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Positive Cones and L*-Spaces
for von Neumann Algebras

By

Huzihiro ARAKI* and Tetsuya MASUDA*

Abstract

The Lp-space LP(M, if) for a von Neumann algebra M with reference to its cyclic
and separating vector T? in the standard representation Hilbert space H of M is constructed
either as a subset of H (for 2^/>^oo), or as the completion of H (for l^/><2) with
an explicitly defined Lp-norm. The Banach spaces Lp (M, 77) for different reference vector
y (with the same p) are isomorphic.

Any Lp element has a polar decomposition where the positive part LJ(M, if) is
denned to be either the intersection with the positive cone VJ/(2p) (for 2^^^oo) or the
completion of the positive cone yj/(2p) (for 1^^><2). Any positive element has an
interpretation as the (\/pYh power o>I/p of an o)eMJ with its Lp-norm given by ]|a>||1/9.

Product of an Lp element and an Lq element is explicitly defined as an Lr element
with r~l=p~i + q~l provided that l^r, and the Holder inequality is proved.

The Lp-space constructed here is isomorphic to those defined by Haagerup, Hilsum,
and Kosaki.

As a corollary, any normal state of M is shown to have one and only one vector
representative in the positive cone V? for each ae [0, 1/4].

§ 1. Main Results

The Lp-space Lp (M, r) of a semifinite von Neumann algebra M with

respect to a normal trace r is denned as the linear space of those closed

operators which are affiliated with M and satisfy the condition \\JC\\P

= r(|xip)1/p<oo. ([20]. Also see [18].) Extension to non semifinite

cases have been worked out by Haagerup [11], Hilsum [12], and Kosaki

[15], [16]. We shall present another version of such an extension with

emphasis on defining them on the Hilbert space where Mis acting rather

than going over to the crossed product of M with the modular action.

We shall construct the Lp-space Lp(M,y) with reference to a cyclic

and separating vector TJ in the standard representation Hilbert space H of
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a general (^-finite) von Neumann algebra M utilizing the relative modular

operator A^ of a normal semifinite weight (j) on M, which is defined

as follows:

(1.2)

where S^ is the closure of S$iV9 N^ is the set of x e M satisfying <f>(x*x)

<[oo and S^>(x) is the GNS vector representation of xEzN^ in H$

= N<f,/ker(f) based on the weight 0. If 0 is a vector state (*)$ with

then ?<f>(x) = x$ and we denote J^, also as Jf>7. The support of A^ is

the support s((£>) of 0 and A}tV is defined as the sum of 0 on (1 — s($))H

and the usual power of positive selfadjoint operator A^^ on s($)H.

For 2<^p<^oay we define the jLp-space as follows:

(1. 3) L,(M, 7) = {Ce
£€

(1.4) ||C||»= sup |M^

For 1^^<2, we define the Lp-space Lp(M,y) as the completion of H

with the following Lp-norm:

(1. 5) ||C||«= inf {Mgf-'Vwq : ||?|| =1,

where 5'lf denotes the -M-support of a vector (the smallest projection in

M leaving the vector invariant), ||//|i
1f)~(1/:p)C|] is defined to be + oo if

C is not in the domain of J|j
1f)~(1/?) and we prove in Lemma 7. 1 (1)

that any C^fJ is in D(A^~(l/^ if l^p<£.

For any x^M and CeLp(M, ?) n H, xZ^Lp(M,7j) and ||^||«>

^||x|| ||C||p7). Therefore the multiplication of x^M can be defined for

any £^Lp(M,y) by continuous extension.

Theorem 1.

(1) The formulae (1. 4) and (1. 5) define a norm for each p

(l^^^00) and Lp(M,7j) is a Banach M-module.

(2) Assume that p~ljr (p'} ~1 = 1, then the sesqui linear form. (C,

CO /^r CeLp(Af, T?) n££ CeLp,(M, 97) nW ca^ &e uniquely extended

to a continuous sesquilinear form on LP(M, if) X Lp, (TVf, ?;) (denoted by
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> through -which LP(M,9?) is the dual of Lp, (M, 7]} if !<£<Ioo.

(3) The norm satisfies

(1.6) ||C||«= sup {i<C,C'> ( ,>|:C'€ELp ,(M,^ ||C'||<?^1},

where p~* + (p/)~1 = l and !<[£<; oo.

(4) For 2<L£<oo a;?^ Ci, C2eLp(M, 9?) , *Ae following Clarkson's

inequality holds:

(1.7) (||Ci +

The .Lp-spaces for different reference vectors TJ are related as follows,,

Theorem 2* There exists a family of conjugate linear isometry

JpfajVi) and linear isometry rp(^2,^i) from Lp(M,y1') onto
satisfying the folio-wing relations:

(1) For 2<,p<^oo, and

(1. 8) Jp(y

(1 . 9) rp fe, ^) = Jp (7]2, T]) Jp (TJ, rj,)

where (1. 9) is independent of a cyclic and separati?ig vector 7] and

J^,Vl is obtained by the polar decomposition S^ = J^A1^ (see (1.2)).

(2) For p~l+ (pT^l, CeL,(M,7l) and C' e LP. (M, %) ,

(1.10) <J,(%,T?i)C,C'>(?.) = <J rp'(7i,%)C',C><?1> ,

(1.11) <r,

The cones

(1.13) F^the closure of JJM+v

defined in [2] can be used to define the positive part L^(My7]} as follows:

(1. 14) L; (M, if) = Lp (M, ^) n VJ/C2?) for 2<^oo

(1. 15) L+ (M, ̂ ) - Lp-closure of yj/(2?) for 1
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Then we have the following polar decomposition theorem.

Theorem 3.

(1) Any £^LP(M, 7]} has the unique polar decomposition C = #|C|p»
where u is a partial isometry in M satisfying uu* = sM(Q (equiva-

lently, U*U=SM (|C|P))

(1.16) |C

Here, SM (C) is the M-support of C> namely the smallest projection

P^M such that PC = C-

(2) Under the identification of Lp(M,y1) and Lp(M9y2) by
rpO?2, ^i)> the above polar decomposition is independent off].

C*\ nn|0?)_ || in || (?)
\°) I I ̂  I IP ~~ II IS> lp | |p

(4) If C^^p (M, if), there exists a unique 0eMJ such that

(1.17) C = 4ft?

if 2<^p<^oo, and

(1. 18) <

that £ = xq. For such x, ||C||2> = ||^||-

We may symbolically write

(1.19) C = «01/p

if |C|P is given either by (1.17) or (1.18).

Special cases p=oo and p = I reduce to well-known objects.

Theorem 4.

(1) The map x^M*-*xy^H is an isometric isomorphism from

M onto Loo (M, T?) .

(2) TAe map from Ce

(1.20) 0(*)=<C,**?>(?) Or GEM)

z's arc isometric isomorphism from Lj (M, ^) o?zto Af^, where the inner

product in (1.20) is the one given by Theorem 1 (2) for p = l,
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From definition, Lz (M, 7j) is H, independent of 7].

For the definition of the product, we use the following Lemma.

Lemma A8 For XQ, • • - , xn<=M, fa, • • - , 0neMJ and complex numbers

z= (zi, • • • , zn) in the tube domain

(1.21) I^={z^Cn:Rez^O j = l, ..-,n, X3 Re

the expression

(1.22) F(z)

is well- defined and independent of the division Zj = z'j + z"j if

(1 . 23) Re zi + - + Re z^ + Re z", <a/2, Re z'} ̂ 0 ,

(1.24) R e z n + ' - . + Rezy+j + Re^^lA Re

It defines a function of z— (zl9 •••, zn) which is

( i ) holomorphic in the interior of Jj;n),

(ii) continuous on Iin\ and

(iii) bounded on 7-f70 by

a. 25)
y

n

'where ZQ = 1 — Y] Re 2;,-.
y=i

(iv) Denote

(1.26)
n

jf/" Xj—x'jx'j -with x^x'l^M and zQ = I — ̂ Zi9 then
1=1

(1.27) fi>,(^;;ff^r-^;i^»)

= (d,(xff
jAl^xj+l'-'AllxnA^x^^^

(Multiple-time KMS condition.)

(v) F(z) is multilinear in xQ,--,xn.

(vi) F(z) is continuous in (XQ, • • - , xn, ^, • • - , 0W, 97) relative to *-

strong topology of x's and norm topology of frs and y, provided that
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x's are restricted to a bounded set. The continuity is uniform in z's

provided that z's are restricted to a compact set.
n

(vii) If XIz,— !, then F(z) is independent of TJ.

If r-i=

n) , and C/ = #/0//p' (/ = !,•••, w) is the polar decomposition, then the

product

(1.28) C

is defined by

(1. 29) <

where £'^Lr,(M,y) and ^ = u'(j)fl/r' is its polar decomposition,

Theorem 5. The product (1. 28) is multilinear and satisfies

A polar decomposition different from Theorem 3 is given by the

following.

Theorem 6. Any ^^Lp(M,7j) has the unique polar decomposi-

tion

(1.31) C = Ci-

-where CyeZ,J(Af f?), s* (Q ± SM (C2) a^ 5^ (Ca) ± 5^ (CO . Here sM(Q

is the M- support of C> i.e. the smallest projection P^M such that

The polar decompositions have versions appropriate for the positive

cone V" itself.

Theorem 7.

(1) Any C in the domain of Af^'2" (O^a^l/2) has the polar

decomposition C = «ICU where u is a partial i some try in M satisfying

(or equivakntly U*U=SM ' ( ICD) » IC
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some 0GE-M* if 0<<<2<Il/2 and \^\Q = Ty for a positive self ^adjoint ope-

rator T affiliated with M. Such C can be written also as^ — ur\^\'a
-where uf is a partial isometry in M', u'u'* = sM'(Q (or equivalently

«'*«' = s*' ( ICI ' a ) ) and ICI'aeF?.

(2) .For l/4<^<2<Jl/2, awy C ^ -^ Aa5 £/z.£ unique polar decom-

position C — wICU *vuh&re u is a partial isometry in M satisfying uu*

= s*(C) (or equivalently u*u = s"(\Z\a)) and |C|«eVJ. -For l/4:>a'

^>0, <272y C ^ -ff ^<^^ £/&£ unique decomposition ^ = u'\£\'a> where u'

is a partial isometry in M.' satisfying U'U'* = SM'(£) (or equivalently

(3) Any £^V* for \/±<&<±/2 has the form C =

^eD(J^), anJ 0 Z5 uniquely determined by C-

(4) A^y C wz ̂ ^ domain of Afm~za (O^a^l/2)

decomposition,

(1.32) C=Ci-C, + *(C,-C4)

ZWZ^ Cl, "'^4^^ a«^

(1.33a) 5W(C1)J_5*(C2), 5ff(Cs)_L5Af(C) /or

(1.33b) 5^'(C.)J_s*'(C2), ^'(QJ-^'(C) /or

If Oi = 1/4, f/ie ^wo decompositions coincide.

Corollary. Awy 0eMJ /ias a unique vector representative

/or eac/i a; e [0,1/4], i.e.

(1 . 34) (a£? (0) , f? (0) ) = 0 ( x)

Our strategy for proof of the above main results is first to show

that Lp(M,y')9 2<£<<oo, which is a subset of H in our approach, is a

uniformly convex (hence reflexive) Af-module and ^£ELp(My7]) has a

unique polar decomposition C = «1CI?) with ICIi* =<^eyj/(23l), 0eMJ

and ||C||£)=0(1)1/P. Then Lp(M,7j) for 2^>1 can easily be identified

with the dual Lp,(M,y}* where (//) ~1 + ^?~1 = 1, LJ (M, 77) being exactly

the polar of L^(M97f) and the polar decomposition C = «|Clp7) of C^

Lp(Af, ^) being derived from that of £' £= Lp> (M9 if) achieving "maximum"

inner product with C-
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Our main tool is the relative modular operator (defined by (1. 1)

and (1.2)) which has been used previously in [6], [7]. (Also see [5],

[10].) In Appendix C, we collect its properties relevant to our ap-

plication and provide a brief outline of their proof.

Main lemma providing a control over the unbounded relative modular

operator is its domain properties and Holder type inequality given by

Lemma A (stated in Section 1 and proved in Appendix A). This lemma

originates in the multiple time KMS condition first found in [1], where

it is formulated in terms of boundary values of time correlation functions

(rather than modular operators). The present form is a straightforward

generalization of Theorem 3. 1 and Theorem 3.2 in [3]. (Also see [13].)

The set Jl* (M, 7]) of certain formal monomials of elements of M

and complex powers (with positive real parts) of relative modular oper-

ators (p specifying the sum of real parts of powers not to exceed 1— p~l

= (£') "*) and its subset _£p/ (M9 ??) are introduced in Section 2. In fact

the set jLj>(M,~fi) consists of A = wJ^J, 0eMJ, which will be identified

with A7]^LP(M,7]) for 2<^?<oo and with an element of LP(M, ff) with

Lp norm 0 (1)1/p and having the "maximal inner product" with uAl$7] in

Lp<(M,7j) for 2^>£>1. -C*(M,7J) is introduced here for the purpose of

defining products of elements of LP(M,7}) and Lq(M,7])9 which is tech-

nically used in the proof of uniform strong differentiability in Section 9

and is fully treated in Section 12. Lemma A enables us to define an

"inner product" <A, B>(?, between AeJTp(M, 77) and £<Ej?*(M, if) 9

which coincides with (A^, BTJ) in H whenever 7} is in domains of A and

B. This leads to an identification of J?* (M, 7]} (modulo an equivalence)

with LP(M, 7])* (after J2P(M, 7]} = LP(M, 7]} is shown by polar decom-

position) (in Section 7) and also to the Holder inequality for the above

mentioned product (in Section 12).

In Section 3, the polar decomposition of a vector C in the domain of

41/2)-2o!, in the form C = ^|C|f, |C1^ = 4^ with a partial isometry u in

M and a normal semifinite weight 0 on M, is derived by an application

of Carlson's theorem, a technique used in [4]. Here the Connes charac-

terization of unitary Randon-Nikodym cocycle is used in the form dis-

cussed in Appendix B, where we allow non-faithful normal semifinite

weights.
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As an immediate application of results in Section 3, we obtain ex-

istence and uniqueness of polar decomposition of ^£^LP(M, 7f) (2<^£><^oo)

as above with $^M% and the formula H C H ^ =0(1)1/p in Section 4. At

the same time, the set of Alfy with 0eMJ is identified with LP(M,7/)

defined by (1.14).

In Section 5, we show that Lp(M,7j} for p — \ and oo are canonically

identified with M* and M.

In Section 6, we prove the completeness of LP(M,7]} for 2<^p<^oo

by using an easily provable inequality between H C I I p ^ and the norm ||C||

in H,

In Section 7, we derive a few technical lemmas related to J^p(M,y)

and JT* (M, if]} introduced in Section 2. They provide useful tools in

subsequent two sections, where Clarkson's inequality (and hence the

uniform convexity) and uniform strong differentiability of the norm (and

hence the uniform convexity of the dual space) are proved for Lp (M, vj),

Once the properties of LP(M, ff), 2<^p<^oo are established, properties

of Lp(M,7j) for 1<^<2 are easily derived in Section 10.

The isomorphism of Lp (M, 7]) for different reference vectors 7] are

established in Section 11. As mentioned earlier, product is treated in

Section 12. Linear polar decomposition theorems for Lp-spaces as well

as for D(A") (|o:|^l/2) are then proved in Section 13.

Section 14 provides a summary of proof of Theorems of Section 1

in terms of Lemmas proved in preceding sections.

A brief discussion of the connection with other works is in Section 15.

In Appendix D, operator monotone function is shown to be applicable

also for semibounded operators (or positive forms). This result (in a

special case of the function xv, 0<^y<Il) is used in Appendix C to derive

an inequality for powers of relative modular operators.

§ 28 Immediate Consequences of the Multiple-Time

Condition

The multiple-time KMS condition has been found to hold for any

KMS state in [1], where it is formulated in terms of boundary values
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(hence in terms of time translation automorphisms) rather than the

modular operators: If all 0y coincide with CDV, then for real t = (tl9 • • • ,

(2. 1) F(it) = o),

(2.2)

where ^ = ^+ ---- h tk. The proof of Lemma A which is an adaptation

of the proof in [3] will be presented in Appendix A for the sake of

completeness. In this section, we discuss immediate consequences of

Lemma A, which will be used in subsequent proofs of main results.

We use the notation of Lemma A.

Corollary 2. 1. If y is in the domains of the two operators.

& 3) A = A

(2. 4) B = A

where z<=I[n) with zj = z'j + z" ((1.23) and (1.24) of Lemma A are

not assumed) , then

(2. 5) (Af)9 Bft^

Proof. Due to zGE/f', either (1.23) or (1.24) holds. Suppose

(1.23) holds. (The case (1.24) is similar.) Then there exists &>j,

Re 4^0, RezJ^O, *£ + **=** (or Re w^O, Re w'^0, w'j + w"=Zj)

such that both (1.23) and (1.24) hold if j is replaced by k (or if zfj

and z" are replaced by w'j and w") and hence F(z) is given by the

inner product (1.22) where the same replacement is to be made. The

equation (2. 5) is then obtained by transposing xi 0'<I/<C&) and appro-

priate powers of A$lt7j (j^l^k) from one member of the inner product

to another.

Lemma 2. 2. If y is in the domains of the operators,

(2. 6) A^Al
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(2.7) A2 = A

-with Re zt:>0, Rew^O (/>/+!), Re z'/^O, Re w?^0, and

(2.8)

a .TO, • • • , Xj

= l, • • • , j ) , Re ze^^

j — L m

Re z,^l, H Re Zl + I] Re
1=1 l=j

Proof. If Re 2y^0 and XI Re z^l/2, then 7] is also in the domain
1=1

of B given by (2. 4) due to Lemma A. Hence (2. 5) and the assumption

A.{f] — AZ7] imply (2. 8) . General case follows from this case by analytic

continuation.

Notation 2.3.

(1) The set of all formal expressions A — uA1^ with 0eMj and a

partial isometry u satisfying u*u = s(<l)) (the support projection of 0) will

be denoted by XP(M9^}.

(2) The set of all formal expressions,

(2.9) B^oJft^-.-J&^n

with x^M (j = Q,—9n), ^eMJ G/-1, • • • , rc), z= (^, • • - , zn)

will be denoted by J?* (M, 7]) where

(2.10) lw = {«eC":Re^^O 0' =!,-,»),
j

(3) For Ae^,(M,7) and Be=_/:*(Af, 7),

(2. Ha) <

(2. lib) <

Since J?P,(M,^) with (p /)~1 = :i-/r1 is a subset of J?* (M, ^) , this defi-

nition applies also for B^ J?p/ (M, 77) .

(4) For 1<£<;2, A and B in £^(M,fj) are said to be eqivalent
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if A7] = By. (By Lemma A, 7] is in the domain of A and B.) For

2<,p<^oo, A and B in J?$(M,y) are said to be equivalent if <C, A>(9)

=<C,S>(f, for all C in J

Lemma 2. 4. If 2<^?<oo, then J?P(M, if) dLp(M, 7]} in the sense

that uAlfy<=Lp(MJ7]} with

(2.12)

. The bound for ||J£?> -™» x£tfyi\* given by Lemma A (iii)

implies

(2.13) MM^ar*,
in view of the definition (1.4). Let fx be the vector representative of 0

and f = &?i. Then the relations (Theorem C. 1 (/?4) )

(2.14) 4lf = «j;ita*,

(2.15) «*«^, = ^;,,,

imply

(See (1.1) and (1.2) for the last equality.) Since 4% = 0(1)*4% for

, we have

(2. i?) N^wn^M^y-^Mj^n
Combining (2. 17) with (2. 13) , we obtain (2. 12) .

Lemma 2. 5a If 2<^oo, AGE J?P(M, 77) andB^X^(M9i) as

in Notation 2.3 then,

(2.18)
i=0 1=1

where z0 — 1 — XI zi-

Proof. Immediate from Lemma A (iii).

Lemma 2.6. If 5eJ?*(M, ff), A^ J?P(M, 77),
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--,ri), and J^AiTj — Q, then
t=i

(2.19) 2<B,^*>w=0.
t = l

Proof. The same as the proof of Lemma 2, 2.

Remark 2.7. Later Lemma 4.1. (i) asserts J!P(M, TJ} = LP(M, 7])

for 2<£<oo. Lemma 2.5 and Lemma 2.6 then show J?* (M, TJ) c

)* for such /> (modulo the equivalence relation).

Lemma 2.8. Let 2<^p, q, r<^oo, p~l -}- q~
l ^. r~

l = 1, Axe J?P(M, 77),

A2e_£g(M, T?) awrf A3eJ?r(M, ??). TAew the formal product A^2 is

in Jlf(M^) and,

(2.20)

Proof. The inequality follows from Lemma 2. 4 and 2. 5.

Lemma 2.9. Let p~l+ (p')~l = l, l<^)<oo, A^uA1^ J?P(M, if) ,

and B = vrf-tf ^JTf,(M,'Ti)c.j:*(M,fi). Then

(2.21) 0(l)"» = max{|<B,A>(f)|, 0(1)^1}.

(TAe maximum is attained.) If A = ud$^^J?i(M, ff) and C =

), then

(2.22) 0(l)=max{|<C,

(2.23) ||x||=sup{|<C, A

Proof. Lemma A (iii) implies inequality 2> in (2.21) - (2.23).

The equality in (2.21) is obtained by setting v = uand 0 = 0(1) ~J0. The

equalities in (2.22) and (2.23) follow from <C, A>(?, =<f> (u*x).

§3. Polar Decomposition In jD(J£1/2)~2D:)

The aim of this section is to show the existence of polar decomposition

in D ( d f / 2 } ~ 2 a ) . We consider the involution operator
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(3.1) J™ = J4f/2>-2a

where a is real and J is the modular conjugation JViV. Due to JA1]J=A~l

and J2-l, D(Jf2)-2o:) is invariant under the action of J™ and (J<?)2Cl.

With a fixed element C of £> ( J^1/2) ~2Q!) , we associate two operators T0 and

RQ defined by,

(3.2)

(3.3)

where (7jT(y) =-A~uyA^ for y<=M' and y is in the set MJ of all entire

analytic elements of M' with respect to the modular automorphisms 0"J*.

Note that the domain £>(T0) = D(RQ) =M'Q7] is dense in jf£

Lemma 3. 1. T0 a^zJ R0 are closable operators. Their closures

T and R satisfy,

(3.4) T*-DR, -R*DT.

Proof. It is sufficient to prove that for any yl9 y2 in MO,

(3. 5)

By definitions of T0 and -R0» the two sides of (3. 5) are computed as

follows;

(3. 6) (Toy,?, ytf) = (ff& (y.) C, y,7) = (C, <T2'i (yO

(3. 7) (ytf, JJ.y.;?) = (y^, ff& (y2)

The proof is completed by the following formula,

(3. 8) A-^y*ff',L (y,) v = J-<1/2)+2a(Tl'2fa (yf

which is an analytic continuation of the following identity from real t

to pure imaginary 2ia.

(3. 9) A-(^y
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Next, we consider the polar decomposition of the closed operator

T=u\T\.

Lemma 3.2. For any

(3.10) lT|V_

Proof. For arbitrary elements yi, y2 in MO, we have,

(3.11) TQyiyz7) = *& (yiy.) C = fi& (yO <*& (y,) C

This implies ToyiZDffJ&CyOTo. By taking the closure, we obtain, for any

y in MJ,

(3.12)

Taking the adjoint of this relation and replacing y* by y, we obtain,

(3.13) T*ff'_'2ia(y)=)yT*.

Combining these formulas, we obtain the following:

TX (y) => T*ff'_\ta (y) TD yT*T

Lemma 3. 3.

(1) Let p = s(T) be the support projection of T. Let,

(3.14)

Then,

(3.15)

for any ye MO and any complex z. For pure imaginary z9 equality

holds for any yeM'.

(2) p and the partial isometry u in the polar decomposition of

T belong to M.

Proof. Because of (3. 12) , £ e ker T implies y? e D (T) and Ty? - 0

for any yeMj. So, (1— />) jH" is Mj -invariant. The (T-weak density of

M'o in Mx then implies (1— £)eM and hence p^M,

To show the formula (3. 15) , we consider the function,
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(3. 16) / (z) = (y | T | -ft, ft) - (<7'4to (y) ft, | T |«ft)

of a complex number z, where y^.M' has a compact support with respect

to the spectrum of ff't* and f's have compact supports with respect to the

spectrum of (log \T\)p. The following three properties of f implies

f=0 due to Carlson's Theorem (Boas [14]).

(a) By the choice of y, f1? and $ 2 , f ( z ) is exponentially bounded

for Re *:>().

(jS) The estimate

(3.17)

implies that

(3.18)

(7) Due to Lemma 3. 2,

(3.19) \T\2nff'_\tna

and hence f (n) =0 for any non negative integer n.

Since the set of f's we have used is a core of |T z (for any z),

we obtain (3.15) from f = Q.

Lastly, we show u^M. By (3.12) and (3. 15), we have [«, y]\T\

= 0 for all yeMQ and hence \_u, y]p = Q. Since up = u and [y, £] =0,

we obtain \_u, y] = 0 and hence

Lemma 3. 4» L^^ T0 be defined by (3.2) an^ T=TQ for non-

zero real ex.. There exists a unique normal semifinite iveight <f) such

that

(3.20) m=J£?.

Proof. We consider the following one parameter family of partial

isometrics;

(3. 21) «. = I T | «"«>« j-«

Then wt is strongly continuous and belongs to M due to
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(3.22) yWl

-uty

for any y^M'. Moreover,

(3. 23) «,+« = ! T | <"»«»»•'•«> j-««+»

_ \rp\ d/2a}isA-isAis\ rn I (l/2a)it A-it A-is

= Us(fl(Ut)9

(3.24) u?ut = ̂ p^u = tf(p),

(3.25) utu*=p.

According- to the characterization of normal semifinite weight by M- valued

$1 one cocycle (Theorem B. 1 in Appendix B) , there exists a unique

normal semifinite weight <j) such that,

(3. 26) ut =

It follows that |T|(1/2a)i{ = 4% and (3.20) follows.

Lemma 3. 5. Let 0<^a<^l/2. For any normal semifinite -weight

(f), Af^T] belongs to V", if 7] is in the domain of J|%.

Proof. By the property of Radon-Nikodym cocycle,

(3.27) J£oO<T&(y)j;r?

for any yeMj. If y runs over AfJ, then

(3.28) ^"ay*y7=^te(y*y)7

is dense in yci/«-«B Since y«r ig the polar of yo/w-^ it ig enough to show

the following:

(3. 29) (J2,>, fflv, ( *

for any yeMJ. By (3.27),
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Lemma 3. 6.

(1) For any C ̂  £> (4f/2) ~2a) -with non-zero real a, there exists
a partial isometry u in M and a normal semifinite 'weight $ such that

?e£>(J£,)> C = ^<V7 and uu* = sM(Q (or equivalently u*u = s(<f>)).
(2) For any CeDCJj'2), there exists a closed operator T affili-

ated -with M such that i)<=D(T) and ^ = T7j.

Proof. By (3.2), ^ = TTJ. By Lemma 3.3, T=u\T\ with a partial

isometry u in M satisfying uu* = s(T*) (and u*u = s(T)). Since 7] is

separating, SM (£) = s(T*) = uu*. If o^O, |T|=J|*7 for a normal semi-

finite weight (j) by Lemma 3. 4 and if a = 0, \T\ is a non-negative self-

adjoint operator affiliated with M by (3.15) for a = 0.

§4. Polar Decomposition in Lp(M,q), 2<Lp<oo

In this section, we shall apply the polar decomposition in D(d"),

(0<;a<l/2) to elements in LP(M, 7]) , 2<£<oo. The polar decomposi-

tion for the case 1<^><2 will be given in Section 10.

Lemma 4. 1.

(1) Let £^LP(M,7]), 2<^?<oo. Then there exists a unique <f)

and a partial isometry u^M such that

(4.1)

In this case, ||C||f =
(2) Let 1<£<2, ^eD(J^) for a normal semifinite weight <j)

and ^ = uAl^7] 'where u is a partial isometry in M such that u*u = s($).

Then 4> is bounded and \\Z\\™ =<f>(l)1/p.

Proof. (1) Taking $ = 7] in the definition (1. 3) , any C^LP(M, y)

is in D(Jf2)-(1/p)) and hence C is of the form Z = uAlfy by Lemma 3.6.

By definition (1.3), CeD(J^"(1/p)) for any rj^H. For any ft elf

satisfying s3f (ft) <5(0M) where 0w(x) =$(u*xu), we prove the following

consequence in Lemma 4.2 below:

(4.2)
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(4. 3)

Therefore for any such 7]l of unit length,

(4.4) Mft,«*?i||^IIC||,w<oo.

Since 0 and hence <j)u are normal, there exists an increasing net of

0aeMj with sup^Q:^^. By Lemma C. 3,

(4. 5) || 4^77, || ̂  || jyj^n = || J&B^iii .

(Last equality is due to Theorem C.I.) If we take T7i = ?a/||fa|| for the

vector representative ^a^Q^ of 0a, then

(4. 6) .

Combining (4. 6) , (4. 5) and (4. 4) , we obtain

(4.7)

This proves the existence of the decomposition (4. 1) with ^GEMJ. Then,

owing to Lemma C. 2, U^-"^"^! = W^ill- Hence

(4.8) ||C||« = sup

due to M1^,,lT7i||=0«(l)1/2 and the three line theorem. This shows H C H J 0

= 0(l)1/p due to (4.7).

To prove the uniqueness of the decomposition, assume vAl^7] — £ with

a partial isometry t;eMand 0eMJ satisfying v*v = s((l>). Let T—

For yeMjJ we have

(4. 9) Ty? =rt3/p) (y) C = (TJ5/P) (y) v

By definition, MO f} is a core of T. If Mj?? is also a core of J^, then

we obtain T=v^t
p
v and by uniqueness of polar decomposition, we obtain

u = v and 0 = 0. Hence the decomposition is unique.

To see that M^f] is the core of JJ>7 for 0<<2<[l/2, it is enough to

prove it for a = 1/2 because of the inequality || A'C||^||-ACiri|C||1~1' for

any A^>Q and 0^v<Sl. For xeM0, x7) = JAyzx*7] = y7] where y =

«/<T!.«/2)(^*)«/eAfiI. Therefore Mo^Z)M0^e (Actually equality holds.)

By definition, Mf] is a core of 4fr Since ||4̂ || = ||x*f (0) || and M0

is *-strongly dense in M, MQ7] is also a core of A](*r This proves that

M'vT] is the core of J and hence that of J for
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For the assertion (2), the boundedness of 0 follows from Lemma

C. 4. To prove the equality, we start from £e£P^ such that (/> = (*)$.

Let ^i=j(u)uS/\\S\\ where j(u) =JuJ. By Lemma C.2,

(4. 10) J,

and hence,

(4.11) ||C||«= inf {1I4%2)-(VP)C||: 11711 = 1,^(

The inequality ||C||?)^0(1)1/P now follows from

(4.12)

for any fteJFf such that ^(^^^(ii^^) =sx(uj(u)S) 9 ||Vi||=l and

The inequality in (4.12) follows from

= IU(«)«f|| and the Holder inequality

for A^O, a^l and H^||-l. Hence we have \\Z\\™ =</)(l)1/p.

Lemma 4. 2. Le£ ̂ ^2, $ be a normal semifinite weight on M,

u be a partial isometry in M. satisfying u^u — 5(0) , ^e ^^ (the natural

positive cone) and sM(v]i)<uu*. Assume that

(4. 13) 7 e D ( Jg^-(1/p)«J^)

/or a// ^ e H a^J, if ||^ || =1,

(4.14) Mg^-^aJ^II^A

/or a constant A independent of y{. Then (4.2) anJ (4.3) holds.

Proof. Let

(4.15) ^(0=

Then v (O^W* = ^(?7i) and

(4.16)
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for ^(0 = v(f)*j(v(t)*)'q1 by Theorem C.I (/94) . Hence the following

expression makes sense by the assumtion of Lemma:

(4. 17) v (0 * JP/y-o/Wtf (0

Since JJ.m.tHW'X;., for 7? =%(*)/ 11% II and ||tf||=l, we have

(4. 18) M^-B^II^IWI'-WWA

for s = (!//>) + z£ and any t^R. For any g&H with a compact support

relative to the spectrum of 4^, we set

(4.19) /«(*) = (« A,

Then f(z) is holomorphic in the strip region 0<CRe z<^l/p, continuous

on its closure and satisfies

(4.20) l/«WJ^{||%

by (4. 18), ||^-"«<^ll = II W«*V.H^ W for W[ = <A"eM, and three

line theorem. It follows that the mapping ?>-»./> (z) is norm continuous.

Hence idJ^eD^-), /, (z) = (^-'«J}.?;?, f) for any z satisfying

O^Re z<l/p and

(4.21) MWy-Bj;,,?!^^*"" for 1 7i 11 = 1.

Hence s^J^"2^^^ is weakly holomorphic for 0<Re z<^I/p and

weakly continuous on the closure.

For any $E:H which has a compact support with respect to the

spectrum of ^,7l, we put

(4. 22) jtf> (*) = (J,llf Jg^-s« Jj,,7, f),

(4.23) (7P>(«) = («*7i,^j,,lO.

Then gP (^) and gp (z) are holomorphic for 0<Re z<^\/p and continuous

on the closure. Furthermore

(4. 24) jtf» (fO = (J,,
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due to Lemma C. 2. It follows g|1} (l/p) -gf (l/p) . Hence (4. 2) holds

and

(4. 25) J

This implies (4.3) due to J*f.7?1.f = **(%) =

Lemma 4. 3.

(4.26)

Proo/. Let ^ = Alfy, <£<EM+. By Lemma 3.5, Ce '̂"21". Con-

versely, let £eLj(.M, ??) and ^ = uAl^t] be the polar decomposition. Then

for

(4. 27) (ufl'yv, y?) = (ffJ3/« (y)C,

due to

(4. 28) tf'4(1/p) (y *) y^ = J-1/™^/^ (y) ̂ /^ (y ) 7

By the proof of Lemma 4. 1, Mj^ is a core of wJ1^. Hence

Since C is assumed to be in V", (X = ~L/ (2p) , we have J^C = C by

Theorem 3 of [2] where J%> is defined by (3. 1) . On the other hand,

due to Lemma C. 2 and Theorem C. 1 (/J4) , we have

(4. 29)

Hence the uniqueness in Lemma 4. 1 (1) implies

(4. 30)

Hence &JJ(^ is self-adjoint and positive as was shown above. Therefore
l^ = A1^ by the uniqueness of polar decomposition.

Lemma 4.4. For xE:M and

(4.31) I

Proof. By Lemma 4.1 (1), C = «4^7 with ||C||f =0(l)1/p. Hence
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(1.25) implies (4.31) in view of the definition (1.3).

§ 5* Special Cases p — 1, oo

In this section, we shall give canonical isomorphisms of L^ (M, if])

with M and of Lj (M, ??) with M*.

Lemma 5. 1. Let CeL^CM, ??). Then there exists a unique

M satisfying £ = XTJ and ||C||S) = ||-^||- Under the correspondence
Mi-»x7}(=L00(M,7]) , L00(M,7j) is isomorphic to M as a Banach

space.

Proof. By (1.3), Ce£»(4/2). By Lemma 3.6 (2), there exists

a closed operator T affiliated with M, satisfying the relation C = Tty. For

any unit vector 7]l^H and any y€EM',

(5. 1) (<4,X^C, 3"?) = (5*lfyv, C)

= (y*%, C)

= (%, Tyi?)

where 51,,,, is given by (1.2), which implies S*,,y>} = y*7]1 for yeM'.

Since M'i) is a core of T, we obtain ^eDCT*), J,1,,JJ^C= T*v, and

(5.2) ||C||<?= sup ||J |̂|= sup IIT^I^IIT*!!.(5.2) ||C||<?= sup ||J |̂|= sup
H7il l = l Il7ill = l

It follows that T* and hence T are in M. This proves ^ = xif]9 x—T

eM, and ||.r|| = ||C||S}. Since f] is separating, xeM satisfying £,=x7] is

unique.

Conversely, if £.=xy with x^M, then C^^)(4f5) f°r any
and,

(5.3) sup M$C||= sup || x*f || =|| a:* || = || a; ||.

Lemma 5. 2. L^ (M, if) = M^y.

Proof. M,^cy?. Hence M^cLJ^M, 9?) . Let C e Li (M, 97) . By
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Lemma 5.1, there exists unique x£=M such that C — xtf and

= (C, y*y^)^0 for any yeMj due to y*yy<=V\/z. Hence x^O and

Lemma 5. 3. Lei ^^.H and w^(x) = (C, .r*^) for

(5.4) I ICI I f

Proof. Let ie;C(7(.r) = $(xu) with a partial isometry z/ in M and

J satisfying w*« = s(0) be the known polar decomposition of wc,

(EM*. (Theorem 1. 14. 4 of [19].) Let ? e ^^ be a vector representa-

tive for 0.

Since 1 — uu* is the largest projection p^M satisfying WciV(jcp) =0

for all x^M, it is 1 — s^(C) ^nd hence SM(£)=UU*. Therefore

(5. 5) («*C, u*x*fi) = (C, ̂ *^) = (xu£, S)

If 5T is in (I — u*u)H, then it is obviously orthogonal to w*C- It is also

in ker A\% because s^ (?) = s((f>) — u*u. Hence

(5. 6) («*C,

for all x2eM Since u^uMrj-}- (l — u*u)HnM7] is a core for J^, (5.6)

implies 4/^eD(4^) and

(5.7) «*C = 4.,7.

Therefore 7]^D(A^ and

(5.8) C = «4,V

with U*U=SM(§). By Lemma 4.1 (2), we have

(5.9)

Lemma 5. 4. L! (M, y) and M* are isomorphic as Banach spaces

through the unique continuous extension of the mapping

(5.10)
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Proof. By Lemma 5.3, it remains to prove that the set of w^

is norm dense in M*. Since M'-q is dense in H, twuy^yvi7) = wuyjiiyii with

yGE-M' and a partial isometry uEiM is norm dense in Af#. (Note that

it'i/v.y? ^s norm dense in AfJ.).

Lemma 5. 5, Through the identification of LI (M, TJ) -with M*,

(5.11) L1
l(M,i?)=Mi, L1 ' (M7)nH=V^.

Proof. If CeVi /2(= 2>£), then (C, x*^)^0 for xeM+ by the duality

of Vj and Ff2)-a. Hence FfcMJ. Since the relation <£, x*^>(,)^0

for xeM+ is stable under limit, we have Li(M,y) (as the closure of

yj/2) in MJ. On the other hand, cwy^yi]i7) = tWy1] with yeM' is norm dense

in M%. Hence we have Lf(M, 77) =MJ. By the proof of Lemma 5.3,

implies C^J^eVj'2 due to Lemma 3.5.

Remark 5.6. Any C^/f has a polar decomposition C^^ iCI with

!C|eyj /2^£P^ satisfying u*u = s*(\£\). By applying J, this is the same as

the existence of a vector representative in £PJ for any state.

Remark 5.7. We have JC1 (M, r[) — LI (M, 7;) via Lemma 5.4, the

identification of u A ^ X i ^ M ^ f f ) with ufi^M* due to

(5. 12) <«4,f f , j;*>(f) - (4f^, 4>*x*r;) = 0 (**) - ^ (x)

for all xeAfand polar decomposition ([) = u(j) for any 0eAf#. (See Theo-

rem 1.14.4 of [19].) Then ||^,J?>=0(1). If 0 (xu) = (V, x*y) for

some ¥&H, then the proof of Lemma 5.3 implies ^eD(J^ lV) and ¥

§6. Compleleiiess of Lp(M

Lemma 6e 1.

(1) For CeLp(M,9?) and 2<,p<,oo,

(2)
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(6.2) IICII^^IICIINII^-1

(3) For 2<£<;oo, II ' l i p 0 « # ;20r;n and Lp(M9y) is complete.

Proof. (1) The case p—oo follows from

Lemma 5.1. Let 2</><oo and ^ = uA\^ be the polar decomposition of

,^) given by Lemma 4. 1 (1). Then ||C||£?) - ||f ||2/p and, due to

1 = 11*11, we obtain ||C|| = ||4^ll ̂ 11 * II Z/P II? r""" by the Holder ine-
quality.

(2) We compute as follows: let C = «|C|, «eMp-L, |C| e S"*.

(6. 3) UC||^ =

Due to the Holder inequality,

(6.4) N

where 0<a = (l/p) - (1/2) ̂ 1/2 and J^f C = s* (O «7- Therefore,

(3) Definition (1. 4) and positive definiteness of Jfi, for separating

f imply that || • \\™ is a norm. We now prove the completeness. Let

Cn be a Cauchy sequence in LP(M, 7]) with respect to || • ||£7)-norm. Then,

(6.6) sup |J^-<1/'>(C.-C.)||->0 as n,m->oo
11^11=1

and hence, for each yl9 there exists the limit

(6. 7) /(7l) = lim Jf^>-w»C. ,
n-*oo

and satisfies,

(6-8) sup ||Jg3>-(1'«C.-/a7,)||-0 as »-»oo .

On the other hand, (6. 1) and (6. 6) imply that Cn is a Cauchy sequence

in H. Let C = HniCn. It then follows from (6.7) and the closedness of

jci/^-a/p) that CeD(J^-(1/p)) and /fa) = ̂ -"'"C. Furthermore (6. 8)

implies,
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(6. 9) sup ||Jgf?-(1/»C|| = lim ||C.||?)<oo .
ii7! 11=1 w-»oo

Hence, CeLp(M,7?) and lim HC-Cnll^ =0 by (6.8).
71—»oo

Remark 6. 2. Since

IWr* for any ||%||=1, we have MT? C Lp (M, 7?) ,

2<[p<^oo, and hence LP(M, ??) , 2<^£><Ioo is dense in /J with respect to

the topology of H.

Lemma 6.3. For x^.M and

(6.10)

. Since ^ = ̂ 9 W\? = W/p by Lemma 4. 1. Hence (6. 10)

follows from Lemma 4. 4 for 2<^?<Joo and from (6. 2) together with

M

Lemma 6.4. Any ^^H may be identified -with an element of

LP(M,??)* (2<£<^oo) through the inner product (C, C') in H for

) (CH)

Proof. By Lemma 6.1 (1), | (C, CO I ^ I I C I I llC'll^lldf and hence

M, y) *. The case p=oo has already been proved in Lemmas 5.3

and 5. 4.

§ 7. A Sesquilioear Form between Lp and ip/

In this section, we shall introduce the sesquilinear form between

LP(M,7?) and Lp,(M,v) for /r j+ (//) ~1 = 1 and imbed

) and J?*(M,^) into the dual space LP(M,7?)* of

Lemma 7. 1.

(1) For 1<><;2 and for any

(2) // £-1+(£/)~1-l, C^Lp(M,y)nH and C' e Lp (Af,

(7.1)
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Proof. (1) There exists a partial isometry u in M and I C ' G E ^ P ^ ,

such that C = ^!CI and w*« = 5jr(|C|) by eq. (7.3) of [2]. Then |CI=«/ |CI

= A}^7] and J'Cif = «^ici.X- Hence ^1/2)C = ̂ , which implies CeZ>(J?i7)
for any - (1/2) <u*<;0 and in particular for a= (1/2) - (!//>) if l<^/>^2.

(2) We may assume 1<^><[2. If £^H and £>0, there exists yl with

lift! =1 such that M^r"/3"a^llC||£" + £. Since (2-'-/T') + (2"1- (£')")
= 0, we obtain for any £' e LP' (M, 7?) ,

(?. 2) i cc, c) i

Since £ is arbitrary, i (C, CO I^ I I

Lemma 7.2. For 1<^><[2 aw^ Z = it$*-q(y^D($*i))-urith a par-

tial isometry u^M satisfying U*U = SM(£),

(7.3) ||C||» = sup{ i (C ,C / ) | :C / eL

. By Lemma 4.1 (2), ||C|!^ = \\?\\2/p. The equality is attained

in (7. 1) by the homogeneity of relative modular operator if we set C'

V? where f = f/||f|| and ^"1+(^/)"1 = l. Hence (7.3) holds.

Lemma 7.3. If 2<^p<^oo and p~ljr (p') ~l = 1, ^/i^^ a?ry element

in Jl^f(M^ff) can be vievued as an element of Lp(M,y) in the sense

that y<=D(A) and Ay<^Lp(M,y) for any

(7. 4) A

(5^^ Notation 2. 3 (2) /or definition of Jl*, (M, 7) and 1^) , and

(7, 5) i iA?n«^( fi i i^ i i ) ( n Aw^-o^a)^"^*"1 •
^"^ (p7)-^! and A is given by (7.4), then A can be

viewed as an element of Lp, (M, y) * through the inner product < A,

J3>(f) for B^ J:P, (M, fi) = Lp, (M, if) and (7. 5)

Proof. First let 2^^?^oo. By Lemma A, 7] is in the domain of

A and A^ is in the domain of J£/2)~(1/p) for any £^H. Furthermore

the estimate (1.25) of Lemma A(iii) implies that AT] is in Lp(M,y}
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and (7. 5) holds. Next consider the case I<^p<2. By Remark 2. 7 and

Lemma 4. 1 (1) , we may view _£*/ (M, ff) as an element of Lp, (M, 7)) *

and (7.5) follows from (1.25).

Lemma 7, 4. .For 2<><oo,

(7.6) ||f|i2/

(The maximum is attained.)

Proof. By Lemmas 2. 9 and 4. 1 (1) .

Remark 7.5. This Lemma shows that the norm H - A H J P of A as

elements in the dual space LP(M, ^)* is ||f||2/:p/ for 2<;/><ooe In view

of Lemmas 2.9 and 4.4 (1), there exists AeJT*(M,^) for any given

(2<£^oo) such that <fi, A> ( f )= ||B||

Notation 7. 68 Let J?*0(M,^) be the set of all formal expression
n

(2.9) satisfying ]T] Re z^ = 1 — (1/p) in addition to all conditions stated
j=i

below (2.9). The adjoint J3*e J?*0(M, ^) for 5 in J?*0(M,9?) given

by (2. 9) is defined as

(7.7) Bt-xiA&i-xfAl^xt.

The product JSCe j:*0(M,^) of SeJ?*0(M,^) and Ce J?*0(M, 77) is

defined if r"1 =^~1 + ^r~1 — 1 and IfSr, />, q<^°° as the expression obtained

by writing expressions for 5 and C together in that order and combine

the last x in B and the top x in C according to the product operation

in M

Lemma 7. 7.

(1) Any element B^Jl*(M,fi) is equivalent to an element in

(2) Tjf .B,e_£*0(M,tf) z = l, • • - , « andV]Bi = 0 either as elements
1=1

p,(Af,tf) /or l<;/>^2 an^ (P')'^!-^1 (Lemma 7.3) or a^ gfe-

w Z,p(M,7)* /or 2<,p<^oo (Remark 2.7), then ^Bf = 0 in



368 HUZIHIRO ARAKI AND TETSUYA MASUDA

the same sense and J^BtC = J^CBt = Q in Lr.(M,ff) for l<,r<^2 and

(r'yl = l-r~l or in Lr(M,ff)* for 2<><oo -where CEE J?*0(M, ??),

r~1=p~1 + q~1 — 1 and

Proof. (1) Let B be given by (2.9) with z e Iff^ , w = l-(l/p)

— f}zj, and B' = BA™. Then 5 is equivalent to B' (due to A^ = TJ} in

Jlf(M,fi) and B'e=.£*o(M,v).

(2) First consider the case l<^>f^2. Then ]C^ = 0. For *eM0,

we have

(7. 8) (^, £ Bfy) =

0, ii) = 0 .

Hence we have X]-Bf?; = 0. If l<r^2 in addition, we have ]

from 2 BiTj — Q. Combining with the preceding result, we obtain ]T] C*Bf

-0 and hence 2 ^C=I](C*Sf)*=0. If 2^r^oo and Ae

= Lr(M,y), then S<C*A, B<>(?, = 0 by Lemma 2. 6. Since <C*A,

= <A, CBi>(?), we have 2^5^ = 0 in Lr(M, 77)*. Combining with the

next result, this implies JI]J3*C = 0 as before.

We now consider the case 2<^p<^oo. Then ^2(Bl9 Ai> (? )=0 for any

A1 <E XP (M, y) = Lp (M, 77) . Since xtf e L^ (M, y) c Lp (M, ^) for all Xj

eM, we take Aj such that Afl^xtf. Then Lemma 2.2 and (1.27)

imply

(7. 9) <E,, A,>(f , = a, (B?

where x^MQ and Xi is taken to be ff"Lt/p(x*) .

Hence

(7.10) <

for all AeJ?p(M,^) such that A^ = x^ for

If XK tends to j: *-strongly in M with ||̂ a||̂ ||̂ :||, then a)v(x*Bf)

tends to a)v(x*Bf) by Lemma A(w). Since any x^M can be approxi-

mated by such xa^MQ, (7. 10) holds for A such that Ay = xy for .reM,

In particular we may take x — uAf^A~u^.M where u is a partial isometry in

M Since xt] = A(t)7] for A(0 =«4",, we have (7.10) for A = A(t).
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By an analytic continuation and continuity, we obtain (7.10) for A =

A ( - i/p) . Hence 2 JBf = 0 in Lp (M, 7]} *.

Since C* Ay <^ Lp (M, y) for AeJ?r(M, iff) 9 we obtain

(7.11) <A, I] CSf>(f) - <C*A, £ Sf>(?) = 0

and hence ^CBf = 0 in L r(M,y)*. From 2C*B4*=0, we then obtain

Lemma 7*8. For 2<C£<;oo, ^eM, ?*e/f and Al =

(7. 12) (|| S Aa\\«>r= || A?

-where Af A/ = 4^f^4/f,e J?g* (M, ?) wzV/i g~1-l-2^>"1 are consider-

ed as elements of Lg(M,^)* if 2^P<^4 and as elements of Lp/2(M9y)

if 4<^p<^oo. The norm \ - ||p/2*
) denotes the norm in the dual space

Lq(M, T]} * if 2<^p<^4 and \\ • ||̂ 2 zf 4^/>^oo. (TA^ £wo coincides for

Proof. If p=oo, the statement is a property of C*-norm. Let

3. By Lemma 4.1 (1), there exists a partial isometry u in M

and f EiJ/ such that

Zj > f,? >

u*u = s*(§) and ||f] A^||f = ||?||2/p. By Lemma 7.7, we have I] A?A,-

— A*A, = 0 for all j and hence ]£AM,—A*A = 0 in _£* (M, 7^). If

^, this implies J] Af Ay^ = A*A^ = 4/f^ and (7.12) holds due to

^lli%=l|frp (Lemma 4.1 (1)).

Now let 2<£<4. For xeM0, we have xy^Lq(M, 7]) , xy = yy for

y^(0"-1/2(^*)) eM$ (elements of Mx entire analytic for ^'(y) = J

and

(7. 14) <x, E AfA,>M = to, (2

= 2]
*, y
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= g (<#

By the same proof as the preceding Lemma, (7.14) for x^MQ im-

plies

(7. 15) (B, ± A}Aj>M = <B, 4/?>c.)

for all BtELq(M, 7]} . Hence f] Af Aj = J?/£ in Lq(M, ?) *. For
*,j

we have 2<J#<oo and hence we obtain by Lemma 7.4

(7. 16) || ± AM,ll$HI4f?ll$= II£II I / J F = (IIS

If p = 2, then (7.14) for ^re7Vf0 implies the same for x^M by the ap-

proximation argument of the preceding Lemma. Together with

(7. 17) <*?, 4 ,>(,)
(7. 14) for x^M implies

s'

§ 8. Clarkson9s Inequality

In this section, we shall show Clarkson's inequality for

2;<£<<oo. It implies the reflexivity of the Banach space Lp(Af, ^),

<oo.

Lemma 8.1. For 2^/><oo and Ci, ^2^LP(M, 7]) , the following

inequality holds,

(8. l) (||c1 + c,||»)'+ (||Ci-C,||?')'^2'-1{||C,||?»)*+ (||C,»,W)'}.

Proof. The following inequality is the key point of the proof:

(8. 2) i <C, + C,, CI >w + <Ci - C,, Ci > w I

where p'1 + (p') 'l = 1 and Ci and £2 in JTp- ( M, T?) . Before proving (8. 2) ,
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we derive (8. 1) from (8. 2) . By Notation 2. 3, Remark 7. 5, and Lemma

4. 1 (1) , there exist Ci and C£ in JL^ (M, ff} such that

(8.3) <Ci + C,,«>(,) = IICi + C.||?) UCniJP,

(8. 4) <C,-C2, «>(,> ̂  Ild-Csllf ||« lir •

We have still freedom of choosing 5=||CI||J?} and JHI&HJP and hence

we choose them such that |s| + |£|=^=0 and

(8.5) ||C. + C.||?)s+||Ci-C,||?)*

Substituting (8. 3) and (8. 4) into the left hand side of (8. 2) and using

(8. 5) , we obtain

(8.6)

We now prove the inequality (8. 2) . For C* = z^f,? and Ct = «i^f-,,

(z = l,2) (cf. Lemma 3.6), we consider the following function,

(8. ?) F(Z) =«>, (4r':X*M?u.

By Lemma A, F(z) is a continuous and bounded function of z for

0<[Re £<Il/2, holomorphic in the interior of this strip region. We have

(8.8) |F(i/p)| = KCi+C,,C'i><,> + <Ci-C,,CJ>c,)l

where we have used Lemma 2. 6 for <Ci±Cz, £*>(»> = <Ci,O(»>±<Cz, Ow,

where we have used (1.25), and

(8.10) |f ((1/2)+**) |
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By the three line theorem, the inequality (8. 2) follows.

A Banach space X with norm || • || is said to be uniformly convex

if for each £ with 0<£<2 there exists a c?(£)>0 such that x,

Nl^l, ||y||<;i and \\x-y\\^B imply || (

Proposition 8.2. L^(M,r[) is uniformly convex for

Proof. From Clarkson's inequality

for Ci, C2eLp(M, ?), 2^/.<oo satisfying ||Cy||?^l, J = l, 2. If ||C,

^>gT we obtain

which shows the uniform convexity of LP(M, rj) , 2<^

Corollary 8. 3. LP(M9 ij) (2<,p<oo) is a reflexive Banach space.

Proof. By Proposition 8. 2 and Milman's theorem (§ 26, 6. (4) of

[14])-
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§ 9. Uniform Strong Differentiability of the

Norm for

Let X be a Banach space. Its norm || • || is said to be uniformly

strongly differentiable if for any x^X satisfying x=^Q and ||.r||̂ l there

exists a continuous real linear functional ux on X and a monotone increas-

ing function dx(p) (p>0) such that \imSx(p')=0 and
p->0

(9. l) (lk+y|| - Wl -<«,, y»^l|y||k(l|y|i)

for all y. In this section, we show the uniform strong differentiability

of the norm || • \\$\ !<^<oo. The uniform strong differentiability of

the norm is equivalent to the uniform convexity of dual norm in the

dual space (§26, 10. (12) of [14]) and implies the reflexivity of the

space. Therefore we have only to consider the case

Lemma 9- 1. The norm || • \\™ (2<^<C°°) is uniformly strongly

differ en tiab le .

Proof. Let n<^p<2n, n — 2f39-". We prove by induction on n.

As a preliminary remark, Lq'(M,7j) for 2<^'<^oo is uniformly con-

vex by Proposition 8. 2 and hence the norm of its dual Lq, (M, ^) * is

uniformly strongly differentiable.

Let ^i^z^Lv(M,^) and ^j = uj^YJ^ be the polar decomposition given

by Lemma 4. 1 (1) . Then each term in

(9.2) C

is in Lq(M,7j) with q = p/2 if n>2 due to Lemma 7.3 and in Lg, (M,

ij)* ((q')-l + q-l = l) if n = 2 due to Remark 2. 7. Since 2<g/<°° for

7? = 2, the norm of Lq, (M, 97)* is uniformly strongly differentiable. For

other ?i, the norm of Lq (M, fj) is uniformly strongly differentiable by

inductive assumption. In either case, we have

(9.3) (IKi+C.U^'Hiqj-*', ( l |Cil i«) '=MJ*ll«< f I*>

by Lemma 7. 8 and the uniform strong differentiability implies
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(9.4)

where it is a continuous real linear functional on Lg(M,^) (or on

* if

(9. 5) C' = A\^u*u^ + W,ufujfa + fl*, e Lin (.£ *, (M, 7) )

where the linear hull Lin ( _£J (M, 77) ) is in Lq(M, ff) if 4<^?<[oo or in

Lq< (M, ??) * if 2<^<=4, and <?(|0) is a monotone increasing function of <0>0

vanishing as p— >0. Both u and S may depend on Ci through fi but they

are independent of £2- We have

(9.6)

(9. 7) l|C'||i"*)^2||fI||
f/'|f1||

f/'+ l

where equalities are due to Lemma 4. 1 (1) and Lemma 7. 4, the in-

equality for 2<£<4 is due to Lemma 2. 8 and Lemma 7. 4 and the in-

equality for 4<zp is due to Lemma 7. 3. Hence

(9.8)

(9.9)

(9. 10) v (C,) -*«

Then t; is a real linear functional of CE (for fixed Ci) by Lemma 7. 7

and is continuous by Lemma 7. 3 for 4;<£<Joo and by Lemma 2. 8 (in

view of Lemma 2. 6) for 2<;£<^4. From this we obtain

(9. 11)

(9.12)

Therefore, we obtain

(9.13) |||Ci + C,||»

(9.14)
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Since 8z(p)-*Q as p— »0 and Sz(p) is monotone increasing, we have the

uniform strong differentiability.

Corollary 9.2. LP(M, ??) * is uniformly convex for 2<£<oo.

Proof. By the equivalence of the uniform strong differentiability

derived in Lemma 9. 1 and the uniform convexity of the dual space, as

quoted before Lemma 9. 1.

§10. Polar Decomposition in L p ( M ^ i j ) ^ I^P<2

Lemma 10. 1. Let 2<><oo and p~l -f (p')~l = l.

(1) For Ci.C.eJVCM,?), Ci = C. in Lp(M,r>)* if and only if

CI^CE (i-e. Ui = ttz, $i = <f>2for£j = Ujdy*'i_C,j=l,2). (Uniqueness of polar

decomposition)

(2) X-p' (M, ^) = Lp (M, ??) *. (Existence of polar decomposition.)

Proof. (1) Let C/ = M^-A'CM V) and Ci =

O' = l,2). Then (C/, C7y) =0/(l) = I I C / I I J P I I C ^ I I S 0 due to Lemmas 4. 1 (1)

and 7.4. Since Lp(M,7j) is uniformly convex (Proposition 8.2), Cy

satisfying such a relation and with a given j^-norm is uniquely determined

by Cy If Ci=C* then ||CI ||?» =^(1)1/P= (\\^\\^Y''P= (\\^\\^Y"P = ||« I?
and hence Ci =C2- The uniqueness of the polar decomposition in LP(M, 7])

(Lemma 4.1 (1)) then implies Ui = uz, ^i — ^z-

(2) We already know that £V,(M,7]) can be imbedded in LP(M,

y)* (Remark 2.7 and Lemma 7.4). Let CeLp(M? 9?) *. Since u = 0,

0 = 0 gives Q = uJfyil'& J?P>(M, if), ive assume C^O. Then there exists

a nonzero C^Lp(M,y) such that (C, CO = HCliniC' l lS0- Let C7 =

be the polar decomposition (Lemma 4. 1 (1)). Then C" =

77) satisfies <C / /,C />(?)=||C / /||?')||C /|li*. By the uniform convexity of Lp

(M, 97) * given by Corollary 9. 2, such C" is unique up to multiplication

by a positive number r, i.e. C = ^C" '• Let (l) — rr(j>. Then ^ = uA^ as is

easily seen from the formula As^ = sA^. Therefore any

is in jC
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Remark 10. 2. Lemma holds also for p' = 1 if we replace LP(M, rf} *

by M# due to the known polar decomposition of 0eAf* (Theorem 1. 14. 4

of [19]) and the correspondence given by Remark 5.7.

Lemma 10.3. Let 2<,p<,oo and (p')~l = l-p~1. If ¥^H and

(M, ??) coincide as elements of LP(M, ij)* (i.e. (¥, C'??)iy = <C, C7>w

, ??)), £/ierc 77 zs z;z £/ie domain of C

Proof. Let ^ = uAlff, u^u — s(^>) and take the special elements

, 77) with o:eM. We have

(10. 1) (F, ̂ ) ^<C, C /> ( f , ̂  (^^? AV*W>u*xii) .

Since the set of x^M with ^^jr^O is (l — uu*)Mand 7] is cyclic,

(1-««*)5P" = 0. Hence (¥, orf) = (u*W, u*xff) and (10.1) implies

(10. 2) (Jft7, J^-^tf) - («*y, (5)

whenever (D = u*xy + (l)' with 0' <= (l — u*u) H because ^,?(5
7 = 0 due to

5(J#,,)=5(0). Since u*My = u*uM7] is dense in u*uH and u*uMy-\-

(l~u*u}H (which contains MT;) is a core of 4%*'>~(1/2\ we have Jjf?^e

D(A%^-(l/»-) and,

(10. 3) Ay$y=A%p

Therefore ¥ = uu*V = u^f*' T}.

Lemma 10. 4. L^^ 2</>^oo a;^ ^"^ (/>7) -1 = 1. Under the

identification of £p(M9-q) with Lp(M,y) and £p,(M,y) with LP(M,

I)*, <Z',Ow defined by (1.29) /or Ce^p(M,^)5 C e J7P, (M, V) w a

continuous sesquilinear form on Lp(M9y)§§Lp(M,y)* coinciding -with

the inner product in H if C' is in H, and hermitian in the sense

Proof. Hermiticity follows from the definition (1. 22) of o)v. Then

conjugate linearity of <(CX, O<9> in C follows from Lemma 2. 6 while the

linearity in C' follows from the identification of Jlp> (M, 7]) with Lp (M,

??)* through this form. The continuity KC, O^l^ i lCd^HCIIf precedes

the identification of £p, (M, 97) with LP(M,??)* (Lemma 7.4). By
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Corollary 2. 1, <C', O(*> coincides with the inner product in H if C' is in

H (Lemma 10.3).

Lemma 10.5. For l<p<2 and (pf)~1 = l-p~\ ¥^H can be

identified -with an element of Lp, (M, 7]) * through the inner product

in PL Then W^W2 in Lp, (M, ?) * only if ¥, = ¥2 in H,

(10.4) W\\?=\\V\\¥\

H is de?ise in Lp> (M, 77 ) * and LP(M, y) = Lp, (M, fj) *, -where the equal-

ity (10.4) holds for all ¥<=LP(M,7]). For A = uAy*EL £?(M, y) , \\A\\

Proof. By Lemma 7.1 (2), W^H is in Lp, (M, ?) * and

. By Lemmas 10.1 and 10.3, there exists C<EE J?r (M, ??) such

that ¥=£?}. Lemmas 7.4 and 4.1 (2) imply (10.4). It now follows

that ||C||p7) is a seminorm on H. Since Lp, (M, 7]) is dense in H (Remark

6.2), it must be a norm.

Since H separates Lp, (M, y) (cJf), H is weakly dense subspace of

Lp, (M, 77) * (Lp, (M, T]) is the dual of Lp, (M, 97) *) . By the Hahn-Banach

separation theorem the norm closure of H must coincide with its weak

closure. Therefore the completion of //relative to || • ||P
7) can be identified

with LP,(M,7)*.

By (10.4) and Lemma 7.4, we have || A\\™ -

Lemma 10.6. Let l<p<2. The subset £+(M,Tft of £P(M, T?)

consisting of all A1^, 0eMJ, coincides -with Lp(M1y') through the

identification of £p (M, 97) and L* (M, 77) .

Proof. By Lemmas 10. 3 and 3. 5, £p (M, 77) fl // is contained in
yi/czp)^ ^pjie get Q£ vector states (tiyy with yeM0 is norm dense in MJ

because MQy is dense in H. If ||0n-0||-^0 in M^, (pf)~1 = l-p-1 and

tends to 0 due to Lemma A (vi) . Since HJ^J^ =0n(l)1/p is uniformly
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bounded, the weak closure of VJ/(2p) in Lp(M,y) contains £+ (M, ff) .

Again the norm closure of the convex set V\/(2p) coincides with its weak

closure. It remains to prove the converse. For this purpose we use two

properties of Vt=V»w.

By Theorem 3 (2) of [2], ¥ is in the domain of J p f a y ) defined

by (11.3) and invariant under Jp(y, ^) . Since JP(y,y) has the unique

continuous extension Jp (T], 7)} to Lp (M, ^) as a conjugate linear isometry,

as will be shown in Lemma 11. 2, the invariance property will be preserved

in the closure of VJ/(2p). As will be shown in the same Lemma, 11$*,

^J?p(M,7j) will be mapped by this isomorphism to u*^1^ and the invari-

ance implies u = u* and (f)(u*xii) =(j)(x) for all x^M (i.e. u commutes

with A^y).

For yeAfJ and (p')~l = l-p-\

(10. 6) <rlV, (y *) y 7 = 4~V(2P) {<r$;(23J) (y ) } *rt/(Ip) (y ) V

by the definition VJ= (A^M+y) ~ = (JJ"(1/2)M» ~ for O^a^l/2. (Note

that y^ = 4/V(y*)^ for ye AT.) By Theorem 3 (5) of [2], reyj/C2p)

satisfies

(io. 7) (y, 0)^0 , <5 =<rlv»(y*) y? •
Since (Z> = ̂  with ar=^(^(fl-X(y*)y))*eM, we have (^e^ (M, 7j) C

Lp- (Af, 77) . By Lemma 10. 5, we obtain

for the above x and any W in the closure of yj/(ZI>> in Lf(M,fl). By de-

finition (1.22) and (2.11), we have for such W =

where we have used the first result above that u commutes with

Since Mj^ = Mo^ is a core of J1/2^ (by the definition of A^ and by \\Al

= ||j:*?7||), and since 5(J#I?) =5(0) = w*w, Al^M^ is dense in w
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Therefore u^>0 and hence u — s (0) . Therefore any W in the closure of

Vl/(2p) in LP(M,^) is of the form Afty.

Remark 10.7. In the first part of the above proof, H^/nJS0

= 0n(l)1/p-*0(l)VP=ll^?lli :°. Therefore Jft§? actually converges to Jft
in Lp-norm due to uniform convexity.

§11. Change of the Reference Vector ij

In this section, we discuss the change of reference vector 7] and the

associated isomorphism rp(^2, ^i) from Lp(M,y1) to Lp(A/,^2)« Let ^ and

?72 be two cyclic and separating vectors.

Lemma 11.1. Let 2<£<[oo. The mapping Jp (^2, ̂ ) defined by

en. i) «/,(?., TO c= j",2,,^^rcvj))c
,7^1) is a conjugate linear isometric map of Banach spaces

(with «*«=
= 0(w*j:/0- V P^w, ^ maps xr]l^L00(M,7]l) to

Proof. Let 2^^<cx3 and ^ — uA]l^l7]l be the polar decomposition

given by Lemma 4. 1 (1) . By Lemma C. 2,

en. 2) j
It follows that

The case p—oo follows from ^,, ,, = •/»,. ,,^J^»,.

Lemma 11.2. Le/f l^/>^2. T/ie mapping Jp(fl2, %) defined on

^ unique exiension (again denoted by «/P(^2, ^0) ^ ^ conjugate

linear isometric map of LP(M,7]1) onto Lp(M,f]^). It maps
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XP (-M, fa) to u*AlH^ e J?p (M, fa). Moreover Jp (fa, fa) and Jp> (fa, fa)

are adjoint of each other relative to the form <(C, C'X?> f°r

77) and Cx ̂  Lp> (M, TJ) , where p~1-\- (p') ~1 — 1.

Proo/. Let £' e Lp, (M, ft) and Ce-D«^-(1/p))- By the relation

''P'>, we obtain

en. 4)

By Lemma 11. 1 and the formula (1.6) proved in Lemma 10.5, we have

(H.5) \\Jp(v*,riG\\P = \\C\\P

for CeD(4^~(1/:p)), which is a dense subset of H, hence dense in H

relative to || • ||̂ l} due to Lemma 6. 1 (2) and therefore dense in LP(M, ^)

due to the density of H proved in Lemma 10.4. Since Jp(^z,^i) is con-

jugate linear on D(Af$~{l/p)), this proves the first assertion of Lemma.

At the same time, (11. 4) implies

(11. 6) <JP0?2, Vl)C, C%2) - <</p- 0?i, T?2)C', O(?1>

for all CeLp(M,Vi) and C'eL^(M, 972) and hence the last assertion of

Lemma.

Let 1 <^2, A = u^ ^_CP(M, %) and B = w JJft e Lr (M, %) . By

(11. 6) and Lemma 11. 1, we obtain

(ii. 7) <j,(%, 7l)^, 5>(,2) =<»* jj*;, ^c,,,

where the third equality is due to Lemma A (vii) , the fourth equality

utilizes M*j;Bf?i = j;i?BM* and f*^?1=^5'?1v* in the definition (1.22) and

(1.26) of o)7 and the fifth equality is due to (1.27). This proves Jp(y2,

i?l)A = u*4]/l7l2 for 1<^2.

Let p=I, A = uAit^£p(M,fqd and B = x7]z^L00(M, ??2) with
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The same computation as (11. 7) shows

(11. 8) < JP (ft, ft) A, J3>(fi) = <K* J1/*,., B>(?.>

and hence Jp(ft, ft) A = tt*J1/*,1.

Remark 11.3. If ft = ft, this mapping Jp(ft ^) corresponds to the

complex conjugation in the commutative case and to the adjoint * in the

case of Lp spaces defined by trace. By the explicit description of the

map «7p(ft, ft) given in Lemmas 11.1 and 11.2, we see that */p(ft, ft)

= J G ? 2 , ^i)"1 and J ( f t ? ) 2 = l.

Lemma 11.4. If Ce£»(^1/2)~(1/p)) (1<^2) or

(11.9) Jp

-where J™ is defined by (3.1).

For p=£oo, £ = udy*y 0?eE£>(4/*)) by Lemmas 10.1 (2) and

10.3 for 1<£<|2 and by Lemma 4.1 (1) for 2<><oo. Then Lemma

C. 2 implies (11.9) due to an explicit description for Jp (ft 7?) C given by

Lemmas 11. 1 and 11. 2. For p=oo,£ = xy with xeMand

(see Lemma 11.1).

We define rp(ft?ft) by (1.9).

Lemma 11. 5.

(1) rp(ft, ft) Z5 an isomorphism of LP(M, ft) onto LP(M, ft)

z*5 independent of y.

(2) rp(ft,ft) rp(ft,ft) =rp(f t , f t ) ,

cyclic and separating vectors.

(3) L** l<p<oo. C = «^?1

(4) L^^ C = J^i e L^ (M, ft) . T7ie?z rp (ft, ft) C - .rft-

Proof. By Lemmas 11.1 and 11.2, Jp(ft, ft) maps uAl^^Xp (M,

ft) onto #*J}ftte_£p(M, ft) for I^^<cx3 and xfteLro(M, ft) onto x*ft
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) for £=oo. Hence rp(%,?7i) maPs uAl^l^Xp(M,7]l} onto

nAfa^ J?P(M,7?2) for !<><oo and .r^ e £«, (M, ft) onto

Hence the assertions follow.

§ 12. Product and Holder Inequality

Let us recall Notation 7.6 for J?*0(M,^) (If^ASS00) » adjoint and

product. By Lemma 7.3, we may identify elements of J!*>Q(M,7})

(modulo induced equivalence) with elements of Lp, (M, 7]} (directly for

2<^/<;oo, through duality Lp. (M, 7]) = Lp (M, 9?) * for I<p'<3 and

through Lp, (M,?7) cLp(M, ??)* together with *-strong continuity on

bounded sets in Lemma A (vi) for // = !.

Lemma 12. 1. Le£ 1<>, q, r<^oo, £-x + (/>') -1 = q~1+ (<?') ~1 =

(1) If AI and Az in J?*/>0(M, ^) ar^ ^wa/ <2s elements of LP(M,

TJ), then A? = Af in LP(M, ^) , ^5=^5 a^<^ SA1 = SA2m Lr(M,7j)

where B<= J?$,Q(M, ff) .

(2) A* z's conjugate linear in A and AB is bilinear in (A, B) .

(3) The product is associative and (AB) * = 5* A*.

(4)

Proof. Viewing ^eC as an element of -C*o(M,y)9 it is easy to

check (/?A)*-/9A*, (0A)C=A(0C)=0AC and the equivalence of

Al = A2 with AI+ ( — 1)A2 = 0 in Lp(M,y) form the definition and linear

dependence of a)v on x's. (Lemma A (v) .) Therefore Lemma 7. 7

(2) implies (1) as well as (2) . (3) follows directly from the definition.

To prove (4), we may restrict AeJ?p(M, if) and B<=J?q(M,y) due to

(1) because «TS(M, y) is a subset of „£? (M, ^) on one hand and _C8(M, 7])

= Ls(M,y) on the other where s = p or g. Then (4) follows from

(12. i)
for any CeJ?r,(M,^) = Lr, (M, ^) due to Lemma A (iii) J

(proven in Lemmas 4.1 (i) for 2<^p<^oo, in Lemmas 7. 4 and 10.4 for

and Remark 5.7 for p=l) and \\xy\\™ = \\x\\ (Lemma 5.1).
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Remark 12.2. J?P(M,-q) is in _£J/,0(M, 77) and J?P(M, TTJ) exhausts

Lp(M,y) for l<^/><oo while J?*0(M, ^) exhausts LCO(MJ7}) under the

above identification. Hence the adjoint is defined as a conjugate linear

involution in LP(M97}) and product is defined as a bilinear map from

Lp (M, ??) (X)Lg (M, T?) into Lr(M,y}. In particular the adjoint coincides

with the map J p ( y , y ) as is seen explicitly on J?p(M9y) for 1<^

and on J?*0(M,^) for p—oo due to Lemmas 11.1 and 11.2.

Lemma 12.3. The multiplication of x^M= J?*0(M, y) vuith

*, (M, 17) wa&es Lp (M, tf) arc M-module (p~l + (/>') ""' = 1) . If

there exists W^H coinciding with B as an element of Lp(M,y)

( = Lp, (M, 7]) *) , ^/iew j:5 coincides -with xW as a multiplication of x GE M

072 rz vector W in H.

Proof. The special case of Lemma 12.1 shows that LP(M,^) is an

M-module. For 2<^p<^oo, W = By and xB coincides with x¥ = xBy by

definition. Let 1<^><;2 and A^X-p(M,y) coincide with W as an element

of LP(M,??). (Lemma 10.1 (1).) By Lemma 10.3, 7)^D(A) and W

— Ay. Then y^D(xA) and hence xA coincides with (xA)f) = x¥ (pro-

duct in H) by (2.5). Since xB=xA in LP(M,?) by Lemma 12.1, x/?

coincides with x^F in Lp ( Af, ^) .

Remark 12.4. Even if there exists W^H coinciding with B

(M, 97), ^ is not necessarily in the domain of B in contrast to

Lemma 10. 3.

§ 13. Linear Polar Decomposition

Lemma 13. 1. Let CeXp(M, ??) .

there exists

(13.1) C = C+-C-.

T/IZ5 decomposition is unique under the condition,

(13.2) /'(C+)J_^(C-)

zvfiere SM (Q is the smallest projection PeM satisfying FC^C ?>
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M-module Lp(M,y}.

Proof. As is noticed in Remark 12.2 Jp(^, ̂ ) maps ^^Lp(M,y) to

C*, i.e. C — ̂ !M> u* = u, 5(0) —uz and 0W = 0 (equivalently &JJ>7 = J5U&) for

p^=oo and ^ = XT], x^ — x for p= oo. For /> = oo, the unique decomposition

.r = .r+ — X-, x±^M+ implies the existence of decomposition as well as

the uniqueness because TJ is separating for M.

In the case p^=ooy let E+ be the spectral projection of u for ±1

and 0±=0o£±. Then E+ + E- = s((f>) , s(J*±I?) =5(0±) = JE± and ^,, = ̂ +i?

+ J 5 _ j . Hence

(13.3) J^?±«^?= (l±iO J

Therefore

(13.4)

which proves the existence of the decomposition.

To prove the uniqueness of the decomposition for p=^ooy we assume

C^C^ — C-» C±^^J(^,^) be another such decomposition satisfying

^(O-L^OT-). By Lemma 4.3 (2<[/><oo), Lemma 10.6 (1<^2),

Lemma 5.4 and Remark 5.7 (/> = !), £'±=41</%>7l for some0±eMJ satis-

fying s^Cj:) =s((/)'±). If we define a partial isometry w7 such that &' is 1

on s^(C+), ~1 on 5^(C-) and 0 on their orthogonal complement, then

(13.5) « /C /=C /
+-C-=C,^(C /) = («7)2

where £7 = C+ + C- = ^}$+ *_',?• By the uniqueness of the polar decom-

position, ur = u and C/ = ^J^« This means E±A^ = Al^tV This shows

C±=^l% and the uniqueness of the decomposition follows.

Corollary 13.2. Any ^<^LP(M,7]) (!<^><I°o) has a unique de-

composition C= (Cr+— Cr-) +^"(Ci+— C*-) -"^ ^Aa^ ^ r f f ^ L p ( M 9 7 / ) and

5^(Cr+)_L^(Cr-) wAen? r = r, z an^ ( T = + , -.

Proof. Relative to the conjugate linear involutive isometry Jp(^, ^),
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, TJ) has a unique decomposition

(13.6) C = ( R e O + » ( I m C ) ,

(13.7) Re C = (C + J, (V, V) O /2, Im C = (C - J, (?, V) C) / (2») ,

where Re C and Im C are uniquely determined by their Jp (??, if) -invariance

and (13. 6) . By applying Lemma 13. 1 to Re C and Im C, we obtain

Corollary.

Lemma 13.3. Any C e D (J<1/2) ~za) (O^a^l/2) /ias a decomposi-

tion

(13.8) C = Cr+-C

that ^fff^V" (r = r, z, 0 " = ± ) . TTizs decomposition is unique if

-we impose the folio-wing condition.

(13.9)

(13.10)

First consider the case l/2>a>l/4 and let ^

By Lemmas 6.4 and 10.1 (2), we may apply the proof of decomposition

in Lemma 13.1 Ce XP(M, ??) - LP(M, 77) for />=(2a)"1. Since JP(^,^)

coincides with J$2P> = J?> on D(J{1/a)"2a) by Lemma 11.4, and since the

range of J™ is again in D(41/2)~2a) (Ji* = Jjtt"(1/2)J,), both Re C and Im C

are in D (4(1/2) '2a) . If C e D ( Jf 2) ~2Q:) is J^-in variant, then C = «^ty with

^eD(4^) by Lemmas 10.1 (2) and 10.3 and «* = «, 0M = 0 as in the

proof of Lemma 13.1. In the same proof, 4^,, = J^s^) Z35(0±)J^

and hence ^eD(jy^). Therefore C± in Lemma 13.1 belongs to V".

The uniqueness of the decomposition is a special case of Lemma 13. 1.

Next consider the case l/4^a^0. If CeD(41/2)"2a), then JCeD

(J5"~(1/2)) due to JAy^A~lJ. We can apply the above proof for a'

= (1/2) -a (2a-(l/2) = (l/2)-2aO and obtain a decomposition

(i3.il) Jc-c+-c;-+/(a-c-_)
with 5^(Cr+) -L^(Cr-). Therefore we obtain the decomposition (13.8)

satisfying (13.10) with &ff = J C« due to J V? = V% (Theorem 3 (4)

in [2]) and SM' (J ?) = j (sM(f)) . Conversely, the decomposition (13.8)
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satisfying (13.10) implies the decomposition (13. 11) satisfying

SM (Cr+) -LsM (Cr-) with Crff = «/Cr(T and hence the uniqueness of decomposi-

tion for the present case follows from the same for the first case.

§ 14. Proof of Theorems

Theorem 1. (1) For 2fj£<[oo, LP(M,7/) is a Banach space by

Lemma 6.1 (3) and is an Af-module by Lemma 4. 4. For 1<^><C2, || • ||^

is a norm by Lemma 10.5 and Lp(M,y) is a Banach space by definition.

In either case Lp(MJy} is an Af-module by Lemma 12.3.

(2) and (3): <(C, Oo?) is a continuous sesquilinear form on LP(M,

y) x Lp, (M, y) for p~l + p'~1 = I satisfying (1.6) by Lemmas 10.4 and

10.5 for l<^<oo and by (5.12), Lemma 5.1 and Lemma 5.4 for p

= 1 or oo. It coincides with (C, C') in H whenever C and C' are in H

by Lemma 10. 4 for 1<^<C°° and by Remark 5. 7 for p = \ or oo. Since

HriLp(M,y) is either whole Lp(M,y) or a dense subset (Lemma 10.5),

<(C, Oo?) can be obtained as the unique continuous extension of (C, CO -

By Corollary 8.3, Lp(M,7j) is reflexive for 2<^p<^oo and by Lemma

10.5 Lp,(M,y)=Lp(M,7])* for 2<><oo and (P')~* + P~l = 1. By Lem-

mas 5.1 and 5. 4, L, (M, 77) * = (M*) * - M- L^ (M, ?).

(4) By Lemma 8. 1.

Theorem 2. By Lemmas 11.1, 11.2 and 11.5 where (1.9) is used

as a definition.

Theorem 3. (1) (3) and (4): By Lemmas 4.1 (1), 4.3 and 3.5

for 2<£<<oo? Lemmas 10.1, 10. 5 and 10. 6 for 1<^<^2, by Lemma 5.1,

Lemma 5.2 and polar decomposition of x£=M for p=oo and by Lemma

5.5 and Remark 5.7 for p=l. Note that (1.18) is given by (1.22).

(2) By Lemmas 11.1 and 11.2.

Theorem 4. By Lemmas 5. 1 and 5. 4.

Lemma A. Proved in Appendix A.
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Theorem 5. By Lemma 12. 1. (Note that (1. 30) is obtained by

repeated application of Lemma 12. 1 (4) and the equality \\x\\ — \\x\\™

for

Theorem 6. By Corollary 13. 2,

Theorem 7. (1) The first half is by Lemmas 3. 5 and 3. 6, except

for \T\7]^Vl for T affiliated with M, which follows from the duality

of Vl,/2 and yj along with (y*yq, |T|?) - (ytf, |T|y?);>0 for yeM'. For

the second half, we use JCeY^' if a' + a = 1/2 and C^V? (Theorem

3 (4) of [2]) and apply the first half to JC to obtain JC = «

and hence C = «'|Cr« with u'=j(u)s=M', |CI '« = «/! JCU-^y? and

(2) The first half follows from polar decomposition C — ̂ ICU in

£i/<2a) (Af, ^) 5 which implies |C|a = «*C due to u*u — s^(|CU) > and therefore

ICU^y? due to Ce^, Lemma 12.3 (hence ICU^-fiT) and Theorem 1

(5) . The second half is obtained by applying the first half to J"C to

obtain JC = «|JCI« (a =(1/2) -a7) and hence C = w / I C U - as in (1).

(3) Any Cey?cLJ(M,^) (p= (2a) ~x) is of the form J1^ for

a 0eMJ by Lemmas 10.6 and 10.3. If C^T^ is of the form C = <^,

then J^eJ?p(M,v) coincides with C (in Lp, (M, 77) *) by Lemma 2.2,

hence the uniqueness of 0 for a given C-

(4) By Lemma 13.3.

Corollary. Any 0eMJ has a vector representative ^^H, to which

we apply the second half of Theorem 7 (2) to obtain C — z/|CU with |CU

eV" for any O^a^l/4. Since «7*w'|CU = ICU, the vector states by

|C la and by C is the same and are 0. Conversely, any two representative

Ci and CE of the same 0 are related by Ci — u'£2 where u' is a partial

isometry in M' satisfying ufur* — sM'(£^, u'*u' = SM' (C2) • Hence by the

uniqueness of polar decomposition in Theorem 7 (2) , we obtain the unique-

ness if Ci and CE are in yj.

§ 15. Discussion

The Lp-space LP(M) of Haagerup ([18]) is defined as: the set of
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all r-measurable operator T affiliated with N satisfying 6t(T) = e~t/pT9

where N= MX ffR is the crossed product of M with the modular action

o~t of jR induced by o)v, 6t is the dual action, and r is the canonical trace

on N. The spatial Lp-spaces of Hilsum Lp (M, a)v (J- J) ) (see [12] ) con-

sists of operators T=u4ff with the norm || T || = <f> (1) 1/p. Our _£p(M,tf)

is seen to be the same as LP(M, a>, («/• J")) .

We note that Hilsum's theory uses the Z/p-spaces of Haagerup through

an isomorphism and Haagerup's construction of Z,p-spaces goes through

the crossed product of M with the modular action. In contrast, our

construction is directly on the Hilbert space H (without using trace any-

where) and reveals a close relation between the positive part of Lp-spaces

and the positive cones V" associated with the von Neumann algebra M.

Another advantage of our method is that the linear structure of Lp-spaces

is clear from its construction in contrast to the discussion of Hilsum

where it is discovered by finding an isomorphism with the Z^p-spaces of

Haagerup. Our discussion of positive cones is closely related to recent

results of Kosaki [16], [17].

Appendix A. N point Analytic Function

In this section we give the proof of Lemma A in Section 1.

Lemma A.I. Let 0/eMJ and x^M (j = 0, • • - , ri) . Let £ =

be the representative vector of (j)Q (in 3?®) . Then

(A. 1) £(*)

is defined for z= (zl9 • • • , zn) elf/2 (in the sense that $ is in the domain

of the product of operators in front) , holomorphic in the interior of

1$ and strongly continuous on 1$ with the bound

(A. 2) iic
where ||^||=^(1). \\M = llf P> *o^(l/2) -S «, <™d W « defined byj=i
(1. 21) where 1 is to be replaced by a~^>0,

Proof. The tube domain J^n) has the following distinguished bound-
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aries corresponding to extremal points of its base:

(A. 3) dj™={z: Rezj = 0, j = l,-,n},

(A. 4) dtIP={z: Re z, = 0 OV=*)> Rezk = a}, k = l,-,n.

The expression (A. 1) is well-defined and (A. 2) holds on d0I^ obviously

and on dklf (k = \, • •• ,«) due to the following formulas:

(A. 5) C(

(A. 6) C.

(A. 7) y „ =

(A. 8a) Jft, J;?' = «,**' (?) , «, = Wy : Dift h e M ,

(A.8b) 4(

(A.8c) w

(A. 9) (

Here ?7 is any faithful normal semifinite weight, G\ is its modular auto-

morphism, the formula (A. 6) is due to (C. 1, 3, 4 and 12) , the formula

(A. 8a) due to (C. 5), the formula (A. 8b) due to Theorem Cl (/?!),

? (0fc) is the unique vector representative of (j)k in 2?!̂  and the rest is a

straightforward computation.

Therefore, if the expression (A. 1) is defined for zEE-Zi/5, holomorphic

in the interior of /^ and weakly continuous on J$§, then (A. 2) follows

by the generalized three line theorem for several complex variables

(Theorem 2.1 in [3]) applied to

(A. 10) IIC(*) | |=sup{|(C,Ci) | : IICi||<l}.

To show that £ is in the domain of the operator in (A. 1) as well

as holomorphy and weak continuity, we use mathematical induction on

n. The case n — \ is known due to xfeD(J^). Assume the assertion

for n. Let *= (w, zly • • • , zn) be in 7&+1>, 0eMJ and Ci €= D (Jft) . We

consider the function

(A. 11) GO) =
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which is holomorphic in the interior of J{/2
+1) and continuous on il?2

+1)

(by holomorphy and strong continuity of JJ^Ci as well as by inductive

assumption) with the bound

(A. 12) \G(Z) i^nc.ii ikoi ii^r-mr*-1"" ri (ik/n ii&r •')
j=i

due to the generalized three line theorem and estimates at distinguished

boundaries similar to (A. 5) and (A. 6). Hence G(z) is a continuous

conjugate linear functional of Ci and there exists t^EiH such that G(z)

= (C, CO • Hence C(^) is in the domain of A™^ (hence of xA™^ for

x^M) if (w, zly • • • , zn) is in 7J/2+1). Due to the uniform bound on

£)=A™^(z) given by (A. 12), this also shows holomorphy of C as a func-

tion of (vu, zl9 • • • , zn) in the interior of /i/2
+1) as well as weak continuity

on 7&+».

The strong continuity can be proved again by induction on n. Step

from n to n-\-\ is as follows. We use the formula

(A. 13) A%f-^ = JliX*All^Y--x?Al\,^

which is obtained for pure imaginary z's from the formula (A. 6) (with

an appropriate change of notation such as 0fc— >0, k + !—>!, ^— >0, wfc— >1,

tk—^i——^th and uk-*u~ (D(j)\ DTJ) t) by using the first formula of

(A. 8a) and the formula (A. 8b) (both depending on f only through

with a change ?->?(#) for replacing ^(0 w*^' (f (0)) in y* by

;//w where **'(£(#)) is to be supplied from f (0) by 5*'(f (0))f (0)

and commutativity of 5"Y '(f(0)) with x^eM and ^,W) and for

a similar replacement of tT? (•)«*, and hence holds for zEzIip by analytic

continuation and weak continuity (with a help of edge of wedge theorem

as applied to the difference of two sides compared with analytic function

0) . For 0<:Re z0<*(I/2) -Re £] z,= w0, we have

(A. 14) J^C = {Ah (1 + Jfc) -1} (1 + J?fi) C

with C given by (A. 13a) . The first factor on the right hand side is

strongly continuous with norm <[1 and the rest is strongly continuous

by inductive assumption and (A. 13) . Therefore we have strong continu-

ity for n.
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Lemma A. For the sake of convenience in the proof, we replace

T! in Lemma A by $ = $($o) ((j)Q^M%} everywhere and call it Lemma A.

(Namely we drop the assumption that o)v is faithful. Since we shall use

another faithful normal semifinite weight f] as an auxiliary tool in the

proof, we introduce $0£=:M* instead. In our application in the present

paper, we need only the faithful case.) In the following proof, 7] in the

statement of Lemma A is understood to be replaced by f whenever equa-

tions or statements in Lemma A are quoted. In addition x3=-xss^ (f) x"j

in (1.27).

Proof of Lemma A. Let the right hand side of (1. 22) be Fj. By

the holomorphy, strong continuity and boundedness of (A. 1) proved

above, we see that Fj is holomorphic in the interior of the domain I3

defined by (1. 23) and (1. 24), continuous on Ij and bounded as in (1. 25) .

Within Ij, FJ depends on z$ and z" only through their sum Zj and Fj

— Fj+i on I j r \ I J + 1 , both of which are seen by transposing operators from

one member of the inner product to the other. Since z(E7/ for all j if

°^I] Re ^-SS1/2* we have single function F(z) satisfying (1.22), (i) ,

(ii) and (iii) .

We use notation (1. 26) and let the right hand side of (1. 27) be

Gj where x3 = XjSM (?) x" in addition to replacement of y by f. If zk

— itk (tk<E:R) for k=£j and Zj = l + itj (tj^K), we have

(A. 15) F (*) = (^,y if , ̂ *y«f ) = (^ (f ) y?£ Wy) , y

where ^1 = ^^

(A. 16) *? J?#.**^^ ,

(A. 16a) y» = *> y+i0T/tl (j:y+1- • • u^tfl^ (.xn_<u,nGln(x^ ) • • •) wj e Af

(A. 17) J^l^f-r - - J^o*^^"-*-^ - ^ (?) 3^2

(A.17a) y2-^(JlfX^i"-^^2(^*^^

(A. 18) ut
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(A. 19) w, = (Dl : Df) ,,.,+...+«„, w'j = (DS : D?) _,,_..._,, ,

(A. 20) s*' (£) yay} = 3$ fi£itxi+1- -x^A^x,- -x,^j,t

and 7] is any faithful normal semifinite weight for the purpose of com-

putation. By using continuity of F and G/ and edge of wedge theorem

(for F—Gj on one side and 0 on the other), we have F(z) =Gj(z) as

an analytic function and hence F(z) =Gj(z) for ££E/in) by continuity.

This proves (iv) .

In passing we note the following: Using the third member of (A. 15),

we have

(A. 21) F(z) =

(A. 22)

Therefore, denoting z0 = 1 — ̂ , zk, we have
fc=i

(A. 23) F O) = a>ti (x,ffa.ti- • • xn j;:.,/c,

for s;ft = /^ (k^=j) and z^ = 1 + ify. Since

(A. 24) zy>s (^,+1, -., Zn, z0, Zl9 -, *

if and only if z^I[n\ (A. 23) holds for z^I(n} again by edge of wedge

theorem.

If ^2zj = ~L, then ZQ = 0 in (A. 23) and hence information on 00 van-

ishes from the right hand side of (A. 23) . Therefore F(z) is independ-

ent of 0o if Z]z./ = l» which shows (vii) .

(v) is immediate from definition.

To prove (vi), let us write F(z\v) instead of F(z) where V indi-

cates .r's and 0's together. Suppose that Va— »y in some sense and for

any K,

(A. 25) sup{\F(z',v)-F(zivJ\: zf=d%*\ I] zj\*<K}-+0.

Then we have

(A. 26) sup{\
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where zz=z^z}> By the maximum principle for analytic functions, we

have

(A. 27) *up{\4»(F(z;v)-F(zii>tt»

namely

(A. 28) sup{|F(*;v)-F(*;v t t)|: zs

We use the original definition (such as (1.26)) on 90^in) and the right

hand side of (A. 23) on 9/7Jn) where all Zj are pure imaginary. If x's

are restricted to a bounded set, all operators in sight are therefore uni-

formly bounded.

For boundary values, we have the following type of estimates when

\\yk\\^K and

(A. 29) ||

*-'« (y,-y,M,\\ + S **-'+
j=0 J=l

(A. 30) Cj = Wyj-i-yiWy£, C'y = y,-iC,-i.

We note that 4£
a->4' uniformly in *e[-T, T] if ||0a-0||-»0 (see

proof of Theorem C. 1 for 0) by proof of Theorem 10 of [2], and hence

the same holds for d$Jatea— >^,|. To deal with uniformity in t's appearing

in C and C'> we use a finite number of £lt such that any ^e[ — T, T]

has some £u such that HJf^of — 4tlJyol||<£. After replacing ^ by ^u,

we proceed with approximation of £2^ [ — T1, T] by a finite number of

points. We can then approximate (A. 30) for £fc EE [ — T1, T1] by a finite

number of vectors (up to £) and hence the convergence of (A. 29) is

uniform over (£1? • • • , tte) provided that £'s are bounded. This proves (vi) .

Appendix B. Partially Isometric Radon-Nikodym Cocycles

Let 00 and 0 be normal semifinite weights on M, 00 be faithful, the

relative modular operator J^ be defined by

(B. 2) S^OTI,O (x} = TI, (X*) (X e JV,

where N# is the set of all x^M with 0(x*jc)<oo and y$(x) is the
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vector in the GNS construction associated with 0 satisfying

i), and

(B.3) ut

where JJ%0 is defined as the sum of 0 on (1 — s((f)))H and the usual

power of J0>950 on s((f>)H.

Theorem B. 1. ut defined by (B. 3) is a continuous one-parameter

family of partial isometrics in M satisfying the cocycle condition

(B. 4) utffi'(ug) =ut+s

and the support properties

(B. 5) utuf = P , ufut = fft° (P)

for a projection P in M (P— s(0)). Conversely, for any continuous

one-parameter family of partial isometries ut in M satisfying (B. 4)

and (B. 5) , there exists a unique normal semifinite weight $ on M

such that (B.3) holds. (Then P=s(0).)

Proof. (B. 4) and (B. 5) follow from the definition (B.3). The

fact that ut belongs to M follows from the Tomita-Takesaki theory for

2x2 matrices over M restricted by the projection (~ (dh)' (Theorem

c.i (r).)
To prove the converse, let 0! be a faithful normal semifinite

weight on (l-P)M(l-P) and fa(x) =&((! -P) x(l-P) ) . Let vt =

(D<f>2:D$0)t and fwt = ut-
irVt. Then wt is a unitary tf^-cocycle and hence

there exists a faithful normal semifinite weight 0 on M such that

wt=(D([>:D(t>0)t. (Theorem 1.2.4 of [9].)

From (B. 5) for ut (by assumption) and for vt with P replaced by

(1 — P) (by the first half of Theorem), we have

(B. 6) ffi (P) = wt(jp (P) wf = uto-t° (P) uf = P ,

namely P commutes with 0 and hence with 4J%0. Furthermore (1 — P)wt

= vt and Pwt = ut. From the first equation explicitly written in terms

of J's, we obtain

(B.7) (1 - P) 4%, = 4%. (l-P) = 4Uo-
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Since ^"8,#0^,"0 is independent of 00, we may replace 00 by 0 and we

obtain

(B.8) 4(1-P)=42,0

for £ = /£ and hence for all z. By taking z — 1/2, we see that .re

A^nN| (which is equivalent to r/0(x) 6ED(4/2)) implies ^((l-FU)e

jD(zfJ,/2) (because P commutes with 0), hence x*^N^ and

(B. 9) 0 ( (1 - F) xx* (1 - P) ) = 02 (*.r*)

(due Lo ||J^%^(x) ||2= ||%, C**) ||2). For any j;0eM,, there exists an

increasing net xa^M+ such that 0(.rQ:)<oo (i.e. xi/2e A^ fl A^) and

^^sup^o: due to semifiniteness of 0. If x0e (A/i_p) + in particular, then

xa^.(Ml-P)+ and hence, by (B. 9) ,

(B. 10) 02 (x0) = sup 02 (xa) = sup 0 (>«) = 0 (x0) .

Since the support of 02 is 1 — P, we have for any

(B.ll) 02(x)=?i2((l-JP)x(l

Since F commutes with </),

is a normal semifinite weight on M and Theorem C. 1 implies

with 5 (Jrf,*e) = P. Hence «t = (D(j) : D00) t.

The uniqueness of 0 for given ut follows, for example, from the

uniqueness of faithful 0 = 0 + 02 for a given (D0: D00) • (Theorem 1. 2. 4

in [9].)

Appendix C. Relative Modular Operators

We shall use standard results on Tomita-Takesaki Theory [23].

Let 0 be a normal semifinite weight, 5(0) be its support projection, N$

be the set of all x^M satisfying 0(x*.r)<oo? N* be the set of x*

with x^N$, M+ be the linear hull of N^N^ (to which 0 is extended

as a finite-valued linear functional) , fff be modular automorphisms of

s(0)Ms(0) determined by 0, N^ be the set of all xes(0) A^5(0) such
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that x is tft-entire analytic, G\(x) &N+ for all z and

(which is dense in s(0)Ms(0) due to (T^-invariance of s ($) N+s

for x^N$ be a GNS-representation vector satisfying (% (.TI) , % (-T2) )

= 0(.r*.Ti) and xzy<f,(xi) = y(j>(xzxl) and £P^ be the closure of the vectors

Alfay]$(x) with .reA^nM+ (4^ is defined by (C. 2) below), which is

a proper convex cone. (Any y(x), .reA^flM^, is in the domain of

Jj(20 and hence of A1 fa.) In the following all y^(x) is in one Hilbert

space H on which M has a standard representation (although all discus-

sions can be carried through even if % (x) for different 0 are in different

Hilbert spaces). For each 0, there are many choices of the map xtEM

(-»% (x) €E // and we shall deal with all possibilities for %. Hence we

denote the set of all % by M and we introduce a notation $ = a)y for any

given y = y<i>. We also write A^ for JV0 and ffv for 0** if 17 = %. If 0eM*,

then %(.r) =.r^ for a vector T? = %(!) and the vector state ft)7 is 0. The

closure of f] (A^) is Af-invariant and the corresponding projection operator

(eMx) is denoted by SM/ (y) , while s(o)7) (eM) is denoted by SM (y) .

If o^eMJ, then they are M'- and M-support of the vector ^ =

For ??! and f]z in M* we define

(C. 1) SM2 (yz (x) + (1 - /" (

for all x^N,9nN* and C^/f. If % (*) + (1 - **' (ft) ) C = 0, then each

term (having mutually orthogonal Af'-support) vanishes and hence

•z^ (ft) =0, which implies the vanishing of the right hand side. Therefore

SVllV9 is a well-defined, conjugate linear operator. We shall see below

that it is closable and has a dense domain. By polar decomposition of

the closure SVllVs, we obtain the relative modular operator

(C.2) ^ = S*,,,S^

and the associated partially isometric conjugate linear operator JVil1l2:

(C.3) S^ = J,,,^,

and J,*,,A,,8 = ̂ 0?i)^'072), J^Jt^s"^)**"^).

In the following, Az for a positive selfadjoint operator A denotes

the sum of 0 on (l — s(A))H and usual power Az = exp (z log A) on

s(A)H.
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Theorem C. 1. (a) SVlir}z is a densely defined closable operator

-with its support s(SVllVJ = SM (^0 SM' (^2) and the closure of its range

(/?) J9i>72 is a positive selfadjoint operator -with the support

(C.4) * (A*)

depends on ^ only through the -weight a)7!i and have the follozving

properties.

for

There exists a continuous one -parameter family of elements

(Dfa: D(j)2) t of s (fa) Ms (fa) depending only on 0j = &VJ Q" = l,2) and

satisfying

(C.5) ^^(DfaDfa^'W

for all TJ.

(£3) If z(=N,,r(N* and O^a^l/2, then

(C.6)

(C.7)

(^4) If u is a partial isometry in M such that u*u commutes

-with o)^ (in particular, if U*U^>LSM (^0) , then

(C.8) «<^*=4%1,,2

-where ?ve define (u°7]i) (x) =7]l(xu) and hence o)uoVl (x) =0)^ (u*xu) .

(/95) ./?1.?A.,A.* = 4^-

(7) If s(ipi) and s((j)^) commute, (D^^D^t is a partial isometry

with initial and final projections fff^s^) s(02)) fl«c? fff1 (5 (00 s (02) ) ,

having the folio-wing properties.

(rl) (£>0! : £>02) «* =

(72)

(C. 9)

(r3)

(C. 10) (D0, : D02) tfff • (a:) (D^ : D02) * = fff' (x) .
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(74) If either s ( f a ) ^ s ( f a ) or s (02) :>s(03), then

(C. 11) (Dfa : AW t (Dfa : D03) * = ( J% : D#») t -

(5) 7y~ ft)7o z°5 faithful, then £P^ zs a self dual convex cone having

the folio-wing properties.

(51) Any normal semifinite -weight (j) has a unique y = y\ such

that (J) — (J)T, and £P^ is contained in (if $ is faithful, identical with)

25.
(52) Any other y = y<f, satisfying 0 = 0)^ is related to T}\ by ^^(x)

= u'fpt (x) fwith a unique partially isometric operator uf in M' having

initial and final projections u'*ur = SM/ (97 J) and u'u'* = SM' (^) .

(53) Any 0eMJ has the unique representative vector

(54) For ^Ceffg , ||f-C

(e) Let «/=c/,0f7o /br a fixed yQ for -which co^Q is faithful. Then J

is a conjugate unitary involution, j(x) =JxJ^M'foranyx^.M, j ( y )

= JyJ<=Mfor any y<=M' and J has the following properties.

(el) Let 7}j = u'j7}l. for ^ = a>?, (j=l, 2) where f]\j is given by (51) .

Then

(C. 13) 5 ( J f l f f i) = 5^ fe) ̂ ' fe) , 5 ( J* J - 53/

(C.14) ^^^.^

(s2) If w' Z5 a pariial isometry in Mr and

(£3) For

(£4) TA^ 5e/^ of j(x)Tfi*(x), x<^N»Q, is dense in

(£5) A^ fe

(£6) For any

Remark. In the situation of (51),

Proof, (a) Let Mn be the n X 7 2 full matrix algebra with matrix

units Uij and M'n be its commutant with matrix units vtj acting on a
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Hilbert space of nz dimension with an orthonormal basis e^ satisfying

Ukietj — duekj and v^e^ = 8^6^. Let M{n) = M§QMn and consider M =

(M(n))j0 with E = XI sM 0?0 ®Uu, a faithful normal semifinite weight $ on

M given in terms of weights 0$ on M by

(C. 16) 0 (2 xt&Ui,) = £ 0, (*„)

and its GNS representation given in terms of ^ satisfying ^J = o)7lj by

(C. 17) 7? (E *y(g)«y) = X! ft (*,/) ®<%

on S="£s*(yt')s*'(->lj)H(g>etj, where xtJe.s"rtot)N^s*rtoi'). (Note that

ft(A?«)^/r(ft))=Av«)ft(ty,) is dense in s* (-qt) s*' &,) H.)

By the Tomita-Takesaki Theory, we have

(C. 18) S? ? (*) = % O*)

Since l(X)z^ commutes with 0, it commutes with

(C. 20) (1(8)^) / (l(g)^7) y (x) =

for xeAT^nNI (which implies ij(xij)^D(S^ and hence

for ^y= (1(8)^«) ^(l(8)wy/) —xij®uij)i and vectors (C. 20) are dense in

(l®uu)j(l®u3j}H. From (C. 20) , J(1(X)^) =l®u^ and ?,(**) with

Xi^Ui^NjftNl are dense in SM (7}i) SM/ (TJJ) H. Since ? (xy®^) = ̂  (j:y

(X)^- and ?((:r«/(8)«y)*) =?7*(j:i*) ®^i, we have JCtj^N^riN^. Therefore

^2(^) with ^eA^2nN*n5(00M5(02) are dense in SM (^) SM' (^ H.

Since Ni, = Nt,s(fa) +M(l-5(02)) and JV02 is a left ideal in M, (1

— 5(00)^5(02) is in A^2. It is also in Nfc because N"#l DM(1 — 5(00) .

Thus (l-5(00)A^(02)is in A^nN,* and %( (1 -5(00) N^(02)) - (1

— 5 (00 ) ̂ 2 (AT^) is dense in (1 — 5 (00 ) s3/' 0?2) H. Combining with the

above, we see that ^2(N^>sr\Nf]) is dense in SM' (^2) H and SVliVt is densely

defined.

By definition, 5^li?1 is 0 on (1 — 5 (00 ) % (A^2) and on (1 — SM' (TJZ)) H.

It is closable on s((^1)7/z(N^2) and its closure has zero kernel on

5 (00 SM' (%) H because of the same known property for 5?. Therefore

SVliV2 is closable and the support of its closure is SM (^0 s^ '(^2) •

By interchanging 0! and 02, f]\ (x*) with x* ^ N^ ft Nfz is dense in
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f 0?,) H. Therefore 5 (S* „) = „*' (Vl) f (%) .

(/?) By definition and the above result for s(SVllVt)9 4^,^ is a posi-

tive selfadjoint operator with its support given by (C. 4) . If ij[ and yl

give the same weight 0l9 then define u' as the sum of 0 on (1 — SM' (^) ) H

and the closure of u'^ (x) = y( (x) , x^N^, on SM' (^) H. Then uf is

partially isometric and commutes with x^M due to

(C. 21) w^itfi (x) = u'tii (x^x) = 7]( fax) = xtf{ (x) = X&'K (x) .

Therefore uf <=M' . We obtain from (C.I)

(C.22) S^z = u'SMz.

Since

(C. 23) *(J* „) =5(5* J =s*(7,)5"(V.)

^*" (7.) =«'*«',

u'JVl>V2 is partially isometric and we obtain

(C.24) 4;.* = 4.*

as well as

(C.25) ^ = «'̂ ,.

(/?!) By comparing definition of A% and ^.^, we have

(C.26) 4 = S4i.i,®««*to.

For xn e 5M (^) M5'¥ (^) , we have

(C. 27) 4< tei® «u) ̂ f" - C-f ( J:n® «„) .

Since l®^ii commutes with 0 and the restriction of 0 to M1(g)Ull =

A^(#1)®«ii'~Af*(#1) is 0i, the characterization of modular automorphisms by

KMS condition implies

(C. 28) ff't (

By restricting (C. 27) to (l(g)UnV22) H , we obtain (/?!) on SM (^) 5*'

and hence on ff (due to the support property of two sides of the equa-

tion) .

(/?2) Since l®wfcfc (k — i or j) is (T^-invariant,

implies
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(C. 29) ffl (S (&) S (0,) ®«y) = C7«®«y

for some Ut(E s (<f>{) Ms (<f>}) . By (C. 26) ,

(C. 30) .
£

By multiplying l®vkk, we obtain (C. 5) with Ut= (Dfa: D<fij) t and y = yk

on s** (yj) s**' (yk) H and hence on If. Since 4^i7 depends on yt only

through <f>t, Ut depends only on (fit and (fij.

(/?3) The first equation follows from

(C. 31) llA^iC**) II = II^.^U) II = IW.*.7.(x) || .

Then (C. 7) is due to Holder inequality. (Note that 4},,,,= sx (yd s*' (%)

and s*'(%)%(^) =%(^)-)

(/94) We have

(C. 32) SU,M2 (% ( x) + (1 - 5" (?,) ) O

^*«) = ̂ ,,7? fti («* J:) + (1 - **' (%) ) «*C)

Therefore

(C.33) $,*.,. = .W-

Hence we have

(C.34) J^1>?1 = KJ?1.?1«*.

Since 5(J,li72) commute with the initial projection w*« of ?^, we have (C. 8) .

(j85) From definition 5? = J?^
/2, we have

(C. 35) Js (2 C«<8>«y) = E ( ̂ ...A) ®e* •

Hence (/?5) follows from J^A7lJ7l=A^1 .

(7) If s (0j) and 5 (02) commute, then 5 (0t) 5 (02) (8)^12 is partially

isometric and hence (C. 29) shows that (DfaiDifi^t is a partially iso-

metry. Since s (<fii) s (<fiz) (§§Utt (i = 2 and 1) are initial and final projec-

tions for 5(005(02)(X)W12, ff?(*(0i)s(02)(g)««) =^>?<(5(01)5(02))(g)^ (Z = 2

and 1) are those for C/t(X)w12. Hence (7") holds.

(rl)~(r4) follows from (C. 5) .

(e) This is a standard result of the Tomita-Takesaki theory.
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(el) (C. 13) follows from (a). (C. 35) and JJ = 1 implies

^,^2,^ = s^O^)^7' fa) on SM fa) SM' fa) H and hence on H. Multi-

plying <7*ll72, we obtain (C. 14) .

Due to «79 (s (&) s (0S) (g)#i8) Jf eM7, we have

(C. 36) w - J?iif fs (00 5 (0a) J?ii?1 - J7li72 Jfiifi e **' fa) Af **' fa)

on SM (7}2) H and w is independent of ^2. Hence

(C.37) Jr
?I,,.s

Jr(7i)=

on H. Taking yz — ys = y0, we obtain

(C.38) JMt

with a partial isometry W-L in sM'((j)^M'. By taking adjoint, we have

JVo>Vl = Jw*. Taking y& = yQ in (C.37), we then obtain

(C. 39) J,li?i = wi J7oi72 = w^wf .

We have z^wf = «/?lf?0J?1>?0 = s3// fa) . Hence ylQ=wfrrjl satisfies o),10

= fi>?1» Vi = Wi^10 and JVloiVo = w?JyitVo = <w?zv1J=sM' (yw)J. After proof of

(51), we prove that J?1'0,?0 = **' fa) «J for ?& = ?& given by (51). Let

w7 be given by (52) satisfying ^io = «/Vio- By definition, we have ^^^

= w/*Sf^0,,0 and hence JVlo,Vo = u'Jv'lvi0. This implies w/ = 53f/fao) and hence

^io = w/*^io = ViO' Therefore T«;I = WI. Similarly ze^^z^- Thus we obtain

(C.12).

(£2) By replacing u' by 2^^'fa), we may assume that u'*u' =

5*" fa). Then si"' (u'-ql) =u'uf* and 5* («7V2) = ^ fa) (due to a)tt^ = to,,) .

Therefore

(C. 40) S .̂..f, («'7i (x) + (1 - 5jV' («'%) ) C)

= ^,,8«'* («'% (X) + (1 - 5W' («'%) ) C) •

This implies

and hence (C. 15) .

(£3) If .rneA^n(JV°0)*=N°0 (due to x*^N,a and
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J7o(<T5f/i(.r.)) ^r .r»<=NaJ, then

(C. 42) J% (:rn) = 4f % (**) = % (ff'_i/2 (**) ) .

Hence

(C. 43) A^-n* (***„) = ?, (ff!_°i/2 ( (<7!_°w (***.) ) *) )

(X*) ) %

with xsl = 0tV4 (^?) • Let x&N^ and

(C. 44) .r. = (»/n) I/2 f ffl- (x*) exp ( - n (* + (i/4) ) *) ^ .

Then arn has the property mentioned above and

(C. 45) xnl = si' (x) = (n/Tf) ^ fff!" W exp ( - w^2) dt ,

(C. 46) % O»i) = (» A) I/2 J J}frt (a:) exp ( - «

which converges strongly to x and ^0(-^) respectively as n—>oo. There-

fore j(x)-q*(x) for x^N^ is in £P^0 as the limit of ^o(^-i/4(x*^) ) e £Pj?fl.

(e4) For

(C. 47) ||

Hence %(•*«) ->i?o (*) implies <47/0 (^«) -><^o (^) for

Let yeAT,o. Then ej(y) eJVJ0, ^ (e? (y) ) ->% (y) , el°(y)*->y* and

hence ^o(e?(y)*el°(y))-*^o(y*y). In view of (C.43), JJ?(y*:y) is

in the closure of the set of j (x) yQ (x) , x^N0^.

Let ea = e% be a uniformly bounded net in NVo tending to 1. By

approximating JJJf (for a fixed vector £) in norm over a compact set

of t by a finite number of £ = ^, we find that the net 0"*° (ej (e«) ) for

any fixed 2: and n tends to 1 strongly. For x^NVor\M+, we set

y = x1/2el° (ea) . By the formula

(C. 48) ^ («) - JJJfVo (e*^*) = J («i/2 (e*) ) JJjffi, (x*)
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for e* = e = sn(ea), we see that yQ(y*y) = ej((T^i/2(e*))7]Q(x') -*rjQ(x) . By

(C. 47), £/*yQ(x) for x^N*onM+ is in the closure of the set of

4o4?oGy*:y), 3>eAT,o and hence of j(x)y0(x)9 xE^N°0.

(£5) If xtENVof}M+9 then x^N,9nN* and

(C.49) J4fto (*)=%(*)•

Since JJ{4 J= «/4^1/4, we obtain J-in variance of

(£6) If yeJV,0, then (£3) implies

(C. 50) xj(x) tf(y) ft (y) ) =; (*y) %

for any x^M. By (e4) , the set of j (y) f]Q (y) , y^N*Q is already dense

in ffg. Hence xj(x)$^Q* if fe f fg .

(5) The rest of Theorem is proved in [22], For sake of selfcon-

tained exposition, we include here somewhat different proof. £P^0 is a

convex cone by definition. For x,

(C. 51) j O) y, (y} =

by (C. 42) . (The formula holds for any x, y^NVo through an approxi-

mation by el°(x) and e? (y) .) Hence for x

(C. 52) 0' (j:,) % to) , ^" (x2) yQ (x2} ) = (% (

By (£4), (ft, £,)^0 for any ft,f2e£P?0, i.e.

(C.53) (ffg)

To prove the converse inclusion, let C satisfy (C, CO ^0 f°r

C'effg. L e t f e f f g . By (c5), i*'(f) =j(**(f))- Let ^^(^'
and consider Afe on e/£ Then f is a cyclic and separating vector

for Me on eH, J f f f is the usual modular operator for f on e/f (being 0

on (l — e)H) and hence the closure of 4/4^ (*) = 4/4^f = dtf'exef,

is FJ/4= £P^ defined in [2]. Hence it is the closure of the set of x

€, which is a subset of £P^0 by (£6) and hence contained in
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which in turn is contained in £P|J by (s6) .

For C' e £P? C $*, we have «, CO - (C, C') ^0. By the selfduality

of £Pf in *>// (Theorem 4 of [2]), we have <e ffjFc S**. The rest

is to find ?ae£P?0 such that e« = sN(£a)j(s*($a)) (as a net) tends to 1.

By (£3), £=j(x)Vv(x)*=2%. We shall show that **(£)=*(**)

for .re-ZVJ0. Since NJ0 is a dense subset in M, {s(x*) : JC^NVo} with

usual partial ordering of projections is a net tending to 1. Let e^M

and ej(x) 7?0 (x) = 0. Then j(.rO ^0 (^i) = 0 for x1 = x*ex^N,0 Pi M+. For

yeA/f0 , we have

(C. 54) 0 - fo (y) , j (xO T?O fe) ) - 0' (*?) ̂  (y) ,

Taking a limit of a net y = ya tending to 1, we may replace y by 1. Since

4yo is positive definite, we have i}o(xi) =0. Since ^0 is faithful, this implies

(ex)*(ex) =Xi = Q. Hence ex = Q, which shows sx(g)=s(x*).

(51) First we prove the statement for faithful 0. There exists

some TJI with 0)^ = 0. By the proof of (el), there exists a partial isometry

u' <=M' such that JVltVo = uf J. Since 1 = 5^(^0) =j(u'*u'), u' must be iso-

metric. Let TI— (U')*T}I. Then ft)v = 0 and JVi7lQ = J due to

(C. 55) 5Mo% (*) = («') *Vl (x*) = (a') * J?1,,0<:,0% (x)

We can now use the formula (C. 51) and (s4) for both T]Q and 7]

with common j and J. For x^NVo and y^Nv, we obtain

(C. 56) y (*) % (x) , j (y) ? (y) ) = (j (y*x) % (x) , i) (y) )

= (xJ% (y* x) , v (y) ) = ( J% (y*x) , V (x*y)

= (Jq (a*y) , % (y*x) ) = «f,0% (y*x) , % (

Hence £P,ttC (ffg) * = £» and ffgc (2>?)* = ff?, i.e. S>«=2'g.

Now consider a general normal semifinite weight ^. Let 02 be a

normal semifinite weight with support 5 (02) =l — s (0i) . Then 0 = fa + 02

is faithful and 5 (0i) commutes with 0. Let 7? be as above and 771 (x)

= V (•*$ (&) ) for x^N^. Then o>?l=0i.

By 5(4 t)=5A f(vO^ /(Vi)=^(0i)^(^(0i))^^ ^g ^ in ^ / f a n d
is generated by 4^ (x) = Jjffyi (5 (00 -^^ (00 ) • The characterization of
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modular automorphisms by KMS condition shows that (7| (y) = G\l (y) for

yes (00 Ms (00 (where s(00 is (^-invariant) and hence

Therefore £P7^ is generated by

(C. 57) <V (x) - 4/47? (5 (00 xs (00 ) e 2>«

with .reA^nM,, which shows iPgdiP? for this ^.

To prove the uniqueness, let 7}( be such that 0)^ = ^1 and 3?®C1 9?®.

Then there exists a partial isometry u' GEM' such that 7]{ (x) = ii'vji (x)

for xs=N^ and u'*u' = s?' (y^ . For any .reA^nM,, f = ft (01'i/4 (*) )

and £' = u'S. Then f e f f g c f f ? and f'e £Pg,C £P?. We also have o),

= o>f, and hence **(?)=**(?'), as well as s*1' (f) -j(^(f) ) = s"' (? ') .

If we restrict our attention to Me on e/f with e = s** ($) s*' ($) , then e£PS?

is £P^ for Me and any normal state on Me has a unique representative

in <?!?. In particular ? = £'. For xeJV^, let fffa(x) =xl — xz-}-i(xz — x^

with .Ti2>0. Linear combination of the above result yields yl (y) —ff^ (y)

for y = fft^/t (sl (Gifa (x) ) ) =£^(x) and hence for y — x by taking TZ— »oo.

By substituting x = £^(j:0 with Xi^N^ and taking ?z— >oo, we obtain

??i (.TI) = ?7i (.TI) for all Xi^N^ which shows the uniqueness.

(el, continued) We prove that JMo = s*' (y\) J (=^JsM((/)1)) for 7]l

given above. We have J^^(x) =y(x*) for x^NVar\Nf. Hence

Jd$0s((t>1)yQ(x) =^(j:*5(0i)) =yi(x*). Since 5 (00 is ^"I-invariant, we

obtain j(s(^))J^^(x)=Vl(x*). Therefore J?lif. = ; (*(&)) ^ (and

^u70 — s ($1) dVl,Vo) . Due to (Tf-in variance of s(00> we have ^i (j:) =y(xs((j)1))

=j(s(<t>i})y(x)- Since 97 (A^) is dense in ff, 53/'(^0 =./ ($(&)) -

(52) has been shown in the proof of (/?) .

(53) is a special case of (51) .

(54) Let 0 = ft)f + &)c. Then 0eAf* has a unique vector represent-

ative f(0) in £PJJ satisfying J^),^) =j(s((j))) Jj(s(<t>)} =eJ with £ =

5(0)^(5(0)) by (el). (Note that **'(£ (0) ) -j(^(? (0))) 0 If we restrict

our attention to Me on g/f, then 2%) = g£P£ is V^J) in [2] and the unique

vector representative f and C (both in eS^0 because sM($)^s(<f>) due

to ft)f^0, j ( s * ( f ) ) =**'($) due to ?e2^0, hence rf = f and similarly

^C^C) which satisfies

(C.58) llf-CII^W-oJJII
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where of indicates a vector state on Me. Since e£ = £ , we have a)$ (x)

= o)l(exe) and the same for C- Therefore

(C.59) la)l-o)l\\ = \\o)$-o),\\ .

Lemina C. 2* (1) Let $ be a normal semifinite weight on M,

£ ̂ H, y be a cyclic and separating vector in H and u be a partial

isometry in M satisfying i^u — s(<^). Then

(C. 60) Jf,,

(2) If £eZ>(Jj.,e) and ?eZ>«,) for O^A^l/2, then

and

(C. 61) Jftf J«l>-i«

•where <j)u (x) = <j) (u* xu) .

Proof. (1) We have

(C. 62) ^,

= «

where we have used (C. 8) in the first equality,

(C. 63) ™t=tf.M,= (Dfl)f :DA,),eM

(due to (C. 5) ) in the second equality, and the formula (C. 5) again in

the fourth equality.

(2) For z = it (tSER) and CeD(J$2)),

(C. 64) (C, J,>* j;.fff ) - (4ff-2C, « J5.?7)

holds due to (C. 60) =Ci and the following computation.

(C. 65) (C, J^CO = (d, Jf.& - (J^C2s J^C)

for Ca = 4^)+"^> satisfying ^(f)C2 = C2. Both sides of (C. 64) is holo-

morphic in {z^C: 0<Re 2:<C^} and continuous in the closure. Therefore

(C. 64) holds for all z^C, O^Re z<^L Hence ?^4,^eD(4^2)~A) and

(C. 61) holds.
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Lemma C. 3. Let y, 0 and 0 be normal semifinite weights satis-

fying 0^0. Then D(4,f) cD«f) fl»d

(C.66) Mif,C||^M}ffC||

for all CeD(4>7), where 0^^1/2.

. For ^ = 1/2, x<=N^N$ and C e (1 - s*' (?) ) /£ we have

(due to A^DAT0) and

(C.67)

Since the set of vectors f](x) + C' is a core for Jj(2
7, we obtain (C.66)

for ^ = 1/2 and for all C in D(^). By (D. 2) in Appendix D, we obtain

(C. 66) .

Lemma C. 4. Let TJ be a cyclic and separating vector and $ be

a normal semifinite -weight.

(1) ?e=D(4ft) if and only if tf(l)<oo.

(2) ^6E-D(J0t,) #* there exists some ^>0 satisfying 0 (

/or <2/^ positive x in M,

Proof. (1) There exists a net 0aeMJ such that 0 = sup0a. By

Lemma C. 3,

(C.68)

and hence

(C.69)

Conversely, if 0(l)<oo, then leJVJ ^N, = M and

(2) If 0Cy)<M(y) for y = ̂ *^ and xeM, then

, x*f (0) ) | - (^ (0) , f (0) ) |

Since My is a core of J^, we have J1/^ e D ( J1/2,) , i.e.

Lemma C. 5. (1) For $, y^H and
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(2) If T)<=D(AtJ and <x>l/2, then

Proof. Since || Afji \ = || s31 (?) £ || and H JJ.,7 II = II s* (f ) 7 1| , we obtain (1)

and (2) by the Holder inequality a^agaj-* (0<J/?<:i) for at=||J^||s

Appendix D

Lemma D. Le£ / &£ an operator monotone function on [0, oo)

and A, B be closed operators such that D(A) dD(B) and \\B£ \\<*\\ AS \\

for any S^D(A). Then D(f(A*A)l/z) cD(/(B*£)1/2) and

(D.I)

for any §^D(f (A* A) 1/2) . Jw particular,

(D. 2)

/or f

Proof. We may replace A and B by |A| and \B\ in the whole

discussion. Hence we may assume that A and J3 are positive selfadjoint

without loss of generality. Let E and F be spectral projections of A

and B, respectively such that AE and BF are bounded. By the assump-

tion,

(D. 3) || EBFEt || ̂  || FEE? \\ ̂  || BE? \\ ̂  || AES \\ .

Hence 0^ (EBFE)2<, (AE)\ which implies

(D.4) f((EBFEY)<f((AEY).

By taking the limit E-. >1, we see that the uniformly bounded sequence

(EBFE)2 converges to (BF)2 and hence (for example, as is clear from

a uniform approximation of f, which is continuous due to Theorem 2. 2

in [21], over the interval [0, ||J5^||2] by a polynomial)

(D. 5) || / (Bz) 1/2F£ || = || / ( (BF) 2) 1/2f || - lim || / ( (EBFE) 2) 1/
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1/2?| = lim

for any ? 6E£>(/(A2)1/2) . By taking the limit F->1, we see that £e

D(f(B2)1/2) and (D.I) holds. The function .r* is operator monotone on

[0, oo ) for 0<;/l<:i, which proves (D. 2) .
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