2ni/p) and g is a generator of Zp. The map/:

5f2n+1->52m+1x52ri+1 with

r= W o + ' - ' + ,

induces a map of orbit spaces:

/,: (5-+1x5-+1)/?lp(l, ...,l)-»(5«-+1 XS"*1)/^, (4, -,4).

Let ^(S^'xS^1) /&,(/., •.., 4)-*(52ro+1x52"+1)/0(4, -,/,) be the

natural projection. We take up a differentiate embedding

h: (S2m+1xS2n+1)/0(I, .-., l)-*S2Ar

for a sufficiently large N.

Proposition 4. I. In the following commutative diagram

(1) fpxJi7t and fxh are embeddings

(2) T T X z W z'5 transverse regular to (fxh) ((S2m"-lxS2n+1) /<f>(I9
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(3)

l, -.,1)).

Proof. A tangent vector at a point of (S2m+1 x52n+1)/0p(l, •••,!) is

described as S+z5 with Se {£/i£ tangent space along the base space of

the smooth fiber bundle n: (52m+1x52n+1)/^(l, • • • , 1) -» (S2m+l X S2n+l) /

0(1, •••,!)} and we {£/ie tangent space along the fiber}. Let d ( f p

X /ITT) (5+ w} = 0, then d(/X h} (v) — 0. Since /X/z. is an embedding,

3 = 0. On the other hand, <af/p is injective on each tangent space along the

fiber, and vu—Q. This implies that fpxh7t is embedding, because fpXh.7Z

is injective. The differentiate fibration nxid is transverse regular to

any submanifold of (S2m+1xS2n+1)/0(4, — , 4) X S2N. Q.E.D.

Considering the geometric interpretation of the cobordism group [19],

we can see that Proposition 4. 1 implies

Proposition 4.2. The induced homomorphism (nxid)*: MU*

to

Let 0P(4, -- ,4) : ZpxS2n+1-*S2n+1 be an action of Zp on 52ri+1 de-

fined by

0p(4, — , 4) (g, (v0, -,T;»)) - (|0iot;o, — ,(0^).

We have a complex line bundle |(L) : 52n+1 XZpC
l-^S2n+l/^p(l,, • - . , 4)

by taking the orbit space of an action of Zp on (5
2n+1 X C1

Q •

where g is a generator of Zp. Denote by

a line bundle over a standard lens space which is the orbit space of an

action of Zp on S2n+1xC' defined by g> ( («b, • • - , ?O , z) = ( (^0, • • • , pun) ,

pz). The bordism class of / p X/z: (52ra+1 x52n+1)/0p(l, • • - , 1) -> (52m+1X
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4, • • • , 4) XS2N with the embedding h for a large N is describ-

ed as follows.

Proposition 4. 3. Suppose that m<Ln. Then

m M[/*((S2m^xS2^V0p(4, -, 4)), where P = {a point} and 7T: (S2

X52n"1)/0p(4, • • • , 4)->S2TO+V0p(l, •••,!) « £/ie natural projection.

Proof. Theorem 3. 3 and Proposition 4. 2 imply that

X

But hn is homotopic to h, and the bordism class is homotopy invariant,

and hence the proposition follows.

The map /: S2n+l-^SZn+l with f(v0, -, vn) - - (v{«, .-, ifr), r the
r

norm of (1;$% •••,^n), induces a map of orbit spaces

Theorem 4. 4. 7n MC7* (S^ViM/,, -, 4) ) , [52"+I/</.P(l, •-, 1) ,

ci, (I (L) ) ) • • • < *„>, (^ (| (L) ) ) } .

Proof. Define 7T2: (.S2^1 x52"+1)/^(4, -, ln)^S2n+1/^p(l0, -, ln) by

^2[w, f] = [v\ and take a differentiable embedding h: Sin+l/^p(lt), •••, £>)—>•

52ff for a sufficiently large N. In the commutative diagram

!, -, 1) i S^VfeCl, -, 1)

X A7T2 I /p X A

7T2 X id
,i.) x52y - » S2n+1/<l>p(la, ..-, Z.) x5w

/p X /i7T2 is an embedding and 7T2 X zVZ is transverse regular to (fp X h)

(S2n+1/({)p(l, • • - , ! ) ) . Thus it follows that
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= DA [ (S2n+l X S2"+') /fa (I, "., 1) , /,

We now note that the induced bundle nlj (L) by the projection n: (S2n+1

X52n+1)/0p(4, • • • , W-^^^V^pCl, "•,!) is isomorphic to the induced

bundle 7Tif(L) by the natural projection 7T2: (52n+1 xS2n+1) /(/>P(10, • • • , 4)

-*SZn+1/(}jp(l0, • • - , 4). Proposition 4.3 implies that

Since (TTgXzW)* is injective, it follows that

x

Applying the homomorphism MU+ (52ra+1/0p(4, • • - , /„) X5^) -^Aff/* (52n+1/

0p(4, • • • , 4)) induced by the projection, we obtain the assertion.

Theorem 4.5. Let gp: 52n-rl/0p(4, • • • , 4) ->527l+1/0p(l, • • • , 1)

of orbit spaces defined by

-where //^ = 1 modulo p and r is the norm of (vl
Q\ •••,^i").

M^7*(52n+1/0p(l, -, 1)) a^J x = ̂  (? (L) ) .

Proof. Consider the natural injection j\ 52n+1/0p(l, • • . , 1) -^^27l+3/

0P(1, • • - , 1). We can see that jgpfp—j and gp (f (L)) =£(L). We note

that the Atiyah-Poincare isomorphism DMU: MU* (X) -+MU* (X) , X a

weakly almost complex manifold, is given by

DMU (z) = z 0 [X, identity} .

We put J7= [52n+1/0p(l, »., 1), identity} ^MU2n+1(S
2n+l/^P(I, -, 1))

and [/= [52n+1/0p(4, • • • , 4), identity-] eM^72^1(5
2n+1/(/;p(4, -, 4)). Let
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us compute with Theorem 4. 4

(*) • ••</»>, (*) U DiJr (&* (£7) ) } n C/} .

Hence <4>, (*) • • • </„>*• (x) U Ztfr (&,* (f/) ) - 1 belongs to D& (j? (0) ) .

We recall the following commutative diagram:

where $[/ is the Thorn isomorphism and c is the canonical collapsing

map. Since ^V^O) is generated by </>>^(x) (cf. [12]),

</n>F(^) U D^(gP*(C7)) — 1 belongs to the ideal generated by

in M^*(S2n+1/0p(l, • • • , ! ) ) . On the other hand, since { £ ( L ) l J } l j = $ (L) ,

we get

and it follows from Lemma 5 of [9] that {<^-

belongs to an ideal generated by <^)F(^). Then we have

and

^)) modulo

Q.E.D.

Let us consider the composite
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where i* is the Mf/^-homomorphism induced from the natural injection

and $ is the natural isomorphism given in [5] . Now we shall prove

the Kasparov theorem.

Theorem 4.6. Assume that ljl'j==l. modulo p. Then

where x = 3,(%(L)) eM72(52n+ '/0, (1, -,!)).

Proo/. From Theorem 4. 5 there exists A(

1)) such that

and

where C7= [^""""'/^(l, • • • , 1), identity']. Let S be the first cobordism

Chern class of the canonical line bundle § (L) over 52n+3/(/'p(l, • • • , 1) and

let

U = [5«"+V0p(l, • • • , 1) , identity]

which belongs to MC/!B+8(5
8ll+Vc/»p(l, • • • , 1)) . Then we have

3?nC7 = z*t/ (cf. [11]).

Noting that [P\F(X) =0, we calculate
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Q.E.D.

§ 5. Characteristic Classes of

The product space IxX of a Zp-space X and an interval 1= [0, 1]

has a Zp-action with g- (£, .r) = (t,g*x), and we have Zp-spaces

S(X) : the usual suspension of X

C+ (X) =XX [1/2, 1]/XX {1}

C-(X) =Xx [0, 1/2] /Xx {0}.

Denote by £0 and ^ vertices obtained by the identification of XxO and

Xxl in these spaces. A map et: EZpXZp {P}-^EZpXZp S(X) is defined

to be et O, p} = (x, pi) , and a map n: EZpXZpX^EZpXZp{P} ^ BZP is

defined to be it (y, x) = (y, />) . We can derive the following propositions

after the fashion of Proposition 10.1 and Theorem 10.2 of [4],

Proposition 5. I. Suppose that X is a compact Zp-space. Then

there exists an exact sequence:

MU* (EZP x ZfS(X)) £ l ~ S ° .M£7* (BZP) ^—>MU* (EZP x ,rX) .

*-

Proof. MU* ((EZP} + /\Zp — } is an equivariant cohomology theory

described in [10]. Consider the Mayer-Vietoris exact sequence for a

triple ({S(X)} + ; {C+(X)}+, {

j*
MU* (EZP x ,,S(.X)) - >MU* (EZP x ZpC

k*
- »M£7* (EZP x ZfX} - >

where j* (x) = (j? (x) , j'0* (x) ) and k* (xlt x0) = if (x^ - if (JTO) , and j, and

is are natural inclusions. The isomorphisms MU*(_EZpXZpC
+ (X)~) = MU*

(BZP) and MU*(EZPXZC-(X))~]\4U*(BZP) yield the proposition.



456 MASAYOSHI KAMATA

Let W\ Vectc( — )— >M£7* ( — ) be a natural transformation assigning

a complex vector bundle over X to an element of MU*(X) which satisfies

Consider complex vector bundles

; EZpXZpVa-*BZp

where Va is the complex Zp-module obtained by the tangent space at an

isolated fixed point a of an almost complex Zp-manifold M. Then we

have

Proposition 5.2. Suppose that a and b are isolated fixed points

of a simply connected almost complex Zp-manifold. If Hl(BZp;

{7T«(Af)})^0/br l^i^27i-l, then¥(f(Va))-V(f(V>)) belongs to an

ideal generated by xn in MU* (BZP) = Aftf *[[*]]/([/>] X*)) , where

x = clu(t;(L}), L the canonical one dimensional complex Zp-module.

Proof. The (2w — l) -skeleton of EZP can be taken to be S271'1 with

the action given by the complex ^-dimensional Zp-module ?iL. We take

an invariant subspace EZPX {0, 1} is a Zp-space EZPX I with g- (e, t) =

( g - e , f ) . Consider the constant maps

/i0 : EZP-+ {b} and h, : EZP-+ {a}

which induce maps

h,:S2n-l^.EZp-*{b} and h,'. S2n~l (2 EZp-> {a} .

We can construct an equivariant homotopy h: S2n~l X I—*M between h0 and

AI, by using the condition for the cohomology Hl(BZp;{fti(M)}) , and

an equivariant map h: S(S2n~l)-*M (cf. [4, p. 355]). Since

f (K) = el (id X ZK) !f and f (V6) = £• (zW X ̂  A) T ,

where r denotes a vector bundle EZpXZpE(r(M)) -*EZpXZpM, it follows

from Proposition 5.1 that 7T* (F (f (K)) -F (f (Vb))) -0. By using the

Gysin exact sequence

x ^

we complete the proof.
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We consider the symmetric polynomial /^(©i, • • • , @n) discussed in

Section 3, and put c" (r») = P»(CU (fn) , •", & (Tn) ) , where r^ frn) is the

z-th cobordism Chern class [7]. The Landweber-Novikov operation

is defined as follows: for *=[/], f:SZn-kX+-*MU(n),

SZ(x)=ff*-**f*0u(cZ(rJ) (cf. [14], [17]).

The Boardman map &„: MU* (X)^(MU/\MU)* (X)=MU* (X) \_\_tl9

^2, "•]] is defined by

Ar (*)=X3. £?(*)*• (cf. [2], [19]),

which is natural and multiplicative. Let J(G) be the set of isomorphism

classes of non trivial irreducible complex Zp-modules, and let C\? — {1^$;©

'"@Vk
j\\VJs^J(G) and k's are non negative integers}. We consider the

multiplicative system S consisting of cobordism Euler classes {e(EZpXzp

F)|yeq;} in MU^(BZP). For a Zp-space X, MU*(EZpXZpX) is a

MU*(BZP) -module by a map EZpXZpX-*BZpX (EZpXZpX) sending [>,

*] to ( W » [ ^ ^ ] ) - The localized module S~1MU* (EZpXZpX) of the

MU *(BZP) -module MU*(EZpXZpX) consists of all fractions {x/e\x^

MU* (EZpXZpX) , ee5|. For a complex vector bundle C over X, we put

which is an invertible element of MU* [[£,, ^2, • • • ] ] • We define

, X) [[«„ f,, ••• ]] by

cir

which is multiplicative and natural. Moreover, we define

S": S-lMU*(EZpxZpX)->S~lMU*(EZpxZpX)

by jJff(x/e)=^S*(x/e)f.

Proposition 5. 3e The operation S* on S~1MU* (EZpXZp-) have

the folio-wing properties:

(1) S% is natural.

(2) S* ( (x./e,) • (xz/ez)) = I]«=c^) S$ (xjel) S% (x2/ez), wA^r^ /or
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0' =0/i', -,.;.') and ti>"=(j?,>~,f;),(0'ti>") denotes (j'l9 • • • ,

(3) S*(x/l) = S^(x)/l, where S% is the ordinary Landweber-

Novikov operation, i.e. lS% = SZt, where X: MU*(EZpXZp~)

— >S~1MU* (EZpXzp — ) is the canonical map.

( 4 ) F o r 0 = 0 , , 2 , , • • - , ) ,

^+*
I -~ M

Proof. By making use of the multiplicativity and the naturality of

ffu, we derive (1) and (2) . For a zero dimensional complex Zp-module

0, we have *(f (0)) =1 and cf (f (0)) =1, and

which implies (3) . To prove (4) , we calculate

This completes the proof.

We see easily the following

Proposition 5. 4. 5? (* (f (V))) - e (S (V)) c* (S (V)).

Taking two complex Zp-modules Va and Vb obtained from tangent

spaces at isolated fixed points a and b of an almost complex Zp-manifold,

a fraction e (f (Vtt)) /e (f (V6)) is an integral element from the following
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proposition.

Proposition 5. 5. Suppose that L is a canonical complex one

dimensional Zp-module. Take ki and lj such that (kt, p) =1 and (//,

/>)=!. Then for n^m, e(£ (Lk>©---®Lk«))/e($ (Ll>@...@L1™)) belongs

to the image of l\ MU* (BZP) -^S~1MU* (BZP) -which sends x to x/l.

Proof. For * = <&(£ (L) ),

and

Assume that (/,/>) =1, then there is an integer I' such that /'/=! modulo

p and

Therefore we have

</^>F(x) [*.„] (x) •••[*„],(*) /I .

where Z^/^^l module />. Q.E.D.

Proof of Theorem A. For brevity, we put ea = e(£ (Vtt) ) and ^b

= e(? (Vb) ) • We show by induction with respect to the length of the

partition a) that

e t f / ^ a \ _ e a Aa (x) - xn

<* ( / ' -j\ej eb 1

where h^^x) G=MU*(BZP). By using (2) of Proposition 5.3 we obtain

eb\

Hence it follows from (3) of Propositions 5. 3 and 5. 4 that
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Proposition 5. 2 implies that there is an element h{i)(x) ^MU*(BZP) such

that 4) (f ( Va) ) - 4) (£ ( V6) ) = A (,> (*) -r71, and

Suppose the result is proved for a)' whose length is less than the length

of a). By using (2) of Proposition 5. 3 with the inductive hypothesis we

calculate

" I T / ~ *-*"> I 7 ~\1/ \eb 1

_ oufea\ eb, vufeb\ ^a, yi ea^ h0)'(x)xnS^(eb)
L> b JL ^ JL ̂  e b *" \i" "^) e b j_

where h^{x) ^MU*(BZP). Moreover it follows from Propositions 5.4

and 5.2 that there exists an element h<»(x) ^MU*(BZP) such that

OZ7 / &a\ ^a/i ('Y^\ 'rn /I ^"^

and there is an element h*(x) ^MU*(BZp) such that

It is pointed out by [9] that the canonical map ^: MU* (BZP) ->5

(BZP) with ^(.r) =j:/l has the kernel which is an ideal generated by

. We then complete the proof.

§ 6. On the Bordism Classes of Actions on Invariant Spheres

around the Isolated Fixed Points

The Thorn homomorphism ju: MU* ( — )—>/ /*(—-) is the multiplica-

tive natural transformation with the following properties.

Proposition 6. 1. Let C be a complex vector bundle over X.

Then
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(1) ^(C)=rf(C) ^

(2) fjO>u(x)=(D(UL(x))9 -where &„: MU*(X)-+MU*(T(Q) and

0: /f*(X)->H*(T(C)) are the Thorn homomorphisms.

Recall the following property of the Umkehr homomorphism [8].

Proposition 6. 2. g, (g* (x) U y) = •* U gs (y) •

We observe 5f: MU* (X) ->£T* (X) for a weakly complex manifold

Proposition 6. 30 Ta&£ an element x = [M— »X]e Aft/* (X) , where

X is a -weakly complex manifold and g is a differ entiable map. Then,

-where v is the normal bundle of M in a Euclidean space -with the

complex structure and r(X) is the Whitney sum of r(X) and some

trivial bundle -which is a complex bundle.

Proof. Let g: M-*XxRl be an embedding with the normal bundle

V equipped with a complex structure and g~g. D^(x) is represented

by the composition

which c is the collapsing map and g is the map induced by the classify-

ing map for V. The Whitney sum V®r(M) is stably equivalent to

g!r(X) and

Hence we have that cf (£) =g*cf (r(X)) • cf (v) . We calculate with Prop-

ositions 6. 1 and 6. 2

S?Z>il, (x) = vStDiA, (x) = ff~lc* {® (c* (v) ) }
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Q.E.D.

MUk is isomorphic to MU_fc and a bordism class [M] of a weakly

almost complex manifold can be regarded to be in MU*. Directly Pro-

position 6. 3 implies

Corollary 6.4. fiS" [M] = <cf (v) , [M]>, w/iere v zs *&e normal

vector bundle of M in a Euclidean space -which is equipped -with the

complex structure, -where ^1>...,^) is the Chern class for ]T] tl^-tl1.

We consider the ideal 3? in MU* which is generated by p, a^p\

&2P\ • • • ,< 2 fc p ) , "* which are coefficients of

We recall the following property of Sp -

Proposition 6.5 (cf. [9]). [M] belongs to Jp if and only if

£? [M] = <c? (r (M) ) , [M]>=0 modulo p, for any a), -where p is prime.

Proof. Let y = Cu(7]) be the cobordism first Chern class of the Hopf

bundle fi over CP°°. It is known (cf. [14], [17]) that

0 otherwise.

We see 5f (|>]F(y)) =0 modulo A and

5? (fty + apy + fl2(pV + -) =0 modulo A

Then we can deduce that 5?(ai3>))=0 modulo ^>. Therefore we have

that the Chern numbers of [AT] are zero modulo p if \N~\ belongs to

Jp. The Hopf bundle TJ over CPn satisfies that

DKU (clu (y«) ) - q \CPn~l c CPn-] + <$» [CPn~2 c CPn] + - - - + a ® ! [P c

, in MU*(CPn). Let JDOT (d (7*) ) - F?^1 C CPa] , then

We note that V^ is a ?7-submanifold dual to ^(^«) (cf. [7, p. 81]),
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and the fundamental classes of V^1 and CPn satisfy that i+ [V^1] = cl
H (yq)

n[CPn], i: V^dCP71. Noting that the normal bundle v of V^1 in

CPn is isomorphic to il7Jq
9 we have that c* -i> (r (V?^1) ) =z*{(w + l) -tf71"1}

y71"1, where y=Cn(^). Therefore it follows that the Chern number cfn-v

)-qn. Using (*) and <%-„ [CPn~^ = n, we have 4_1}

For prime g, we take

k-l']=a^l + ql)[CPu'], b = qk-k and « = </*-!

whose Chern number C(J*_i)[Wgfc_i] equals to q. Take a 2z-dimensional

weakly almost complex manifold Wt, i=^qk — I for any prime q, such that

<%>[.Wi]=I. According to [16], MC7* = Z[[W1], [w2], -]• Assume

that cJf[M]=0 modulo ^> for any a) and

Noting that

we inductively deduce that if 4 = 0 for s—pk~Iy then aiiig...jn==0 modulo

p, and [M] e JP. Q.E.D.

We now go back to consider the cobordism Euler class of complex

vector bundle f (V a ) : EZpXZpVa-*BZp, Va the complex Zp-module given

by the tangent space at the isolated fixed points of a Zp-manifold.

Proposition 6* 6. Suppose that Va and Vb are complex Zp-mod-

ules given by tangent spaces at isolated fixed points a and b of a

simply connected almost complex Zp-manifold M, and X(a) =e(g(Va)) /

e ( f ( V b ) ) , where L MU* (BZP) -^S~l]\4U* (BZP) is the canonical homo-

morphism. If Hl (jBZp;{^(M)}) ^0 for l^z^2w-l, then

where /ti, Az, ••-,^-1 belong to Jp.

Proof. Suppose that |o)|=2z, l<,i<,n-l. Then S^k e J\4U2
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Note that JU.: MUk(P) — >Hk(P) , P= {a point}, is the zero homomorphism

for £>0, and S£(^0)=0 if co=£ (0) . Suppose that ^, ./ = !, 2, • • • , z-1,

belong to c?p. Then

where .r# = CH (? (L) ) . Since 5j"(a) belongs to an ideal generated by

xn and <pyF(cu($(L))) from Theorem A, c* [It] J& = 0 in JFf * (BZP) .

Proposition 6.5 implies that /^e<jTp. Q.E.D.

Proof of Theorem B. Let f (V) be a complex vector bundle S2*"1

XzpV-^52fc~VZp, where F is a complex Zp-module and S2^1 has the

Zp-action 0P(1, ••- , ! ) . Let z: 52*"V0P(1, • • - , 1)-*SZP be the natural in-

jection. Put x = ̂ (f(L)) and S = <3r(?(L)). Then, rf

We see that in S~1MU* (J5ZP) ,

On the other hand it follows from Proposition 6. 6 that

2, ( [mj F (x) ) • • -</*>JP (x) <jn'^F (

xn modulo JT^

where mim^l. modulo p. Therefore we get

= A(^)^n modulo Jpjili^l modulo p, where h(x) <=MU*(BZp).

Applying z* to the above, we have

- mi- • • mk(miyF([m1'] F (x) ) • • -<mi>F ([m*] F (x) )

= A(^)^n modulo Jp (cf. [12]).

Since JJ|eJDw^n=[S2(*-B)-1,0] (cf. [11]), Theorems 4. 5 and 4.6 imply

the theorem.
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§ 7. The Isolated Fixed Points of Z3-Actions

In this section we will consider an complex structure preserving

smooth Z3-action (M2fc, 0) on a simply connected closed almost complex

manifold M2k. Let a and b be isolated fixed points. We describe the

induced actions of Z3 on the tangent spaces at a and b as complex Z3-

modules

and

Recall that

and

In this situation we shall first indicate a lemma which is derived as proof

of Theorem B.

Lemma 7.1. Suppose that Hl (BZ^in^M™}}) =0 for I<^i<

— 1 . Then for 1 <^j<^n — 1

Proof. In S-1 Aft/ * (.BZa), Aft/ * (52,) s Aft/ * [ [>] ] / [3] F (x), we

have

from Proposition 6. 6 and

Noting the fact that the kernel of the canonical map /?: J\4U*(BZz)-
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S~1MU*(BZS) is the ideal generated by <3>F(x), we obtain

and

•, A, • • • , /2n-ie J3 . Q.E.D.

Then we obtain the following

Lemma 7.2. Suppose that Hi(BZz\{iii(M
Zk}}) ^0 for l< '̂<;2;z

-1. Then, for l^w<^;z —1 the binomial coefficients { ) are divis-\mj
>y 3.

Proof. We take a partition

o)= (V^v*, -, V-

Jfc J°2

of k, where

and

We define now

and

Then we have the following

Y1
 /7(2)... /7(2)_ Y

/ i tii. di. — /
-+*( = / H|

We take up the case k — I. Since from Lemma 7. 1 2t~lt-a^ =
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a(fi'"a<?t belongs to <jT3, and cf^ (#i2)) ——2, t is divisible by 3. Assume

that m<^n and I .), j=l, • • • , w — 1, are divisible by 3. From Lemma

i=7iX<z|i>2) belongs to J3j and for \\o)\\^m — 1

o m o d u l o S .

By induction we complete the proof.

We shall give some information on isolated fixed points of Z3-actions.

Theorem 7, 3. Let a and b be isolated fixed points of a complex

structure preserving smooth action of Z3 on the simply connected

closed almost complex manifold M2k. Suppose that

and

and

Hl(BZ^ {7r,(M2fc)})^0 for l<,i<2 - 3U + 1

Then Va is equivalent to Vb.

Proof. Let Va = sL2® (k-s) L and Vb= (s+ f)Lz® (k-s- 1) L.

Suppose that t = A'U3U + Xu-i?>u~l + • • • + h( 3 + ^o <j& It follows from Lemma

7.2 that

AJ= 1=0 modulo 3.
\31/

Hence %i=Q and £ = 0. Q.E.D,

Corollary 79 4. Suppose that Z3 ^2c^5 o« a simply connected al-

most complex closed 2k- dimensional manifold M as a complex struc-

ture preserving deffeomorphism -with isolated fixed points only. Let

£ = 43u+--- + ̂ i3 + ,l0, 0<&<;2, and 4^0. If H ' (5Z3 ; {7^ (M) } ) =0

for l5Sz'2£2-3M + 1, £/i£?z ^A^ number of fixed points is divisible by

Proof. Let 77 be the number of the fixed points. Theorem 7. 3
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implies that

where Va = sL2 + (k— s) L. The Kasparov theorem (Theorem 4.6) im-

plies that

n (1+ 3m) [Sz*-\ ?] + A [S2fc-3, ?] + -.+ /4-! [S1, ?] = 0

where l=£0 modulo 3 and A e r(3), T(3) [ [C/*] ] = MC7* (cf. [6], [11]).

From the result of [6] and [11] we can derive the assersion.
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