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Gravity Waves on the Free Surface of an

Incompressible Perfect Fluid of Finite Depth

By

Hideaki YOSIHARA*

§ 1. Introduction

We consider the nonstationary waves on the surface of an incompressible

perfect fluid of finite depth above the almost horizontal bottom in the case of

two dimensional irrotational motion.

We assume that the density of mass is equal to one, the gravitational field

to (0, — 1) and at the time f^O the fluid occupies the domain

0 ( t ) ^ { ( y l 9 y 2 ) \ y l e R l
9 -h + b(yl)^y2^fi(t9 y,)}

where h is a positive constant. We denote by Fb the bottom y2= — /i + Kj'i)

and by Fs the free surface y2 = rf(t, J'i)- The motion of the fluid occupying at

t = 0 the given domain Q is described by the velocity v = (vl9 v2)9 the pressure p

of the fluid and rj satisfying the equations

(1.1) - p i > + (i?-F)i;=--(0, l)-F/> for

<L2) * + *

(L3) - + y ' |7('?-J'2)=0, p=Po on

(1.4) v-N=Q on rb

and taking the prescribed values

0-5) rto.j

where F=grad, v - P =vl(dldy1) + v2(dldy2), P0 is a constant, N is the outer
normal to Fb and v0 satisfies (1.2) for yeQ and (1.4).
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For the investigation of the solvability of this problem, it is convenient to
use the Lagrangian coordinates. Let

be the parameter-representation of the free surface y2 = n(t, Ji) such that

-XO, x)=v(t, X + X&, x), X2(t, *)).

We see that on the free surface Xtt=vt + (v-7)v = — (0, 1) — 7 p. On the other

hand, differentiating p(t, x + X^t, x), X2(t, xj) = p0 with respect to x, we have
(l+Z l JC,X2x).Fp = 0. Hence we have (l+Xlx)Xltt + X2x(l+X2tt) = Q. It

follows from (1.2) and (1.4) that under the appropriate assumptions on v and

Q(f), v2 1 rs is uniquely determined by t^ | Fs. Therefore we conclude that there
exists the operator K = K(X, fe, h) such that X2t = KXlt. In Section 3 we shall
give the operator K the explicit form which enables us to investigate how the
operator K depends on X, b and h. In Section 4 the properties of the operator

K will be shown. Thus the problem is reduced to the initial value problem

(1.6)

(1.7) X=U, Xlt=V9 t = 0.

In this paper we shall show that this problem is uniquely solvable in a

Sobolev space when 17, F, T and b are small. The proof is based on the quasi-
linearization of (1.6) and the successive approximation for the obtained quasi-
linear system. Our proof follows that of Nalimov [1] with the modifications

caused by the fact that the operator

K(0, 0, h) = - i tanh (hD\ D = 4- -~-i ax

is not an isomorphism of Hs. In Section 5 we shall show that by putting

V 7 V \K7 (V V r7\ W' ( V V \—AH? £—Ax> yy—{^9 i, £), w — (,A, i1)y

we can reduce the problem (1.6), (1.7) to the problem

%n = Y, Yltt + a(W) \D\ Y1 =MW, W't),
(L8) ' Y2t=f2(W, W't\

(1.9) W=W, W't = W't, t = Q.

In applying the successive approximation to the problem (1.8), (1.9), the follow-

ing initial value problem is fundamental.
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(1.10)

(1.11) u = u0, ut = ul9 t = Q.

In Section 6 we shall deal with the initial value problems for these linear and

nonlinear equations.

In the case of the infinite depth, i.e., /i = oo, V. I. Nalimov [1] showed the

unique solvability of (1.6), (1.7) in a Sobolev space. The unique solvability of

the problem on the irrotational motion of the incompressible perfect fluid with

the free surface has been proved in the class of functions analytic with respect to

space variables; in the case of the finite depth in two dimensions, see [2], [3],

where the shallow water theory is treated; in three dimensions, see [4], [5].

We turn the reader's attention to that we do not distinguish the inessential

positive constants occurring in proofs and use the same symbol C.

Finally I wish to thank T. Nishida who communicated the problem to me

and T. Kano for the fruitful discussion with him.

§ 2o Operators In Sobolev Spaces

In this section we give the results of the functional analysis which will be

required in later sections. In solving the problems stated in Section 1, we use

only the spaces of real-valued functions of one variable, but here we deal with

complex-valued functions of several variables except the last article.

2.1. Notations and Definitions,, Let /c^O be an integer, 0<T<oo and B

be a Banach space. We say that u e Ck([0, T], B) if u is a 5-valued /c-times

continuously differentiate function on [0, T]. Let O be an open set in Rn,

By Cfe(O), 0^/c!g oo, we denote the set of all functions defined in O, which have

continuous partial derivatives of order :gfc. By Cg(O) we denote the totality

of u e Ck(Q) whose support is compact in O. By ^fc+r(O), (/c^O is an integer,

O^r < 1), we denote the set of all u e C*(Q) with

IMU*+r<fl) = sup \D«u(x)\+ sup \D*u(x)-D*u(y)\\x-y\-'<cQ
\<x\£k,xeQ \a\ = k,x,yeQ

where a = (al5..., an), a^O is an integer, |a|=oc1 + - - -+a n 5 Dj = (lli)dldxp Da

= Dl1"-Dfl
n. By 3"(Rn) we denote the set of u e C°°(J2n) such that

sup |xaD%(x)| < oo
x

for all a and /?, where xa = xf1---x^». For the details of distribution theory
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(3f(Rn)9 &"(Rn), Fourier transformation, convolution and others), see [6],

[8]. We denote by Hs(Rn), - oo <s< + oo, the set of all u e&"(Rn) such that

(1 + |f |)sa(£) e L2(R
n). Hs(Rn) is a Hilbert space with the inner product

(11, tO. = (

We put N|s= V(^4> (M, i?) = (ii, »)o, Nil = INIo- Note that

(w, i?) = (27T)-" ( *Kf Mf)df = f u(xjv(x)dx, (Parseval's formula) .

For u = (u j,..., MW), if UjGHs(Rn),j = 1,..., m, then we say that ueHs(Rn) and

write (11, 1?), = (11 lf wj) + - + (tim, t;m), ||ii||f = V(w, u)s for u,veHs(R»). A

pseudo-differential operator P(D) with a symbol P(£) is defined by

Note that ||w||s=||(l-f|/)|)sw|i. For the convolution u*v(x) = u(x — y)v(y)dy

note that ii7i; = fii), uv = (27t)~nti*v.

2.2. Convolution and Mollifier.

Lemma 2.1 (Hausdorff- Young's inequality). Let 1 g p g q g oo, 1 — (1 /p)

= 1 /r. r/^w for /£ L,(-R")? ^ e LP(JR") r/?e inequality

holds.

Lemma 2.2 (Hardy-Littlewood-Sobolev's inequality). Let 1 < p < q < oo

and put r = n(l-(l/p) + (l/qj). Then for feLp(R
n)

holds where K = K(p, q, «)>0. There is the another formulation equivalent

to the above. Let p>l, q>l and(l/p) + (l/q)>l and put r = n(2-(\jp)-(ljq)).

Then for /e L^K"), g e Lq(R»)

\x~y\-'dxdy ^C\\f\\Lp(Rn)\\g\\Lq(Rn)

holds where C = C(p, q, n)>0.

For proofs of Lemmas 2.1 and 2.2 we refer to [7] Section 2.

Take (peCo(Rn) such that cp = l in a neighbourhood of x = 0, cp(x)g:0 and
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cp(x)dx=l and put (pE(x) = e~n(p(s~lx\ e>0. Since (pE(£) = <p(e£), we have

*e(£)|gl and 08({)->l, (e->+0). Using the equality pe*t<(f) = 0e(f)0(£) and

the definition of the norm || • ||4>, we have

Lemma 2.3. LeJ — oo<s<-hoo. Then for ueHs(Rn) we have ||<pE*w||s
^||w||s and \\(pE*u~u\\s-+Q when e-»+0.

Lemma 2.4 (see [6] Lemma 6.1). Let a e &l(Rn) and define AB by

Then for ueL2(R
n) we have

where C>0 is independent ofu and s>0.

2.3. Sobolev Spaces. Here we pick up the several facts which we shall
use in estimating integral operators. For the proofs of them, see [6] Chapter 7.

Lemma 2.5.

i.e., there exists a constant C>0 such that \\u\\ L(Rn)^C\\u\\s for any ueHs(Rn).

2) Hs(R
"" 2

Corollary 2.6.

Lemma 2.7 (see [8] Lemma 2.6.1). ForO<s<l ,
>0 such that for any u

^^

Moreover

2-**\\u\\2
s^(2nTn^\m\\l + \t^^

Remarkl.S. Let 0<s<l, -oo<r< + 00. Since ||w||P+5=||(l-HD|)rM||s
and
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the norm ||w||r+s is equivalent to the norm

Lemma 2.9. For any integer m^[n/2] + l, UjeHm(Rtt), j = 1,..., /, and

multi-indices vpj = l9..., /, I v j H ----- Hvj|^m, the estimate

holds where C>0 is a constant depending only on n, m, /. Hm(Rn) is an

algebra, i.e., i f u , veHm(Rn) then uveHm(Rn) and \\uv\\m£C\\u\\m\\v\\m.

Remark 2.10. By Remark 2.8 and simple calculations, we have the

estimate

for UjeHm+r(Rn), 0<r<l. Therefore H8(Rn) is an algebra for any real

s ̂  [n/2] + 1 . Let w, i; e &>(Rn), s > n/2. From

and (l + |^|)sg(l + |^-^| + |??|)s^2s(l + |^-^|)s + 2s(l + |?/|)s we obtain by

Lemma 2.1

+ ^^

S ̂  C||u || .bll..

Consequently Hs(Rn) is an algebra for s > n/2.

Lemma 2.11. For u, Vj e Hm(Rn), j = 1,..., /, ?/?e estimate

w/iere m is an integer ^[n/2] + l, O is an open se£ containing {(x, t;(x))

to &m(Q) and C = C(m, n,

Remark 2.12. Using Remark 2.8 we obtain

||F(-,iOtt||M+rgC||F|^

where 0<r<l and Q is an open set containing {(X z)\xeRn
5 zeC1, \z\

^sup \v\}.
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2A Estimates for Commutators. Here we deal with the case n = l, so

we omit R1 in the notations. It is known that

(2.13) v . p . = - 7 K

where sgn£ = l for C>0., sgn£ = —1 for £<0 and c>0.

Lemma 2.14. Let r^O,s>l /2 and m be an integer ^2. For a,u

we have

1) ||[sgnD,fl]u||r^C||fl||P+,||ttL-r, teO

2) IIC^fl l t t l lgCllf l l lJI i i lL. i
3) |i[(l + lD!y,a>|^Ci |aiUN| | f_ l 5 r>3/2

4) ||[|D|', a-]u\\£C\\a\\l+,\\u\\t-i, 0<^1

[^4, 5] = ^1B — 5^4 aw^ C zs a constant independent of a and u.

Proof. 1) Put u = [sgnD, a~]u. Then we have

If sgn^-sgn^O then sgn^=-sgn?/ and

sgn ^g |f — r\\. Since f, r^O we have

Taking L2-norm with respect to £ and using Hausdorff-Young's inequality, we

obtain

l/2

2) Puti; = [Dm
3 fl]w. From the estimate |£w-??m|^C|£-?

~1} we obtain

Since m ̂  2, we can choose q such that 1/2 < q ̂  m — 1 . Therefore
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3) From |(1 + |{|)'_(1 + |,|)«| g c\l-n\ {(l + |f-,|)'-> + (l + M)-'} and

l/2<q<t— I, we obtain 3) in the same way as in 2).
4) Put u = [|D|', a]u. Then we have

Noting that 0<tgl , we estimate / = | IcI ' -M'Kl + M)1"'. For

Hence we have / g C(l + 1^ - »/|) and

In the same way as in 1), we obtain ||i;||^C||a||1+s||M||r_1. The proof is com-

plete.

Lemma 2.15. Let h>0, s^O. For ueH°, the estimates

hold where C = C(h, s)>0.

Proof. Since tanh(fc{) = (e*« - «-*«)(«** + e"*4)'1 =(sg" 0 (1 -2«-»HI •
}, we have

|sgn f -tanh (/i^)| + 11 -tanh2 (7i£)| ̂  Cg-*l«l .

From this we obtain the required estimates.

Lemma 2.16. For 0<s<l and an integer mSiO, there exists A=A(s, rri)

>0 such that for any ii
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(271)-' J | u (C) l 2 ( l+ l£ l 2 m + 2 s Ve

2 -2.rf.vrf,,.

Proof. Using the Parseval's formula,

\V\l-2*dxdv

by the transformation

Since |D™Oiz- O/z^lzl1-2 '^^! +|z|)-2|z|1-2s and 0<s< 1, the integral

converges. It is obvious that if we put this integral equal to ^t"1 then we obtain

the equality in question. For a>0, 6>0, we have 1 + ba ^ 1 +(1 -\-b)a

^2(l+6) f l. By a substitution a-^a'1, we have l + b1/a^2(\+b)1/a, and by b->

6fl, 1 +6^2(1 +6a)1/fl. Hence 2~«(1 +6) f lgl + /? f l^2(l +6)° is valid. Putting

a = 2m + 2s, b = |^|, we obtain 2-2'"-2s(l 4-|^|)2m+2S^ 1 + |£|2m+2^2(l +|c|)2'»+25.

Tf we multiply these by (2n)~l\tt(^)\2 and integrate, then we obtain the

required inequality.

§ 3. Representation of the Operator K

In this section we give the operator K the representation which is adequate

when we investigate the dependence of K on functions defining the bottom and

the free surface. We can not assert the validity of the following calculation if

we do not indicate which space the functions under consideration belong to,

but we proceed with calculations under the ambiguous assumption that all

occurring functions are smooth, small and tend to zero when variables tend to

the infinity.
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Let Q be the domain in the yl9 j;2-space which is identified with the z

= y1 + iy2 plane. Assume that the boundary of Q consists of Fs and Fb which
are given by

x), A2wJ or z(x

b: (x, —h + b(xj) or w(x) = x + i( — h + b(x))9 — oo<x< + oo .

Let vl9 v2 be defined in Q and satisfy the equations

d , d d d n •
a—vi + 3—^2 =^—vi — -*—^2 = 0 indyl

 l dy2
 2 dy2

 l

v. jV = 0 on Fb.

Then F = v1 — iv2 is holomorphic in Q. Put

(3.2) = 9i(x) + ig2(x)=

From v-N = Q we have g2(x)=—bi(x)g1(x). Taking z0eFs and the closed
path y in Q and letting y-»Fs U Fft, we obtain

o= - i v.P.( ^2?cr FJ r ,z-

Using (3.1) and (3.2) we have

(3.3) f(x)+v.p.v. . , . - f , ,m v )z(y)-z(x) dy y m }w(y)-z(x) dy

By

+d

y — x d y \ y — x y - x

8 , ( l -XM
dy 10gV+ y

and (2.13), the real part of (3.3) becomes after the partial integration in the
integrals containing log,
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(3.4) /i + isg

where

(3.5)

Taking w0 e Fb and proceeding in the same way as the above, we obtain

(3.6) gl~isBnD

where

(3.7)

U = aj(X, y)(y)dy, j = S, 6, 7, 8 ,

x-y

Eliminating #1? gf2 from (3.4), (3.6) and g2= —b±gl9 we obtain

{l-e-2*|0|-isgnfl(l + e-2*lD^

Since/j =v1,f2— —v2, K = K(X) = K(X, b, h) can be written in the form

(3.8) A:=-(l+fi1)-1(/ta

= - i tanh (HD)-B2

where

(3.9)
= i sgn
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B3= — i sgn De~h^bl +A2 — A4b1 ,

Aj,j=l,..., 8, are defined by (3.5), (3.7),

ft =j^L

§ 4. Estimates for Integral Operators

We shall show that, roughly speaking, K1 and \_d^d{, K] are operators of

order — 1. To this end, first of all, we consider the integral operator of the

form

(4. 1)

where b = (bl9..., bN), ajy bj are real-valued and F is smooth in a neighbourhood

of OeJRN , or

where /=(/!,..., /N), ̂  = (gr !,..., ^N) and F is smooth in a neighbourhood of

OeC".

In the following two articles we shall show that if functions a, fc,..., oc-

curring in the kernel are in //s, then An is in Hs and Lipschitz continuous with

respect to a, b,... . Since & is dense in //s, to simplify the statements we shall

assume that, unless the contrary is stated, all functions a, 6,..., are in &*.

4.1. Operators of the Form (4.1).

Lemma 4.3. Let k be an integer ^0, r^O and s>l/2. For A defined by

y
we have ||XM||P^C||a||k+r||M |s where C = C(k, r, s)>0.

Proof. Since

Au = a(v.p. — *D f cMj — v.p.—*(aDku)
\ X / X

= -TE/Ca, sgn/)]Dfcw
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the lemma follows from Lemma 2.14.

Lemma 4A Let j be an integer ^0 and

\u(x-y)\dy .y
Then ||/||£C||fl||7 + (1/2)||«|| where C = C(j)>0.

Proof. Since

we obtain the required estimate if we put m =j, s = 1/2 in Lemma 2.16.

Lemma 4.5. Let y, k be integers ^0, s> 1/2 and

L~~^i^""~y) 1 1 n f cb(x )~^ x ~y} d
v I I y v

C = C(j, fc, s)>0.

. L e t O < r < l . Then

(4.6)

If m ̂  1 then

(4.7)

where o^')(x) = 5ia(x). Therefore for s = 0, r we have

y)\ \y+ty\-'\l+t\*\y\Mdt
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^\t\^\t+l\'dt}\\l>*a\\m..

Since 0<r<l, \ |r|m"1|r+l|p^<oo. These inequalities and (4.6) show that
J-i

fjf -y | __ syf-y _ i) I

Drna\x±—a^x y) ^C||Dmfl||^r(l + |7|)~r|7lr~1

y
holds where m^O and C = C(m, r)>0. From this it follows that

Let r be so small that 0<r<s — (1/2). Then from Lemma 2.5 we obtain

If we put m = fc, s = l— (r/2) in Lemma 2.16, then the integral containing b is

smaller than C||&||£+(1_(l./2)), which proves the lemma.

Lemma 4.8. Let k be an integer ^0, s>l/2, b = (b1,...9 bN}9 bj be real-

valued and

Then we have M«||^C||f LHn)NU(l + ||b|j2) ||«||. where C = C(k, s, IV)>0,
is an open set containing the convex hull of

U>(x)-b(x-y) __QO<X9 y< +QQ1

Proof. For a function /(x), we put

It is easily seen that d/O, y)ldy+ff(x, y)= - ( l / y ) ( f ( x , y)-ff(xj). Using the

formula
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N
(we write this in the form F(b) — F(fe') = £ F/fcj — &})), we can write An in

the form

-yW

.

First we assume that fc = 0. Then we have

For 0<r<l,

By choosing r9 p and q such that 0<r<l/25 2<p<oo9 (1 — r)q<l and

) = l, we obtain from Corollary 2.6

jrMi^

and from Lemma 2.5

Therefore we have

\a(x-y)\

Using Lemma 4.4, we have \\AjU\\ ^Csup \Fj\ \\a\\ \\bj\\2\\u\\s. Next we assume

that k>Q. From (4.7) we see that

This and bj - 6} = - X^Sj + £}) show that
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By Lemmas 4.4 and 4.5, we have

Applying Lemma 4.3 to Bu we have for any fe^O

(4.9) M«II^Csup|F(fr ')l l |f l |yi 'L + cf suplF

which proves the lemma.

Iff has the form F(z) = z1---zMG(zM + ,,..., ZN), then

sup |F(b')l £(sup |fcll)-(sup |fti,|) sup

and

M
(]r[supiZ>;|)sup for

(H sup |6J|) sup |G| for l^j^

Using (4.9) and sup |fe}| ̂ C||6J2, we have

Lemma 4.10. Ler /c 6e an integer ^.Q, d = (dl9...9 dN), dj be real-valued

and

Then we have

MMII^CIIGL^
where C = C(k9 s9 M, A/r)>0, Q is an open set containing the convex hull of

{(d(x)-d(x-y))ly\-<x><x,y<+ao} and

Lemma 4.11. Let m be an integer ^2, s>l/2, b = (bl9..., bN), bj be real-

valued and

Au(X) =
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Then we have

where C = C(m, s, JV)>0, Q is an open set containing the convex hull of

{(b(x) - b(y))l(x - y) \ - oo < x, y < + 00} and F e &m(Q).

Proof. Note that \\Au\\m^C(\\Au\\ + \\DmAu\\). Putting /c = 0 in Lemma

4.8 and noting that m^2, we have

After the replacement of y by x — y, m-times differentiation with respect to x

under the integral sign and the partial integration, D'"Au(x) can be written in

the form

D"'An(x) = D*D>S-k(aF(b))u(x-y) dy =

Aku(x) = (Dk
yD^-ka)F(B)u(x -y)dy

+ I
J,n,p,q

where J, n, p and q move in the set such that

(4.12)

and FJ'p-q'n(z) is the linear combination of (d/dz)'"F(z\ |a|^J. We put Aku

= Aklu + Ak2u + Ak3n . Since D™~ka=D'"~ka, applying Lemma 4.8 to Aklu, we

have

From Lemma 4.10 we have

We may carry out the estimate for Ak3u under the assumption that
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(4.13) Pi + Qi^Pj + qp

When p0 + 2o+Pi + £i^2, we see from (4.12) that pj + q^m-2 for 2^ jgj.
Using (4.7), we have for 2^ j<£ J

H J £ s u p

Hence

Hl\ \\bn2\\m-\\bnj\\m sup \F>-*>'

9 by (4.13) and Pj + qj^l forj'^1 we have

Pj + Qj = 1 f°r J = !• Moreover from (4.12) it follows that J = m. If m g: 3 then

|D^,-Snj.|^Cl|fcKj.||3^C|lfenj.l|m for j*2.

If m = 2 then J = m = 2 and

H2\ \\a\\2 sup |^.»^«()| .

By Lemma 4.5 we have

This completes the proof.

The same consideration as in the derivation of Lemma 4.10 from (4.9)

leads to the following lemma.

Lemma 414 Let m be an integer ^2, s>l/2, & = (fel5..., bN)9 bj be real-

valued and

Then we have

MuLgciiFiu^cn

where C = C(m, s, M, JV)>0, Q is an open set containing the convex hull of

- b(y))/(x -j)|-oo<x,3;< + oo} and F e &m(Q).

Lemma 4.15. Let m be an integer *>2, s>l/2 and A=A(a,b) be the

operator defined in the above lemma. Then we have
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where C = C(m, s, M, JV)>0, Q is an open set containing the convex hull of

{(bk(x)-bk(y))/(x-y)\ -oo<x, y< + 00, fe=l, 2} and F e &m+l(Q).

Proof. Note that

3 „/.(4.16) ,

ri c
= \ dt\ Gudv

Jo J

where

E
k=l

M

a_fl(*)-gQQ ^ = M^zMz)
^c-j; ' x-y

Since

\\A(a\

ri fi r
^\ dt\\\ Gudy

Jo II J

the required estimate is obtained from Lemma 4.14.

Remark 4.17. The above two lemmas hold also for m + r, m^2, 0<r<l.

If we define the translation operator TZ9 zeU1, by Tz/(x)=/(x + z) then

it is clear that TzA(a, b)u=A(Tza, Tzb)Tzu. Since TzA(a, b)u~A(a, b)u =

A(Tza, Tzb)Tzu-A(a, b)Tzu + A(a, b)(Tzu-u\ by Remark 2.8, Lemma 4.14 and

(4.16) we have

Mtt||m+r^C||F||,M+iTO

This combined with (4.16) leads to the estimate

\\AW9V)u-A(a*9b*)u\\m+r

Mlm
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4.2. Operators of the Form (4.2).

Lemma 4.18. Let m be an integer ^1, ft>0 and

Then

1

where C = C(m, ft, M, AT)>0, & is an open set containing

and

Proof. Put

*x-y±ih

If t? = l then/(x)g||(x±fft)-1 |il|w||gC||w||. Since

2

l*-j;±/A

by Hausdorff-Young's inequality, we have

1

dy,

H 2 < I I - . I I 2
\X±ihf

From

we obtain

By the differentiation under the integral sign we can divide DmAu into two parts:

The first contains Dma, Dm/and the second Dka, Dkf, k<m. The above method

is available for the first part and also for the second if we note that \DJ
x(x — y

±fft)-1|^C|x-j;±r7?|-1. Since \\Au\\m£C\\Au\\ + C\\DmAu\\, we obtain the

required inequality.

Lemma 4.19. Let m be an integer ^1, ft>0 and A = A(a, b,f, g) be the

operator defined in the above lemma. Then we have
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\\A(a\ V,f\ g>)u-A(a2, b2,f2, g2)u\\m

where C=C(m, h, M, N)>0, Q is an open set containing the convex hull of

-ao<x,y<+<x>,k=l,2\ and Fe&m

The lemma is proved by the method used for Lemma 4.15.

Remark 4.20. By the same consideration as in Remark 4.17, we have for

\\A(a\ bl,fl, gl)u-A(a2, b2,/2, g2)u\\m+r

4.3. The Operator K. Let A be an operator of the form (4.1) or (4.2)
which we write in the form Au(x) = \ A(x, y)u(y)dy. Since

/ d + 3 \a(x)~b(y)_a'(x)-b'(y) ?
\dx dy / x—y±ih x—y±ih

we see that [d/cbc, ^4] is the sum of operators of the form (4.1) or (4.2). If

A(x, y) and u depend on r, then {jdjdt, A]u = \ (dA(x, y)/di)u(y)dy. Hence

[d/dt, A] is the linear combination of operators of the form (4.1) or (4.2).

Note that log(l +z) = z/(z) where /(z) is holomorphic in z, Rez> — 1 and

a(x)-a(y) <
x — v

a(x)-b(y)
x—y ±ih

By (3.5) and (3.7) we see that, if X and b are small in Hs, then Aj can be written
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in the form (4.1) or (4.2) where u is replaced by du/dy. This situation leads us

to the following

Definition 4.21. Let O^r^s, O^gs. L(r, s; f) is the totality of M

satisfying the following conditions: 1) M = M(P; P(J)) is the linear operator

depending on P = (P1?..., Pfc) where P7- is the real- valued function, J is the subset

of {!,..., fc}, P(J) = (PJ-15..., Ph) if J = {jlf..., h} and we write M = M(P; 0) if J

is empty. 2) There exists d = d(M, t)>Q such that if d0>Q, P, P°e#s, ||P||S,

||P°L ^ d0, ||P(J)||,, ||po(j)||r g d then ||M(P; P(J))u\\s ^ C\\u\\r, ||M(P; P(J))u

-M(P°; P%/))w||s^C|[P-P°i|s ||ii||r for ueHr where C = C(r, 5, f, d, d0)>0.

L0(r, s; 0 consists of MeL(r, s; f) such that ||M(P; P(J))w||s^C||P||s ||u||P.

Lemma 4.22.

1) L(r, s; i), L0(r, s; t) are algebras.

2) L0(r, s; f) is a two-sided L(r, s; t)-module.

3) /// is smooth in a neighbourhood of QeRk then the operator M

defined by M(P; P)u=f(P)u belongs to L(s, s; f) for l/2<t<>s, l^s.

4) M(P;P) = (1+P1+P2 isgnD^eLCs, s; f) for

Proof. 1) and 2) are trivial. 3) follows from Lemma 2.11 and Remark

2.12. It remains to show 4). Let Pl9 P 2 E H f . Then by Remark 2.10,

||(P1+P2 isgnD)tt||^C||P|U|tt||,. Hence if P1 and P2 are small in Hf, then

we have (a) ||M(P; P)ii||r^C||tt||,. Note that Tzu(x) = u(x + z) = exp(izD)u(x)

and [T2, Py] = (P/ - + z) - Pj)Tz. Since TzMw - MM = [Tz, M]w + M(Tzw - w)

= -M[TZ3 M-1]Mw + M(TzM-w) and

[Tz, l+Pi+P2 isgnD] = (P1(. +Z)-P1)T, + (P2(. +z)-P2}Tz isgnD,

we have (ft) ||TzMw--My||^C||rzP-P||r||M||f+C||Tzw-w||f. From Remark 2.8

it follows that (c) ||Mii||r+r^C||ii||r+r if 0<r<l , Pl9 P2EH^r. Using (c) in

place of (a) we have (ft) with t + r, which leads to (c) with t + 2r. Repeating this

procedure, we have ||M(P; P)w||s^C||w||s. This, combined with M — M0

= -M(M~1 - MQ ^Mo, M = M(P; P) and M0 = M(P°; P°), shows that

||M(P; P)w-M(P°; P°)ti||sgC||P-P°||s |[w||s. The proof is complete.

By the facts stated in the beginning of this article and Lemmas 4.14, 4.15,

4.17-4.20 we have

Lemma 4.23o Let m be an integer ^2, Ogr<l and l/2<s, t<^l. Then

for the operators Aj defined by (3.5) and (3.7),
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Aj(X; XJeLoQ + s + r, m + r; 1 + 0, 7 = 1, 2

,4/Z, 6; *, fo)eL0(l + r5 m-l + r; 0, 7 = 3, 4, 79 8

r, m + r; 0), j = 5, 6.

Lemma 4.24* Let m be an integer ^3 and 0^r<l. Then

K^K^X, b; X, b)eL0(2 + r, m + r; 3).

Proof. By the above lemma we see that

A4bxel0(l + r, m + r; 1),

0(2, 2; 0).

Therefore

L(2, 2; 2),

1eL0(29 2; 2).

From (3.9) It follows that

Bj(X, ft; X, 5)eL0(2 + r? m + r; 3), 7 = !, 25

Hence M3(X, b, bxi X, b, &x) = (l+51)-
1 eL(2, 2; 2). In the same way as in

the proof of Lemma 4.22 we see that M3 eL(2 + r, 2 + r; 2). Consequently

we see from (3.8) that K1 eL0(2 + r, m + r; 3). The proof is complete.

Remark 4.25. It is easily seen from the above proof that

Ki(X, b, 6X; X, b, bx)eLQ(2 + r, 2 + r; 2), 0^

Assuming that X depends also on r, we define

(by X,...9 d^dl
xX we denote the derivatives dp

td^X, p^k, q^l), inductively by

AJ,O,O = AJ> AJ.°.t = [Jfa> Aj,°,i-i \ !=l> AJ>*>* = ~> ^ j , f c - i . / ' fc=!» / = °-

We have seen that Aj>kil can be written in the form of the linear combination of

operators of the type (4.1) or (4.2). After this is done, there is no necessity to

regard d$d*X in Ajtktl as the derivatives of X, Hence we replace dfd*X by Xpq.

By the results of the preceding two articles we have
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Lemma 4.26. Let m be an integer ^2 and O f g r < l . Then

Ajik>l(X°<>,..., X", b,..., dl
xb; X™, 6)eL0(2 + r, m + r; 2).

Since K1 is rational in Aj and [#, ST] = [fl, S]T+S[£, T], [#, (1 + T)-1]
= (1 + rT^r, jR] (1 + T)-1 hold for operators R, S and T, we define

by the formula used for the definition of Ajtkml and replace d*-d*X in J1^ by Xp q.

By the same consideration as in the proof of Lemma 4.24 we have

Lemma 4.27* Let m be an integer ^3 and 0£ j r< l . Then

KW(X00,..., Xkl, b,...9 dl
xb', X™, 6)eLo(2 + r, m + r; 3).

Corollary 4.28. For any integer m^3,

M(X9Z9 b',X,Z, b) = {l + Zl+Z2K(X, b; X, b)}-leL(m, m; 3).

Proof. Since K(X9 b'X,b)=-i tanh (hD) + K^X, b; X, b) e L ( 3 9 3 ' , 3)

we have M^(X9 Z, 6; X, b) = Zl+Z2K(X, b\ X, b)eL0(3, 3; 3). Hence M

= (l+M1)~1eL(3, 3; 3). Since

we have by the above lemma

\\Mu\\4^C\\Mu\\3 + C
dx

Mu

OX 1 3

if X, Z, b are in H4 and small in H3. In the same way as in the proof of Lemma

4.22 we see that M e L(m, m; 3).

§ 5. Reduction to the Quasilinear System

We shall reduce the system (1.6) to the quasilinear system such that the
unique solvability of the initial value problem for this system assures one for

that system and the successive approximation is available for this system. For

the usual procedure for the reduction to the quasilinear system, see [9], Chapter
I, Section 7.2, Chapter V, Section 1.7 and [10].
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5.1. Quasilineanzation. Jn quasilinearizing the system

(5.1)

we use the commutators in order to single out the principal parts of operators.

Put F7.k = [3/d*, K]Xlr Since P"Q = QP" + Z" (") [^ Q]^""J' holds for

operators P and Q where [P, Q],=[P, 2] and [P, Q]fc+1=[P, [P, QU, k£l ,
we have

v ^ •/2

k / If. \ /

In virtue of Lemma 4.27 the operator K^p^~q is of order 0 if all functions

contained in the kernels are in Hm for the sufficiently large m, therefore we use

the notations

FJO = FJO(X9...9 d{X), Fjk = Fjk(X,..

In the precise form,

(5.2)

fe / k \ J / i \
i V f ^ i V f J \Jf+ rU J?v/J* j'''<

where in K1)U we omit 6,..., d£b; ̂ °°, 6. From (5.1) we obtain

(5.3) didxX2t = KdJtdyXlt + F>k.

Put

(5.4) ^=^ z=j^x, M^=(X, y, z), ^'=(x, yt)
From (5.1) it follows that

(5.5) -^-{(i+z1)r1+z2(n-y2)} = y1z l t+(i + y2)z2r+(i+z1)y

From (5.3) and (3.8) we obtain

f, x,, x1()
^X lr ! 5.T
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This yields the equation

(5.6) Z2f= — i sgnDZlt + F010(X9 Z, Xu).

By the elimination of Z2f from this and (5.5), we have

In virtue of (5.3) with j = 2,k = Q we have Y2t = K(X)Yit + F20(X9 Xt, Y)

=f2(W, W't\ therefore the substitution of 72t in (5.7) by /2 and Zlt in (5.6) by

the right-hand side of (5.7) lead to the equations

f* o\ y —.{(us u/f\ j — f ( \ x r W'\ 7 —f(W W'\
(?•&) I2t~J2\.yyy vvt)> ^lt~J3\VV9 W t)9 ^2f~/4V^3 W t) •

Remark 5.9. If functions X, 7, Z satisfy the equations (5.8), then

(5.10)

Let us now proceed to the equation for Y^ From (5.1) we have (d/dt)2-

l^Yl +X2x(l + 72)} =0. Replacing Xxtt by Yx and Xxt by Zt9 we obtain

l t t+z2y2lf+y1y l jc+(i + y2)y2,+2yr.zr=o. By (5.3) with j=3, fc=o
we have Y2tt = K(X)Yltt + F30(X, Xt9 7, Yt). Eliminating 72rr from these

equations, we obtain

By (5.3) with ; = fe=l, we have Y2x = K(X)Ylx + F11(X> Xt9 Z, Z,, yj. Hence

the above two equations yield

(5.11) Yltt=

Using the identity

we obtain

(5.12)

where

Q(X9 Z)
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The identity

(5.11) and (5.12) lead to the equation

Noting that (!+Z1)y1+Z2(l + y2) = 0 and K= - isgnD + i(sgnD-tanh (/?!>))

+Klt and replacing y2f, Zlr and Z2, in the above equation by /2,/3 and /4,

respectively, we can write the equation for Yl in the form

(5.13) yltr= -a(-isgn ajy^+AW W't)= - a^Y.+f^W, W't)

where a = {(l+Z1)(l + y2)-Z2y1) {(l+Z^ + Zi}"1.

Remark 5.14. Since y=.Xn and Z = XX, we observe that

-1/2(-X2x, l+Xlx).(Xltt,

Therefore {(l + Z1)
2+Z|}1/2a is the gradient of the pressure in the inner normal

direction on the free surface.

Remark 5.15. If X, Y, Z satisfy the equations (5.8), (5.13) and

+ Z2(1 + y2) = 0, then the equation (5.11) holds.

The required quasilinear system has the form

(5.16)

' Y2t=f2(W, W't), Zlt=f3(W, W't), Z2t=ft(W, W't)

where

f2=KYlt+F20(X,Xt, Y),

/3=-{(i+y2)(-isgnD)+y1}
1)Ylt+Z2f2(W,W1)},
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= is nu-mnn nu A A 5

(5.17)

, Z, Xlt),

f4=-isgnDf3(W, W't) + Folo(X, Z, Xlt),

XrHO + y^F,,^, x,, z, z(, yt)
„ y, y()+2yf-z,},

(in the last term y2(, Zlt and Z2r are replaced by/2,/3 and/4,

respectively),

Though / depends on W, W't, b and h, we omit b and /; in the notations.

5.2. Properties of a(W) and f(W, W't). In solving the initial value

problem for the system (5.16) we need only the properties of a and / which will

be shown in this article. The explicit form (5.17) of a and / will play an im-

portant role in dealing with the original problem (1.6) and (1.7).

Lemma 5.18. There exists c0>0 such that if s^.2, d0>Q and

(5.19) W=(Q,

thenfora = a(W) = a(Y, Z)

2) |a'|ge3<l, i.e.,

3) Ufa,

4) ||[fl,

5) HC

6) /or )^0 = (0, y°, Z°) satisfying the condition (5.19)

where ej = ej(c0)>Q, j=l, 2, 3, Cy = C/c0)>0, j=l , 2, C3 = C3(c0, d0, s)>0 and

C = C(c0, d0

Proof. From Lemma 2.5 it follows that
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Since 0(0) = 1, we can choose c0 so small that a(W) is everywhere defined, i.e.,
(l + Zi)2 + 22>o and 2) holds for some ejt Let fi<=.R4 be the closed ball of

radius Cc0 with the center at the origin. Since

6
a(W)-a(W0) = ^(W:

3

it follows from Lemma 2.11 and Remark 2.12 that

ri xn
\ ™L(tW+(\-i)W°)dt ,
Jo vWj

IUC||a^ 2£

This proves 6). Putting W° = Q we see that a' = a- 1 e//s in virtue of 0(0)= 1.

Noting that [0, P(D)] = [V, P(D)] and \\a'\\2^C, (C depends only on c0), we see

by Lemma 2.14 that 3), 4) and 5) are valid. The proof is complete.

Lemma 5.20. Let CQ be the constant chosen in Lemma 5.18, 0<T<oo,

s^2 and

(5.21) W=(Q, 7, Z)eCH[0, T],

Then

1) a- leCHCO, T], H').

2) \

3) |

Proo/. It follows from Lemma 5.18, 6) that\\a(W(t))-a(W(t0))\\s^C\\W(t)

-W(t0~)\\s9 which proves that a - 1 6 C°([0, T], Hs). Note that at(W(t))

= Ei da(W(t))ldWj - dWj(t)/dt. This gives

and

in virtue of Lemma 2.11 and Remark 2.12. Using Lemma 2.14, 4) we have

Since
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at( W(t)) - at(W(t0» = ( W(f)}

we have \\at(W(t))-at(W(t0))\\s^C\\W(f)-W(t0)\\s, which proves that ate

C°([0, T], #s). The proof is complete.

Lemma 5.22. There exists a small positive constant c0 such that if m is

an integer ^3, 0<r<oo, d0>0 and beHm+1, ||&||3£c0, ||£>||m+1^0,

(5.23) W,W'teC°([Q, T], Hm),

then

1) f=f(W, W't)=f(W, W't, b)eC°([0, T],

2) for W°, W°' satisfying (5.23),

\\f(W, W't-)-f(W°, Wr)\\m

where k=k(c0, d0, m)>0 and C = C(c0, d0, m)>0.

Proof. We see from (5.2) and (5.17) that

f2=K(X)Ylt+F20(X,Xt,T>
=K(X, b; X, b)Y1(+2Klilt0(X, Xt, b; X, b^+K^X, Xt, Y, b; X, b~)Xlt.

Hence Lemma 4.27 shows that 1) and 2) are valid for/2. As to

x {(1 + Y2)F010(X9 Z,

first of all, note that {(1 + 7J ( - i sgn D) + Y2}~1 = i sgn D(l + Y^ + Y2 i sgn D)-

eL(m3 m; 1) by Lemma 4.22. Since

5 6; X, b)}-j^Xlt

,ofi(^j ^5 6» bx; X, b)Xlt,

we see by Lemmas 2.15 and 4.27 that F010 has the properties 1) and 2). Since

Hm is an algebra, we see in virtue of Definition 4.21 that 1) and 2) hold for/3.

Similarly 1) and 2) hold for /4= -isgnD/3+F0io. For the operators oc-
curring in the definition of /j we see that

a(Y9 Z\ Z^a+Z^ + Zi^eLCm, m; 1) by 4.22, 3);
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X 9 b i X, fo)}-^-eL(3? m; 3) by 2.15 and 4.27;

[X, yj=-i[sgnD, yj + CisgnD-itanhCADHX^X, b; X, 6), YJ

eL0(2, m; 3) by 2.14, 2.15 and 4.27;

= {1 - tanh2 (M))} - i tanh (hD)^ - iK± tanh (hD) + K\
eL(2, m; 3) by 2.15 and 4.27;

[l+Zi+Z2K(X, b, bx\ X, b, bx)}~1€L(2, 2; 2) by 4.25;

{1+Z1+Z2X(X, 6; X, b)}-^EL(m, m; 3) by 4.28.

These combined with the already proved properties of /2,/3 and /4 show that 1)
and 2) hold for f±. The proof is finished.

53. Transformation of Values, Suppose that X is a solution of the
initial value problem :

(5.24) X2, = K(X)Xlf, (l+X1,)Xltt + X2x(l + X2rf) = 0, t ^O,

(5.25) Z=C7, X lr=7, t = 0.

We shall determine the initial values of W=(X, 7, Z) and W; = (Xt, 7lf) at * = 0
for the system (5.16) from U and Fby means of (5.4) and (5.24). Since X2t

= K(X)Xlt and Z = XX, we put X2t = K(U)V and 7=17,^ = 0. From (5.3)
with j = l and fe = 0 we obtain

(5.26) X2tl = K(X)Xltt + F10(X9 Xt).

This combined with the second equation in (5.24) shows that

(l + Xlx + X2xK(XJ)Xltt= -X2x-X2xF10(X, Xt).

Therefore we put

In view of (5.26) we put Y2 = K(X)Y1+F 10(X, Xt), t=Q. In view of Y=Xtt

and Y2t=K(X)Ylt+F20(X, Xt, Y), we have

0 =--{(l + Xlx) Y, + X2x(i + Y2)}

=

Hence we put
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Yl = - {1 + Zt + Z2K}-^Z2F20(X, X,, Y)

Thus the transformation of U and Kinto W and W't, r = 0, is as follows:

(5.27)

X=U, Xlt=V, X2t = K(U)V, Z=UX,

(X, Xt)} ,

9 X t , Y )

Remark 5.28. For values of Wand W't at t = Q defined by (5.27) we have

In Section 6 it will be shown that the initial value problem for the system

(5.16) is uniquely solvable if the initial values are small. Hence in solving the

problem (1.6) and (1.7) we need the following lemma.

Lemma 5.29. There exists c0>0 such that if m is an integer ^3, d0>0

and

then by (5.27) U, V are transformed into W, W't, r = 0, such that

X E Hm+W2\ Xt e Hm, 7, Z e Hm~^2\ Ylt E Hm~

and

where C = C(c0, d0, m)>0.

Proof. Using Remark 2.10, Lemma 4.27 and the definition of FjQ we

obtain the lemma by the same consideration as in the proof of Lemma 5.22.
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§ 6. Unique Existence Theorems

In this section we shall show the unique solvability of the initial value
problems for the quasilinear system (5.16) and the original (1.6). Throughout
this section we assume that every function is real-valued.

6.1. Preliminaries. We use the notations :

W=(X,Y,Z), W' = (X,Y1),A

In view of the identity

a\D\ =\A-m(a\D\ + \D\d)Am + ), + -^-A-m(a\D\ - \D\a)A

-A-/l-m[a, Am~]\D\

we introduce the operators

Gm = Gm( W) = A~mG( W)A"
(6.1) , _ ^ , , , _ _

Assumption 6.2. Let 1=1 +C19 m be an integer ^2, d0, d>Q,

W=(Q, Y, Z) e CH[0, T], H2) n C°([0, T], #"),

II WWII 2^ c0, ||W(OL^do, l lWXOb^d,

where c0, C, =C,(c0) are constants occurring in Lemma 5.18.

Lemma 6.3. Under Assumption 6.2,

2) (Gii, ») = («, Go), (G,,,ti, v)m = (u, G,,,v)m, u,

3) (Gmu,u,)m

4) d
5) |(G(«, w)l^^(C4er1 + C5)(Gu, u), w
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6) for W° = (0, 7°, Z°) satisfying conditions in 6.2 and -

\\{G'm(W)-G'm(WO)}u\\m^C(\\Y-Y°\\m+\\Z-Z°U\\u\\m,

\\{G(W)-G(W0)}u\\s-^C(\\Y-Y0\\m+\\Z-Z°U\\ul

where ej} Cj, j = l, 2, 3 are constants occurring in Lemma 5. IS, C4, C5 in

5.20, C = C(c0, d0, m)>0 and e4=max {ea^I1, 1 + 2CJ.

Proo/. Since a - 1 6 (^([O, T], H1) by Lemma 5.20, H1 is an algebra and

(«, v)m=(Amu, Amv), we have 1), 2) and 3) in virtue of (6.1). Note that

(Gu, u-)=±-(a\D\u, u) + ±-(\D\au, u)+X(u, u)

= (a\D\u, M) + A(w, w)
(w, M).

Therefore from Lemma 5.18 we obtain

These prove 4). Similarly we have by Lemma 5.20

Hence we have 5) in virtue of 4). Since ||w||m= Mm«||, by Lemma 5.18 we have

ii|| + || [fl, ̂ ] |D|u||

which proves the first inequality of 6). Using Lemma 2.14, 3) and 4) we have

\\{G'm(W)- G'm(W°)}u\\m^±\\[.a(W)-a(W
0),

Since ||a(W)-a(Pf0)||m^C(||y-y°||m+||Z-Z0||ffl) in virtue of Lemma 5.18, 6),

we have the second inequality of 6). We obtain the inequalities for G=
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2-1(a|D| + \D\a)+A if we show that

HfluL^CII i iL \\{a(W)-a(W°)}u\\s^C\\a(W)-a(W°)

Note that a' = a-l eHm, (Lemma 5.18) and Hs, s>l/2, is an algebra, (Remark

2.10). For l/2<s^m we have

\\{a(W)-a(WO)}u\\s^C\\a(W)-a(W°)\\s\\u\\s.

For Ogsgl/2, from Lemma 2.14 it follows that

|a|) ||u|| + C||a'

and in the same way

\\{a(W)-a(WO)}u\\s^C\\a(W)-a(W°)\\

For — m :g s < 0, by the above results we have

Hence the duality between Hs and H~s shows that

It is easily seen that

Thus the proof is finished.

682. Linear Equations, Consider the initial value problem :

(6.4) utt-z
2uxx + A(i)u=f, Q^t^T

(6.5) U = UQ, ut = uly t = 0.

Let B, C be Banach spaces. We denote by &(B9 C) the Banach space consisting
of linear continuous operators from B to C.

Lemma 6.6,, Let 0<e, 0<T<oo, -oo<s<+oo and A e C°([03 T]9

^f(Hs+1, Hs)\ If u0eHs+\ u^H* and fe C°([0, T], H*\ then there exists

the unique solution u of (6.4), (6.5) such that
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Proof. We shall obtain u as the limit of the sequence uj\ j^O, such that

w° = 0 and u-i, j^. 1, is a solution of

uJ = u0, u{=ul9 r=0.

Since the solution v of vtt — s2vxx=g can be written in the form

8(0 = (cos

it is clear that

IKOL+i + lk(OL^^ o^r.

These combined with the assumption on A(f) show that uj is defined and con-

verges to u, which is the required solution. The uniqueness of u is easily proved.

The proof is complete.

Next consider the initial value problem :

(6.7) utt + Gm(W)u=f, OgrrST,

(6.8) u = u0, ut = ul9 t = Q.

Lemma 6.9. Let m be an integer ^2 and the assumption 6.2 hold. If

u0e#m +<1 / 2 ) , w1e//m,/6C°([0, T], Hm) then there exists the unique solution

u of (6.7), (6.8)sMcft that

u e C'([0, T], JF/^+d/2)-(J/2)) j ;- = o, 1, 2 .

Moreover u satisfies the estimate

(6.10)

where C = 2~1d(C4e^l + C5) and

Proof. The proof is divided into three steps.

Step 1 : Let u e C2([0, T], #m+1) satisfy the equation (6.7) and put

Then
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in virtue of Lemma 6.3. Therefore for t such that Em(u(i))>0,

Since Em(u(t)) is continuous in t we have

Using \u(t)\m^Em(u(t))^!^\u(t)\m (see Lemma 6.3, 4)), we obtain (6.10). Let

u be the solution stated in this lemma. Since cpd*u e C2([0, T], Hm+i) and

(6.11) (<Pd*u)tt +
 Gm(<Pd*u) = 9*+f- 9d*G

mu + Gm((pd*u) ,

<pd*u satisfies the estimate obtained in the above if we replace /by the right-hand
side of (6. 1 1). By Lemma 2.3

Hence

By the simple calculation we have

||pa*GMu-GJp,*ii)LH|/^

+ -i-^a«[|J9|, a]ylwM-y[|D|, a]

Lemmas 2.3, 2.4 and 5.18, 4) show that this is bounded when O r g f ^ T and
0<(5<1, and tends to zero when <5-»+0. Consequently we have the estimate
(6.10), which assures the uniqueness of u.

Step 2 : Let 0 < e < 1 and consider the initial value problem

(6.12) Vtt-s2V

(6.13) v = v0,

where v0EHm+2, vl^Hm+l and g e C°([0, T], Hm+i). It follows from Lemma
6.3, 6) that

(6.14) Gm E C°([0, T],
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Since l^m + 2^2m in virtue of m^2, putting s = m + l in Lemma 6.6 we see

that there exists the unique solution v = vs of (6.12) and (6.13) such that

i;eC'([0, T],ff"+2-0, J = <U,2.

Put Em+ltE(v(tJ)2= \\vt\\i+l + G2\\vx\\^+1 + (GAm+lv9 Am+lv). Since Am+1(Gm+l

-Gm) = 2-1[a, |D|2]/lm = 2-1[a5(l + |D|)2-2|D|]/lm, in virtue of Lemma 5.18

we have

We have

^ Id L+ A+i> (0)
Therefore

(6.15) £B+

Since

there exists a constant C independent of 0<e<l, Ogr^Tsuch that

(6.16) l|fii«(OIL+i^C,

Let 0<e, 8<1 and put v = vE-vd. Then

Applying the estimate (6.10) to v, we have
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Hence there exists u such that, when e-» +0,

DE(f}—>u(f} in fJm+(l/2) VB(f)—+U ^A JJQ ffm

uniformly in Og^T. These, combined with (6.14) and (6.16), show that

s2vE
xx-+Q in Hm, GmvE-»Gmu in Hm~<1/2)

uniformly in 0 ̂  r ̂  T. By the equation vE
tt = s2vs

xx + Gmt?e +/, we see that

vE
tt-*utt in Hm~tll2) uniformly in O^r^T.

Consequently ueCj([Q, T], Hm+(1/2)~^"/2))5 J = Q, 1, 2, and u is the solution of

(6.17)

Step 3: Let 0<<5<1 and put t;0 = ^*w0, v1 = <pd*ul9 g = q§*f> Then by

the step 2, there exists the unique solution ud of (6.17). Putting W = UE — ud and

applying the estimate (6.10) to w, we have

-<Ps*^l l lm+Ol+ l)||^*Mo- ^a*Wollm+(l/2))1 / 2

Lemma 2.3 and the argument as in the step 2 show that when £-» +0, the limit

u of ud exists and w is the required solution, which completes the proof.

Now consider the initial value problem :

(6.18) un + a(W)\D\u=f, O^rgT,

(6.19) u = u0, ut = ul9 t = Q.

Theorem 6820o Under Assumption 6.2, if u0eHm+W, u1 eHm and f

eC°([0, T], Hm), then there exists the unique solution u of (6.18) and (6.19)

such that weCV([0, T], Hm+<lM-UM)9 j = 0, 1, 2. Moreover u satisfies the

estimate

(6.21) NWI w ^

where |u(f)|£= I ̂ ll^ + ^ i l l \D\V2u\&+ \\u\\2
m and C=l + C1+2-1C2

Proof. Using a|D| = Gw— G^ we write (6.18) in the form

(6.22) utt + Gmu=f+G'mu.
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The solution u will be obtained as the limit of the sequence uj, j^O, such that

w° = 0 and uj\ j^ 1, is a solution of

Since G^ e C°([0, T], & (Hm, Hm)) by Lemma 6.3, it follows from Lemma 6.9

that uj, 7^1, is uniquely defined and
uJ e Cfc([0, T], ff"+d/2)-(*/2))f fc = o, 1, 2 .

By the estimate (6.10) and Lemma 6.3 we have

|K'+HO-«'(OL^c{V'M-K^Jo Jo

which assures the existence of the required solution w. Applying the estimate

(6.10) to the solution u of (6.22) we have in virtue of Lemma 6.3

where C = (d/2) (C4£?7 x + C5). Therefore we have

which gives (6.21). The proof is complete.

6.3. Quasilinear System. We use the notations :

w=(x, Y, z), w = (x, y,), Iir
1(oii=l|r1||i+e1

We shall consider the initial value problem for the quasilinear system (see

(5.16)):

Xtt=Y

(6.23)

To simplify the notations we write the initial condition at £ = 0 in the form

(6.24) W(0) = W = (X, Y , Z), W't(0) =W't = (Xt, Y^t) .
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Theorem 6.25. Let c0 be so small that Lemmas 5.18 and 5.22 hold, m be

an integer ^4 and beHm+l, ||b||3gc0. If ffi , W't satisfy the conditions;

m and

then we can choose T>0 such that the initial value problem (6.23) and (6.24)

has the unique solution W such that

, T], Hm\ Y2, ZeCKfl), T], //'»),
, T], / /«^i /2)-(y/2))9 7- = o , i , 2 ,

Proof. The proof is decomposed into several steps.

Step 1 : Take d, dQ, d^ d$ and dm such that

(6.26) 7 = 3,

where k0 = k(c0, max (c0, rf,), 3) is the constant occurring in Lemma 5.22. Now

we shall estimate the solution W satisfying the conditions,

\\W(t)\\3£c0, I I ^ K O H 3 grf, , \\W(t)\\m£d0, \\W',(

We see that \\Y(t)\\2
2+ ||Z(OHi ^ l|H^(0||i^c§, || y(0||i+ ||Z(t)||,2nS

and in virtue of Lemma 5.22

Therefore we can use (6.21), which gives

in virtue of Lemma 5.22. For Y2, Z we have

ll(y2(0,z(0)L=|i(y2(0), z(o»4
Jo

^l^(0)L + /<r \W(s)\mds,-I V )\m JQI V )\m

Since
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^\\X+YU\Xt\\m^2\W(f)\J(X,Xt)\\m,

we have

\\(X, Xt)\\m^\W(G)\m + 2\t \W(s~)\mds .
Jo

Hence

^(X, Xt)\\m+\\(Y2, Z)||m+|F1|m

which gives the estimate

1 W(t)\m£ (2 + VO I W»L exp (kmf) = dm exp (kmt)

where km = 2+2/c(c0, rf0> w)+ 1 + Ct +2-!C2 + C3 + 2-1d(C4el1 + C5), C3

= C3(c0, rf0, m). Replacing m by 3 we have

| W(t)\3 g(2+ VO UnO)|3 exp (M) = <*3 exp (M)

where fc3=2 + 2fc0 + l + C1 + 2-1C2 + C3+2-1d(C4eI1 + C5), C3 = C3(c0, c0, 3).

Step 2: Put

r=min { 1 log -f , 1 log A.,
Ik3 d3 km

 & dm

Since OgJ3<^1? 0^(im<J0, 0<c0- ||̂ ||3, 0<fc, fc3, km we see that 0<T<oo.

By S we denote the totality of W satisfying the following conditions :

(6.27) W, Wt, IDI1/2^ e C°([0, T],

for Og/gT, W(0)

We denote by M(FF°) the solution W of the initial value problem,

(6.29)

(6.30) Pf (0) = ^, Pf ;(0) = W't .

We shall show that if W ° e 5 then FT = M (PF°) e S. Since
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it follows from (6.28) that 7°, Z° satisfy Assumption 6.2 and in virtue of Lemma

5.22 the right-hand sides of (6.29) belong to C°([0, T], Hm). Therefore by the

integration and Theorem 6.20 we see that the initial value problem (6.29) and

(6.30) has the unique solution W satisfying the condition (6.27). In the same

way as in the step 1 we obtain

By the definition of T we have for 05^ T

\\W(t)\\j9 \\W

Since W° e S, we have

Ii3

= d? + /c§(c§ + d\) = d2 ,

Zt)\\2}dt

Consequently We S, which means that M is the mapping from S to itself.

Step 3: Put W°(i) = W, Og^T. Then Z? = y° = 0, ||W°(Ollm =

kjf), j = 3,m.

We see that W° satisfies (6.27) and (6.28), i.e., W° e S. The result of the step 2

shows that WJ+1=M(WJ),j^Q, are defined and W'eS. Note that W

= WJ+l - WJ\ 7 ̂  1, is the solution of

' Xtt + X=XJ-XJ-l + YJ-YJ-1

-(a(WJ)-a(WJ-i))\D\Y{

J, WJ
t')-f2(WJ-1, WT1')

J, wn-fwVTJ-1, Wi'1'), k=l,2,

= 0, Wt(0)=0.

Since m — 1^3 and WJ eS, we have in virtue of Lemma 5.18 with s = m — 1,
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Therefore, in virtue of Lemma 5.22, we see that Hm~*-norms of the right-hand

sides of (6.31) are smaller than C\WJ(f)—WJ'~~l(t)\m_l where C is independent

of 7. In the same way as in the step I, we have

\\(Y2(t\

)o

Therefore we obtain

Jo

This means that there exists W such that

W, Wt9 l/^/^eC^p), T], #"-!), sup |
o^r^r

Noting that W+1=M(WJ)eS and letting j->oo we see that (X{t, YJ
2n Zj

t) con-

verges in Hm~l and 7{rf converges in Hm~l~(l/2). Hence

Xtt=Y, Y^ + a^WY^MW, W't),

Y2t=f2(W, W't), Zjt=f2+j(W,W't), 7 = 1 , 2 ,

x e c2([o, r], /f»-i), n, ^
5 T], //»-i+(i/2)-(7/2))9 j = o, 1 , 2 ,(6.32)

Step 4: We shall show that PF is the solution required in this theorem,

i.e., in (6.32) we can replace m — 1 by m. Noting that WJ+]=M(Wj) eS and

using Lemma 5.22 we have

(6.33)
f = ^

where C > 0 is independent of ( and j. Since any bounded sequence in a Hilbert

space is weakly precompact, each sequence occurring in (6.33) has a weak-

limit. By the result of the step 3, they have the strong-limits if m is replaced by

m — 1 . Hence for any fixed t,

w(t\ wt(t), Y2t(t), iDi'/'r.C), *„«, zxoeH-, y1I((Oe
Taking the inferior limits of sequences in (6.33) we see that

( WOlL^do, II^COIL^o, \W(t)\m£dmexp(kmt),(' )
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For Og? 0 <fgT, we have

Taking the inferior limit we have \\W(t)- W(t0)\\m<*(t-t0)(d0 + 2C). Hence
^eC°([0, T], Hm). Similarly we see that X,EC°([0, T], Hm). By Xtt=Y,

we have XeC2([0, T], Hm). Since m-1^2, (7, Z) satisfies Assumption 6.2

in virtue of (6.32) and (6.34). Hence by Theorem 6.20 there exists ud, (5>0,

such that

Using (6.21) we have

On the other hand,

Therefore 7t eCV([0, T], Hm+w~ui2>\ 7 = 0, 1. Thus we proved that ^?

^;eC°([0, T], //m). Consequently, in virtue of Lemma 5.22, f ( W , W ' t )

eC°([0, T], Hw), by means of which we see that ylrreC°([0, T], #«-u/2)) and

72r5 Zr e C°([0, T], //'"). The proof is complete.

Remark 6.35. In the step 2 we defined T by

r=minU- log A, ^U3
 & ^/3 *:„

(For ^/, rf0, rfl5 (^3 and ^fm see (6.26) and for /c3, km see the end of the step 1.)
/— . . ~ "^^

Putting dl = ̂ d3 we see that T-*co if J3, ^/m-^0, i.e. the initial values, FF, FFJ

tend to zero.

6.4. Nonlinear Equations. Consider the initial value problem :

(6.36) (\+Xix)Xltt + X23j(l+X2n) = 09 X2t

(6.37) X=U, Xlt=V, t = 0.
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Theorem 638. Take c0 be so small that Lemmas 5.18, 5.22 and 5.29 hold.

Let m be an integer ^5 and beHm, ||fe||3^c0. There exists <5>0 such that if

then there exists T>0 such that the initial value problem (6.36) and (6.37) has

the unique solution

X e CHEO, T], Hm) n C2([0, T], ff

Proof. Existence. Define W9 W't, t = 0, by (5.27). Then it follows from
Lemma 5.29 that we can take <5>0 so small that W9 W't9 t = Q, satisfy the con-

ditions of Theorem 6.25 if m is replaced by m — 1. Therefore by Theorem 6.25

we have the solution W of the system (6.23) such that

X E C2([0, T], ff"-i), 72, Z 6 CK[0, T], H--1) ,

Y! e C'([0, T], fl^-i+d^-c^)^ j = 0, 1, 2 ,

for some T>0. It is clear that X satisfies (6.37). We have (l+Z1)Yl

+ Z2(1 + 72) = 05 t = 0, by Remark 5.28 and 5/3r{(l+Z1)71+Z2(l + Y2)}=0,
O^rgT, by Remark 5.9. Hence (1 + Z1)71 + Z2(1 + 72) = 0, O^tgT. Since
F=Xrr, it remains to show that Z = XX, X2t = KXlt, Q^t^T, and X has the

required differentiability. Since Y=Xtt and

(6.39) Y2t=f2 = KYlt + F20(X, Xt, 7),

we have (X2t-KXlt)tt = Q, Ogr^T. On the other hand, it follows from (5.27)

that X2t-KXit = 0, (X2t-KXlt)t= 72-X71~F10(^, Xt) = 0, t = 0. Thus X21

= KXlt9 Q^t^T. Differentiating this, we have

= KY1+F10(X,Xt)

, Xt9 7, Yt)
9 Xt9 Xx, Xxt, Xltt)

(X, XX9 Xlt).

(6.40)

By Remark 5.9,

t + F0io(*> z
?
 xit)

(X, Z,

(X, Z, Xlt).

From this we obtain
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(6.41) Z2t^-isgnD(Z1-Xlx)tt + KYlx + F11(X, Xt, Z, Z(, Yt).

Using (6.40) we have

(6.42) (Z2-X2^^-isgaD(Z1-X1^t + F01(X, Z, Xlt)-F01(X, Xx, Xlt).

By Remark 5.15,

Since

O={(i+z1)y1+z2(i

we have

o = Yt(zltt - Yix) + (i + y2) (Z2(( - K ylx - F, x)
= y^Z! - Xlx)tt + (1 + y2) ( - i sgn D) (Z, - Xlx)tt

= { Yt + (1 + y2) ( - i sgn £>)} (Z, - Xlx)tt

where we used (6.41). Thus (Z1-Xlx)tt=Q, Q^t^T. In virtue of (5.27),

Z1-Z1:c=0, t=0. By Remark 5.28 and (6.39),

(i +Z1)ylr+z2y2t+ YiA^+tt + y2)x2tx=o, t=o .
On the other hand,

Therefore, Yl(Z1-Xlx\+(l + Y2)(Z2-X2x\ = 0, ( = 0. Putting t = 0 in (6.42),

we have (Z2-X2x\=-isgaD(Z1-Xlx)t, t=0. Thus (Zi-Xlx)t=Q, t=Q.
Consequently, Zt - Xlx = 0, 0 ̂  f g T. Since Z2 - X2x = 0, t = 0, (6.42) gives

We have

which shows that Z2—X2x=Q, Q-^l^T. Thus we have proved that X satisfies

(6.36), (6.37). Since X, Xx=ZeC\[Q, T], H"1'1), we see that XeC^CO, T],
Hm). Since Xllt= ^ e C°([0, T], H"--(1/2)) an(j

t=Y2 = K(X)Y1+F1Q(X,Xt)

=K(X, b; X, fc)y1+Kljl>0(A:, X,, b; X, b)Xlt
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we see by Lemma 4.27 that X2tt e C°([0, T], /f

Uniqueness. Put W=(X, Xtt, Xx). By the estimate as in the end of the

step 2 of the proof of Theorem 6.25 we see that

dt
3

in virtue of the definition of T. Let X° be a solution of (6.36), (6.37) and put

W° = (X°9 X?t, X°). It is easily seen that if || WQ(t)\\3£c0 then W° is a solution

of (6.23) having the properties stated in Theorem 6.25 where m is replaced by

m-1. Since W°(0)=W(0)9 \\W(0)\\3<c0 we see that \\W(t)\\3£c0,Q£t£t0

for sufficiently small *0>0. By Theorem 6.25 we have W°(t)=W(t), Q^t^t0.

Since \\W(t0)\\3<c0, we see that \\W°(t)\\3^c0, t0^t^t0 + tl for small t^Q.

Hence W°(t)= W(f), O ^ f ^ r , . Repeating this procedure we see that W°(t)

= W(t\ Ogr<r , i.e., X°(t) = X(t), O^r^T. The proof is complete.

Remark 6 A3. By Remark 6.35 we see that T->oo if U -»0 in

V-+Q in Hm.
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