Homotopy Classification of Connected Sums of Sphere Bundles over Spheres, II

By

Hiroyasu ISHIMOTO*

Introduction

In the classification problems of manifolds, the connected sums of sphere bundles over spheres appear frequently. For example, we can see those in [6], [7], and [13]. Motivated by those, in the preceding paper [8], we classified the connected sums consisting of sphere bundles over spheres which admit cross-sections up to homotopy equivalence.

In this paper, as promised previously, we investigate the general case. And, under some assumptions on dimensions, i.e., in metastable range, we obtain a necessary and sufficient condition for two connected sums of sphere bundles over spheres to be homotopy equivalent, by extending the results of James-Whitehead [10] and using the handlebody theory of Wall [14] and Ishimoto [5]. Applications of the main theorem to special cases will appear in the subsequent paper.

Let B_i, $i=1, 2, \cdots, r$, be p-sphere bundles over q-spheres ($p, q > 1$), and let \overline{B}_i, $i=1, 2, \cdots, r$, be the associated $(p+1)$-disk bundles. It is understood that each B_i, or \overline{B}_i, also denotes the total space of the bundle and has the oriented differentiate structure induced from those of the fibre and the base space. If $p \geq q$, each B_i admits a cross-section, and the homotopy classification of the connected sums of such bundles has been completed in [8]. So, we assume that $p < q - 1$. The torsion case that $p = q - 1$ is excluded from this paper and the problem is still open. We denote the characteristic element of B_i by $\alpha(B_i)$ or simply by α_i and we put $e_i = \pi_a(x_i)$, where $\pi_a: \pi_{q-1}(SO_{p+1}) \to \pi_{q-1}(S^p)$ is the homomorphism induced from the projection $\pi: SO_{p+1} \to SO_{p+1}/SO_p = S^p$.

The boundary connected sum $\overline{\cup}_{i=1}^{r} \overline{B}_i$ can be considered as a handlebody of

Communicated by N. Shimada, February 27, 1981.

* Department of Mathematics, Kanazawa University, Kanazawa 920, Japan.
$(m+1, r, q), m = p + q,$ and the connected sum $\#_{i=1} B_i$ is its boundary. In general, $\#_{i=1} B_i$ may have various representations into the connected sums of p-sphere bundles over q-spheres up to diffeomorphism. In fact, we can observe it using the handlebody theory as follows.

Let W be a handlebody of $(m+1, r, q), m = p + q,$ and assume that $2p > q > 1$. Let $\phi: H \times H \to \pi_q(S^{p+1}), H = H_q(W),$ be the pairing defined by Wall [14], and let $\alpha: H \to \pi_{q+1}(SO_{p+1})$ be the map assigning to each $x \in H \cong \pi_q(W)$ the characteristic element of the normal bundle of the imbedded q-sphere which represents x. α is a quadratic form with the associated homomorphism $\partial \alpha$, where $\partial: \pi_q(S^{p+1}) \to \pi_{q+1}(SO_{p+1})$ belongs to the homotopy exact sequence of the fibering $SO_{p+1} \to SO_{p+2} \to S^{p+1}$. ([14], p. 257). A base $\{w_1, w_2, \cdots, w_r\}$ of the free abelian group H is called admissible if $\alpha(w_i, w_j) = 0$ for all $i, j (i \neq j)$. If W has an admissible base $\{w_1, w_2, \cdots, w_r\}$, then W can be represented as a boundary connected sum of $(p+1)$-disk bundles over q-spheres with the characteristic elements $\alpha(w_i), i = 1, 2, \cdots, r$. For, we can take the imbedded q-spheres which represent $w_i, i = 1, 2, \cdots, r$, to be disjoint (cf. Ishimoto [5]). Hence, by tying the tubular neighbourhoods of such imbedded q-spheres with thin bands in W, and by the h-cobordism theorem, we know that W is diffeomorphic ($m > 4$) to such a boundary connected sum of disk bundles over spheres.

Thus, the representations of $W=\#_{i=1} B_i$ into the boundary connected sums of $(p+1)$-disk bundles over q-spheres correspond with the admissible bases of $H = H_q(W)$. Since $H_q(\partial W) \cong H_q(W)$ if $p \neq q - 1, q,$ we obtain various representations of $\partial W=\#_{i=1} B_i$ into the connected sums of p-sphere bundles over q-spheres associated with the admissible bases of $H \cong H_q(\partial W)$.

In Section 2, it is shown that Wall's pairing is a homotopy invariant of the boundary of the handlebody if $p \neq q - 1$. That is,

Proposition 1. Let W, W' be handlebodies of $(p+q+1, r, q)$ and assume that $2p > q > 1$ and $p \neq q - 1$. If there exists a homotopy equivalence $f: \partial W \to \partial W'$ which preserves orientation, then for the isomorphism $h = i'_* \circ f_* \circ i_*^{-1}: H_q(W) \to H_q(W')$, we have $\phi = \phi' \circ (h \times h)$, where ϕ, ϕ' are Wall's pairings of W, W' and i, i' are inclusion maps of $\partial W, \partial W'$ into W, W', respectively.

If $p \geq q$, the proposition is trivial since $\phi = \phi' = 0$. Hence, it makes sense for $p \leq q - 1$. Note that $\alpha(x, x) = (E \circ \pi_a)(\alpha(x))$ by [14], where E is the suspension homomorphism. Immediately we have the following.

Corollary 2. Under the above assumptions on p, q, if ∂W has the homotopy
type of $\bigoplus_{i=1}^r B_i$, a connected sum consisting of p-sphere bundles over q-spheres, then W is represented into a boundary connected sum of $(p+1)$-disk bundles over q-spheres, and hence ∂W into a connected sum of p-sphere bundles over q-spheres. Furthermore, if s bundles in B_i, $i=1, 2, \ldots, r$, admit cross-sections, ∂W is represented into a connected sum of p-sphere bundles over q-spheres in which s bundles admit cross-sections.

Corollary 3. Under the above assumptions on p, q, if $H=H_q(W)$ has no admissible bases, then ∂W never has the homotopy type of a connected sum of p-sphere bundles over q-spheres.

Let ω be an element of $\pi_{q-1}(Sp)$. We have the following homomorphisms

$$
\pi_{p+q-1}(Sp_{p+1}) \longrightarrow \pi_{p+q-1}(Sp) \longrightarrow \pi_{q-1}(SO_p) \longrightarrow \pi_{q-1}(SO_{p+1}),
$$

where ω_\ast is defined by the composition with ω, J is the J-homomorphism, and i_\ast is induced from the inclusion. Let $G(\omega)=i_\ast(J^{-1}(Im \omega_\ast))$ (James-Whitehead [9]).

Let H, ϕ, α and $\epsilon=\pi_\ast \circ \alpha$ be the invariants of $W=\bigoplus_{i=1}^r B_i$, where ϵ is a quadratic form with the associated homomorphism $\pi_\ast \circ \partial \circ \phi$. We note that if $p \neq q-1$, q, then $(H; \phi, \alpha)$ is determined from $\partial W=\bigoplus_{i=1}^r B_i$. In fact, $H=H_q(W) \cong H_q(\partial W), \alpha(w_i)=\alpha(B_i)$, $\alpha(w_i)=\alpha(B_i)$, $i=1, 2, \ldots, r$, where $\{w_1, \ldots, w_r\}$ is the canonical basis of H represented by zero cross-sections of B_i, $i=1, 2, \ldots, r$, and $\phi(w_i, w_j)=0$ if $i \neq j$, $\phi(w_i, w_i)=E\pi_\ast \alpha(B_i)$ for each i, j. Let $B_i', i=1, 2, \ldots, r'$, be another set of p-sphere bundles over q-spheres ($p \neq q-1$). If $\bigoplus_{i=1}^r B_i$ has the homotopy type of $\bigoplus_{i=1}^{r'} B_i'$, then $r=r'$ by those homological aspect. Therefore, we assume that $r=r'$ henceforth. Similarly define H', ϕ', α', and ϵ' for $W'=\bigoplus_{i=1}^{r'} B_i'$. Let α_i, α_i' be the characteristic elements of B_i, B_i' respectively and put $\epsilon_i=\pi_\ast(\alpha_i), \epsilon_i'=\pi_\ast(\alpha_i'), i=1, 2, \ldots, r$. We obtain the following.

Theorem 4. Let $q/2 < p < q-1$. Then, the connected sums $\bigoplus_{i=1}^r B_i, \bigoplus_{i=1}^{r'} B_i'$ are of the same oriented homotopy type if and only if $\epsilon_i=\epsilon_i'$ and $\{\alpha_i\} = \{\alpha_i'\}$ in $\pi_{q-1}(SO_{p+1})/G(\epsilon_i)=\pi_{q-1}(SO_{p+1})/G(\epsilon_i')$ for $i=1, 2, \ldots, r$ “modulo representations”. More precisely, they are of the same oriented homotopy type if and only if there exist the admissible bases $\{w_1, \ldots, w_r\}, \{w_1', \ldots, w_{r'}\}$ of H, H' respectively such that

1. $\epsilon(w_i)=\epsilon'(w_i)$, $i=1, 2, \ldots, r$, (i.e. $\epsilon \cong \epsilon'$) and
2. $\{\alpha(w_i)\} = \{\alpha'(w_i)\}$ in $\pi_{q-1}(SO_{p+1})/G(\epsilon(w_i))=\pi_{q-1}(SO_{p+1})/G(\epsilon'(w_i))$, $i=1, 2, \ldots, r$.

If all $B_i, B'_i, i=1, 2, \cdots, r$, admit cross-sections, then $\phi=\phi'=0$. So, any bases of H, H' are admissible, α, α' are the homomorphisms, and $\epsilon=\epsilon'=0$. Furthermore, $G(0)=i_\ast J^{-1}(0)$ induces $i_\ast \pi_{q-1}(SO_p)/G(0)\cong J\pi_{q-1}(SO_p)/P\pi_q(S^p)$, where $P=[\ , \epsilon_p]$ and ϵ_p is the orientation generator of $\pi_p(S^p)$ (cf. [10], p. 152). Hence, we have Theorem 1 of [8] for $p<q-1$.

Proposition 1 is proved in Section 2, and using it Theorem 4 is proved in Section 4 and Section 5.

§ 1. Cell Structure and Linking Elements

Let $W=D^{m+1} \cup \{ \cup_{i=1}^r D_i \times D_i^{p+1} \}$ be a handlebody of $\mathcal{H}(m+1, r, q)$, $m=p+q$, $p, q>1$, where ϕ_i: $D_i^p \times D_i^{p+1} \to D^{m+1}, i=1, 2, \cdots, r$, are the disjoint imbeddings. Let $Y=S^m \cup \{ \cup_{i=1}^r D_i \times S_i^p \}$, where $\phi_i=\phi_i|D_i^{p-1} \times S_i^p, i=1, 2, \cdots, r$. Let $\bar{S}_i^p \subset \text{Int} \ Y$ be the imbedded p-sphere slightly moved from $x_i \times S_i^p$, where $i=1, 2, \cdots, r$.

We join $\bar{S}_i^p, i=1, 2, \cdots, r$, by r arcs in $\text{Int} \ Y$ from a fixed point and take a thin closed neighbourhood N. N has the homotopy type of $\bigvee_{i=1}^r S_i^p$.

By the Alexander duality theorem, we have

$$H_i(N) \cong H_q(Y) \quad \text{if} \quad i<m-1,$$

and, since N, Y are simply connected,

$$\pi_i(N) \cong \pi_q(Y) \quad \text{if} \quad i<m-2,$$

where the isomorphisms are induced from the inclusion map. So that, $H_i(Y, N)$ $\cong 0$ for $i<m-1$, and therefore by the homology exact sequence of $(\partial W, Y, N)$, we have

$$H_i(\partial W, N) \cong H_i(\partial W, Y) \quad \text{if} \quad i<m-1.$$

Here, by the excision theorem,

$$H_i(\partial W, Y) \cong \begin{cases} \mathbb{Z} + \cdots + \mathbb{Z} & \text{if} \quad i=q, m \\ 0 & \text{otherwise,} \end{cases}$$

and $[D_i^p \times y_i], y_i \in S_i^p, i=1, 2, \cdots, r$, form a basis of $H_q(\partial W, Y)$. Hence, noting that N, Y and ∂W are simply connected and $H_i(\partial W, N) \cong H_i(\partial W, Y) \cong 0$ for $i<q$, we know

$$\pi_q(\partial W, N) \cong H_q(\partial W, N),$$

$$\pi_q(\partial W, Y) \cong H_q(\partial W, Y),$$
by the Hurewicz isomorphism theorem.

Let $V = \partial W - \text{Int } D^m$ and we may assume that $N \subset \text{Int } V$. Then, by the homology exact sequence of $(\partial W, V, N)$,

$$H_i(V, N) \cong H_i(\partial W, N) \quad \text{if } i < m,$$

and similarly as above,

$$\pi_q(V, N) \cong H_q(V, N).$$

Thus, we have the following commutative diagram

$$\begin{array}{c}
H_q(V, N) \xrightarrow{\cong} H_q(\partial W, V, N) \xrightarrow{\cong} H_q(\partial W, Y) \\
\pi_q(V, N) \xrightarrow{\cong} \pi_q(\partial W, V, N) \xrightarrow{\cong} \pi_q(\partial W, Y) \\
\pi_{q-1}(N) \xrightarrow{\cong} \pi_{q-1}(Y) \\
\pi_{q-1}(\bigvee_{i=1}^r S_f^p),
\end{array}$$

where the horizontal isomorphisms are all induced from the inclusion maps.

We note that $H_{m-1}(\partial W, N) \cong 0$ by the homology exact sequence of $(\partial W, N)$ and $H_m(V, N) \cong 0$. So that, $H_q(V, N) \cong 0$ if $i \neq q$. Let $m > 5$. Then, by [12] or applying Theorem 7.6 and 7.8 of [11] to the triad $(V', \partial N, S^{m-1})$, where $V' = V - \text{Int } N$, we obtain the q-handles T_i in V', $i = 1, 2, \cdots, r$, such that the homology classes $[T_i]$, $i = 1, 2, \cdots, r$, form the basis of $H_q(V', \partial N) \cong H_q(V, N)$ which corresponds to the basis $\{[D_f \times y_i]; i = 1, 2, \cdots, r\}$ of $H_q(\partial W, Y)$. We may identify V with $N \cup T_1 \cup T_2 \cup \cdots \cup T_r$. Henceforth, we assume that $2p > q > 1$ and $m > 5$. Let $\lambda_j = \sum_{i=1}^r \lambda_{ij} \in \pi_{q-1}(\bigvee_{i=1}^r S_f^p) = \sum_{i=1}^r \pi_{q-1}(S_f^p)$ be the linking element of the link $\{\cup_{i=1}^r \phi_i(S_f^p)\} \cup \phi_j(S_f^p) \subset S^m$ defined by $\phi_j(S_f^p) \subset S^m - \cup_{i=1}^r \phi_i(S_f^p) \times o \cong Y$. $\lambda_{ij} \in \pi_{q-1}(S_f^p)$ coincides with the linking element of the link $\phi_i(S_f^p) \times o \cup \phi_j(S_f^p) \times o \subset S^m$ defined by $\phi_j(S_f^p) \times o \subset S^m - \phi_i(S_f^p) \times o \cong S^m$ and is called the self-linking element of $\phi_j(S_f^p) \times o$. Note that $\lambda_{jj} = \pi_*(w_j)$, where w_j is the basis element of $H_q(W) \cong H_q(W, D^{m+1})$ determined by $[D_f^j \times o]$. Let $v_j \in \pi_{q-1}(Y)$ be the homotopy class of $\phi_j|S_f^p \times y_j, j = 1, 2, \cdots, r$. Then, in the above diagram, v_j corresponds to λ_j for $j = 1, 2, \cdots, r$. Hence, by com-
mutativity of the diagram, the attaching map of the q-axis of T_j is given by $\lambda_j, j=1, 2, \ldots, r$. Thus, we have

Lemma 1.1. Let $W=D^{m+1} \cup \bigcup_{i=1}^{r} \{ \cup_{i=1}^{r} D_i^q \times D_i^{p+1} \}$ be a handlebody of $\mathcal{M}(m+1, r, q)$, where $m=p+q$ and $\varphi_i: \partial D_i^q \times D_i^{p+1} \to \partial D^{m+1}$, $i=1, 2, \ldots, r$, are disjoint imbeddings. We assume that $2p>q>1$ and $(p, q) \neq (2, 3)$. Then, ∂W has the homotopy type of

\[
(\bigcup_{i=1}^{r} S_i^p) \cup (\bigcup_{j=1}^{r} D_j^q) \cup D^m
\]

and the attaching map of each D_j^q is given by $\lambda_j = \sum_{i=1}^{r} \lambda_{ij} \in \pi_q-1(\bigcup_{i=1}^{r} S_i^p) = \sum_{i=1}^{r} \pi_{q-1}(S_i^p)$, where each λ_{ij} is the linking element of the link $\varphi_i(S_i^{p-1} \times o)$ $\cup \varphi_j(S_j^{p-1} \times o) \subset S^m$ ($i \neq j$) and λ_{jj} is the self-linking element of $\varphi_j(S_j^{p-1} \times o) \subset S^m$, $i, j = 1, 2, \ldots, r$.

Remark. In each additional case for $m=4, 5$, the lemma holds trivially since ∂W is represented as a connected sum of p-sphere bundles over q-spheres which admit cross-sections.

§ 2. **Proof of Proposition 1**

Let W, W' be the handlebodies of $\mathcal{M}(m+1, r, q)$, $m=p+q$, and assume that $1<p<q-1$ or $p>q>1$. Let $W'=D^{m+1} \cup \bigcup_{i=1}^{r} \{ \cup_{i=1}^{r} D_i^q \times D_i^{p+1} \}$ be a representation, where $\varphi_i: \partial D_i^q \times D_i^{p+1} \to \partial D^{m+1}$, $i=1, 2, \ldots, r$, are disjoint imbeddings. By the assumption on p, q, we know that $H_q(\partial W') \cong 0$ if $k \neq 0$, $p, q, m, H_q(\partial W)$ has the basis $u_1= \big[x_1^i \times S_i^p \big]$, $i=1, 2, \ldots, r$, and $H_q(\partial W')$ has the basis $v_j, j=1, 2, \ldots, r$, which corresponds to $[D_i^q \times o] \in H_q(W', D_i^{m+1})$, $j=1, 2, \ldots, r$, under the isomorphisms induced from the inclusion maps $H_q(\partial W') \cong H_q(W) \cong H_q(W', D^{m+1})$. We call $\{u_1, \ldots, u_r\}, \{v_1, \ldots, v_r\}$ to be the bases associated with the handles of W'.

Lemma 2.1. For any homotopy equivalence $f: \partial W \to \partial W'$ which preserves orientation, there exists a representation $W=D^{m+1} \cup \bigcup_{i=1}^{r} \{ \cup_{i=1}^{r} D_i^q \times D_i^{p+1} \}$, where $\varphi_i: \partial D_i^q \times D_i^{p+1} \to \partial D^{m+1}$, $i=1, 2, \ldots, r$, are disjoint imbeddings, such that $f_*(u_i)=u_i$, $f_*(v_j)=v_j$ for $i, j=1, 2, \ldots, r$. Here, $\{u_1, \ldots, u_r\}, \{v_1, \ldots, v_r\}$ are the bases of $H_q(\partial W), H_q(\partial W')$ respectively associated with the handles of W.

Proof. Let $\bar{u}_i=f_{\bar{u}}^{-1}(u_i), \bar{v}_j=f_{\bar{v}}^{-1}(v_j), i, j=1, 2, \ldots, r$, and let $\bar{w}_j=i_{\bar{w}}(\bar{v}_j), j=1, 2, \ldots, r$, where $i_{\bar{w}}: H_q(\partial W) \cong H_q(W)$ is induced from the inclusion map.
We represent W by the basis $\{\tilde{w}_1, \ldots, \tilde{w}_r\}$ (cf. Milnor [11], Theorem 7.6). So, we have a representation $W = D^{m+1} \cup \{\cup_{i=1}^r D^q_i \times D^{p+1}_i\}$. Then, clearly $i_* (v_j) = \tilde{w}_j = i_* (\tilde{v}_j)$ and therefore $\tilde{v}_j = v_j$, $j = 1, 2, \ldots, r$. Furthermore, $\tilde{u}_i \cdot \tilde{v}_j = \delta_{ij}$, $i, j = 1, 2, \ldots, r$, and $u_i \cdot v_j = \delta[x_i \times D^{p+1}_i] \cdot \tilde{v}_j = [x_i \times D^{p+1}_i] \cdot (i_* (\tilde{v}_j)) = [x_i \times D^{p+1}_i] \cdot \tilde{w}_j = \delta_{ij}$, $i, j = 1, 2, \ldots, r$. Hence, $\tilde{u}_i = u_i$, $i = 1, 2, \ldots, r$.

Now, we prove Proposition 1. If $p \geq q$, the assertion holds trivially. So, we assume that $2p > q > 1$ and $p < q - 1$. Let $f: \partial W \to \partial W'$ be a homotopy equivalence which preserves orientation. Let $W = D^{m+1} \cup \{\cup_{i=1}^r D^q_i \times D^{p+1}_i\}$ be the representation given by Lemma 2.1. Then, by Lemma 1.1, we have the following diagram commutative up to homotopy.

It may be assumed that $g((\bigvee_{i=1}^r S^q_i) \cup (\bigcup_{j=1}^r D^p_j) \cup D^m) = (\bigvee_{i=1}^r S^q_i) \cup (\bigcup_{j=1}^r D^p_j)$ and each $g | S^q_i$ is the identity (S^q_i, S^q_i) is copies of S^p since $f_q (u_i) = u_i$, $i = 1, 2, \ldots, r$. Hence, we have the following commutative diagram, where we put $X = (\bigvee_{i=1}^r S^q_i) \cup (\bigcup_{j=1}^r D^p_j) \cup D^m$ and $X' = (\bigvee_{i=1}^r S^q_i) \cup (\bigcup_{j=1}^r D^p_j) \cup D^m$.

Note that each v_j, v'_j correspond to $[D^p_j] \in H_q (X, \bigvee_{i=1}^r S^q_i)$, $[D^p_j] \in H_q (X', \bigvee_{i=1}^r S^q_i)$ respectively. $\{D^p_j\} \in \pi_q (X, \bigvee_{i=1}^r S^q_i)$, $\{D^p_j\} \in \pi_q (X', \bigvee_{i=1}^r S^q_i)$ correspond to $[D^p_j]$, $[D^p_j]$ under the Hurewicz isomorphisms. Then, since $f_* (v_i)$
Let B_i, B'_i, $i = 1, 2, \ldots, r$, be p-sphere bundles over q-spheres $(p, q > 1)$ with the characteristic elements $\alpha_i, \alpha'_i, i = 1, 2, \ldots, r$, respectively. Then, $\#_{i=1}^r B_i$ has the homotopy type of $X = (\bigvee_{i=1}^r S_f^p) \cup (\bigvee_{i=1}^r D_f^q) \cup D^{p+q}$, and $\#_{i=1}^r B'_i$ the homotopy type of $X' = (\bigvee_{i=1}^r S'_f^p) \cup (\bigvee_{i=1}^r D'_f^q) \cup D^{p+q}$, where each D_f^q, D'_f^q are attached to S_f^p, S'_f^p by $e = \pi_0 \alpha$, $e' = \pi_0 \alpha'$ respectively (cf. [8] §1). Let $p < q - 1$. Let $\{u_i; i = 1, 2, \ldots, r\}$ be the basis of $H_p(\#_{i=1}^r B_i)$ represented by the fibres of B_i, $i = 1, 2, \ldots, r$. Since $H_q(\#_{i=1}^r B_i) \cong H_q(\#_{i=1}^r B'_i)$, the zero cross-sections of B_i, $i = 1, 2, \ldots, r$, determine the basis $\{v_i; i = 1, 2, \ldots, r\}$ of $H_q(\#_{i=1}^r B_i)$. u_i corresponds to $[S_f^p] \in H_p(X)$ and v_i to $[D_f^q] \in H_q(X), i = 1, 2, \ldots, r$. Those are the bases associated with handles if we consider $\#_{i=1}^r B_i$ to be a handlebody. Similarly define $\{u'_i; i = 1, 2, \ldots, r\}$, $\{v'_i; i = 1, 2, \ldots, r\}$ for $\#_{i=1}^r B'_i$. Then, the above diagram and a similar argument will show the following, where $\pi_{q-1}(S_f^p)$, $\pi_{q-1}(S'_f^p)$ are direct summands of $\pi_{q-1}(\bigvee_{i=1}^r S_f^p)$, $\pi_{q-1}(\bigvee_{i=1}^r S'_f^p)$ respectively, $i = 1, 2, \ldots, r$.

Lemma 2.2. Let $1 < p < q - 1$. If there exists a map $f: \#_{i=1}^r B_i \to \#_{i=1}^r B'_i$ such that $f_*(u_i) = u'_i, f_*(v_i) = v'_i$, $i = 1, 2, \ldots, r$, then $e_i = e'_i$ for $i = 1, 2, \ldots, r$. Here, if $p \geq q$ the assertion is trivial.

§ 3. Difference of Bundles

Let B_i, B'_i be p-sphere bundles over q-spheres with the characteristic elements α_i, α'_i respectively, $i = 1, 2, \ldots, r$, and assume that $e_i = e'_i$, where $e_i = \pi_0 \alpha$, $e'_i = \pi_0 \alpha'$. Let S_i^p, p_i, and S'_i be respectively the fixed fibre, the projection, and the base space of B_i. Define $S_i'^p$, p'_i, and S'_i^q similarly for B'_i. In the disjoint union of B_i and B'_i, identify S_i^p with S'_i^p. Then, we have a p-sphere bundle over $S_i^p \vee S_i'^q$, where $S_i^p, S_i'^q$ are identified at $s_i = p(S_i^p) = p'(S_i^p)$. Since B_i, B'_i are included in this bundle as subspaces, we may denote it by $B_i \cup B'_i$ (cf. [10], p. 156).
Let \(g_i: S^q \to S^q_i \vee S^q_i \) be a map representing \(\zeta^q_i - \zeta^q_i \in \pi_q(S^q_i \vee S^q_i) \), where \(\zeta^q_i, \zeta^q_i \) are the orientation generators of \(\pi_q(S^q_i) \), \(\pi_q(S^q_i) \) respectively. The induced bundle \(A_i = g_i^*(B_i \cup B_i') \) has the characteristic element \(\alpha_i - \alpha'_i \) and admits a cross-section since \(\alpha_i - \alpha'_i = 0 \) by the above assumption. Let \(h_i: A_i \to B_i \cup B_i' \) be the bundle map which covers \(g_i \). A fixed fibre \(S^q_A \) of \(A_i \) is oriented so that \(h_i|^{|S^q_A} : S^q_A \to S^q_i \) is of degree 1, and \(A_i \) is oriented by the orientations of \(S^q_i \) and \(S^q \).

Let \(S^q_{A_i} \) be the cross-section of \(A_i \) associated with \(\xi_i \in \pi_q-1(SO_p) \) satisfying \(i_\#(\xi_i) = \alpha_i - \alpha'_i \). Then, \(A_i = (S^q_A \vee S^q_A) \cup e_{p+q}^i \) and the attaching map is given by \(\partial \tau_i = \zeta^q_i \circ \eta_i + [\zeta^q_i, \zeta^q_i] \), where \(\eta_i = J \xi_i \) and \(\tau_i \) is the orientation generator of \(\pi_{p+q}(A_i, S^q_A \vee S^q_A) \) (cf. [9]). Hence, by Lemma 1.1 of [8],

\[
\frac{r}{i=1} A_i \simeq A = \left\{ \bigvee_{i=1}^r (S^q_A \vee S^q_A) \right\} \cup e_{p+q}^i,
\]

and the attaching map of the \((p+q)\)-cell is given by

\[
\partial \tau = \sum_{i=1}^r (\zeta^q_i \circ \eta_i + [\zeta^q_i, \zeta^q_i]),
\]

where \(\tau \) is the orientation generator of \(\pi_{p+q}(A, \bigvee_{i=1}^r (S^q_A \vee S^q_A)) \) and \(\pi_{p+q-1}(S^q_A \vee S^q_A), i = 1, 2, \ldots, r, \) are considered as direct summands of \(\pi_{p+q-1}(\bigvee_{i=1}^r (S^q_A \vee S^q_A)) \).

In \(A_1 \sharp A_2 \sharp \cdots \sharp A_r \), join every \((p+q-1)\)-sphere where connected sum is performed to the base points of the bundles neighboring at the \((p+q-1)\)-sphere by suitably chosen arcs. If we crush the \((p+q-1)\)-spheres and the arcs to a point, the yielding space can be considered as \(\bigvee_{i=1}^r A_i \). Let \(v: \bigvee_{i=1}^r A_i \to \bigvee_{i=1}^r A_i \) be the collapsing map. Then, we have a map

\[
h = \left(\bigvee_{i=1}^r h_i \right) \circ v: \frac{r}{i=1} A_i \longrightarrow \frac{r}{i=1} (B_i \cup B_i').
\]

\(\bigvee_{i=1}^r A_i \) can be replaced by the complex \(A \) of (3.1) and \(h \) may be assumed to preserve the base point. We denote the map by the same symbol \(h \).

\(B_i \) has the cell structure \(B_i = S^q_i \cup e^q_i \cup e_{p+q}^i \), where \(e^q_i \) is attached to \(S^q_i \) by \(\zeta^q_i \circ \sigma_i \). Here, \(\zeta^q_i \) is the orientation generator of \(\pi_p(S^q_i) \). Let \(\sigma_i \) be the orientation generator of \(\pi_{p+q}(B_i, S^q_i \cup e^q_i) \). Then, \(\partial \sigma_i \in \pi_{p+q-1}(S^q_i \cup e^q_i) \) is represented by the attaching map of \(e_{p+q}^i \). Similarly to Lemma 1.1 of [8], it is seen that

\[
\frac{r}{i=1} B_i \simeq B = \left\{ \bigvee_{i=1}^r (S^q_i \cup e^q_i) \right\} \cup e_{p+q}^i,
\]

where each \(e^q_i \) is attached by \(\zeta^q_i \circ \sigma_i \), and
\(\partial \sigma = \partial \sigma_1 + \partial \sigma_2 + \cdots + \partial \sigma_r, \)

where \(\sigma \) is the orientation generator of \(\pi_{p+q}(B, \cup_i S_i) \) and each \(\pi_{p+q-1}(S_i) \) is considered as a direct summand of \(\pi_{p+q-1}(S_i) \).

Let \(B_i = S_i \cup e_i \cup e_i'^q \) be the cell structure of \(B_i \). \(e_i'^q \) is attached to \(S_i \) by \(\epsilon_i'^q \), where \(\epsilon_i'^q \) is the orientation generator of \(\pi_p(S_i) \). Let \(\sigma_i \) be the orientation generator of \(\pi_{p+q}(B_i, S_i \cup e_i'^q) \).

Let \(K = \cup_i (S_i \cup e_i \cup e_i'^q) \) be the subcomplex of \(\cup_i (B_i \cup B_i') \), where \(e_i, e_i'^q \) are attached to \(S_i \) by \(\epsilon_i e_i \) and \(\epsilon_i'^q e_i' \) respectively. Then, it may be assumed that \(h(\cup_i (S_i \cup e_i \cup e_i'^q)) \subseteq K \) for the map \(h: A \to \cup_i (B_i \cup B_i') \). Let \(\overline{h}: (A, \cup_i (S_i \cup e_i \cup e_i'^q)) \to (\cup_i (B_i \cup B_i'), K) \). From the construction of \(h \), we know

\[
\overline{h}(\tau) = (\overline{\sigma}_1 - \overline{\sigma}_1') + (\overline{\sigma}_2 - \overline{\sigma}_2') + \cdots + (\overline{\sigma}_r - \overline{\sigma}_r'),
\]

where \(\overline{\sigma}_i \) is the image of \(\sigma_i \) by the homomorphism induced from the inclusion \((B_i, S_i \cup e_i') = (B_i, S_i' \cup e_i'^q) \), \(i = 1, 2, \cdots, r \). \(\overline{\sigma}_1' \) is similar, and \(\pi_{p+q}(B_i, S_i \cup e_i'^q), S_i \cup e_i \cup e_i'^q), i = 1, 2, \cdots, r \), are considered as the direct summands of \(\pi_{p+q}(\cup_i (B_i \cup B_i'), K) \). Let \(\delta_i = \delta \sigma_i \), and let \(\delta_i \) be the image of \(\delta \sigma_i \) by the homomorphism induced from the inclusion \(S_i \cup e_i'^q \subseteq S_i \cup e_i \cup e_i'^q \), \(i = 1, 2, \cdots, r \). Define \(\delta_i, \delta_i' \) similarly, \(i = 1, 2, \cdots, r \). Here, \(\pi_{p+q-1}(S_i \cup e_i \cup e_i'^q), i = 1, 2, \cdots, r \), are understood as direct summands of \(\pi_{p+q-1}(\cup_i (S_i \cup e_i \cup e_i'^q)) \). Then,

\[
\partial \overline{h}_* \tau = \partial \sum_{i=1}^r (\overline{\sigma}_i - \overline{\sigma}_i') = \sum_{i=1}^r (\partial \overline{\sigma}_i - \partial \overline{\sigma}_i') = \sum_{i=1}^r (\delta_i - \delta_i') = \sum_{i=1}^r \delta_i - \sum_{i=1}^r \delta_i',
\]

and by (3.2),

\[
\partial \overline{h}_* \tau = h_\ast \partial \tau = \sum_{i=1}^r h_\ast (\epsilon_i \ast \eta_i + [\epsilon_i, \epsilon_i]).
\]

Hence, we have

\[
\sum_{i=1}^r \delta_i - \sum_{i=1}^r \delta_i' = \sum_{i=1}^r h_\ast (\epsilon_i \ast \eta_i + [\epsilon_i, \epsilon_i]).
\]

§ 4. Proof of the Necessity for Theorem 4

Let \(B_i, B_i', i = 1, 2, \cdots, r \), be \(p \)-sphere bundles over \(q \)-spheres with the characteristic elements \(\alpha_i, \alpha_i' \) respectively and assume that \(q/2 < p < q - 1 \). Let \(f: \#_{i=1}^r B_i \to \#_{i=1}^r B_i' \) be a homotopy equivalence which preserves orientation.

Assertion 1. There exists another expression of \(\#_{i=1}^r B_i \) into a connected
sum of p-sphere bundles over q-spheres \(\#_{i=1} B_i \) such that in the cell decompositions \(\#_{i=1} B_i \simeq B = \{ \vee_{i=1} (S_i^p \cup e_i^q) \} \cup \tilde{e}^p+q \) and \(\#_{i=1} B_i \simeq B = \{ \vee_{i=1} (S_i^p \cup e_i^q) \} \cup e^p+q, \) \(f_* : H_*(B) \rightarrow H_*(B') \) satisfies \(f_*([S_i^p]) = [S_i^p], \) \(i = 1, 2, \ldots, r \) and \(f_*([\tilde{e}^p]) = [e_i^q], \) \(j = 1, 2, \ldots, r, \) where \(f \) may be assumed to satisfy \(f(\vee_{i=1} S_i^p) \subset \vee_{i=1} S_i^p \) and \(f : (\tilde{B}, \vee_{i=1} S_i^p) \rightarrow (B', \vee_{i=1} S_i^p) \) is the relativization of \(f. \)

Proof. Let \(W = \vee_{i=1} B_i, W' = \vee_{i=1} B_i, \) and let \(\{u_1, \ldots, u_r, \}, \{v_1, \ldots, v_r, \} \) be the bases of \(H_q(\partial W), H_q(\partial W') \) respectively associated with the handles of \(W. \) Then, by Lemma 2.1, there exists a representation of \(W \) into such a handlebody that \(f_*(u_i) = u'_i, f_*(v_i) = v'_i, i = 1, 2, \ldots, r, \) where \(\{u_1, \ldots, u_r, \}, \{v_1, \ldots, v_r, \} \) are bases of \(H_\rho(\partial W), H_\rho(\partial W) \) respectively associated with the new handles of \(W. \) Of course, \(\{w'_j = i'_*v'_j; j = 1, 2, \ldots, r, \} \), the basis of \(H_q(W) \) is admissible since \(w'_j, j = 1, 2, \ldots, r, \) are represented by zero cross-sections of \(\tilde{B}_j, j = 1, 2, \ldots, r. \) Hence, by Proposition 1, the basis of \(H_q(W), \{w_j = i_\#v_j; j = 1, 2, \ldots, r, \} \) is admissible. Therefore, again \(W \) can be represented into a boundary connected sum of \((p + 1) \)-disk bundles over q-spheres \(\#_{i=1} \tilde{B}_i \) and \(\partial W \) into a connected sum of p-sphere bundles over q-spheres \(\#_{i=1} B_i. \) We note that in the above cell-decompositions, \(u_1, v_j, u'_1, \) and \(v'_j \) correspond to \([S_i^p], [\tilde{e}^p], [S'_i^p], \) and \([e_i^q] \) respectively for each \(i, j. \) This completes the proof.

Assertion 2. Under the cell decompositions \(\#_{i=1} B_i \simeq B = \{ \vee_{i=1} (S_i^p \cup e_i^q) \} \cup e^p+q \) and \(\#_{i=1} B'_i \simeq B' = \{ \vee_{i=1} (S_i^p \cup e_i^q) \} \cup e^p+q, \) if \(f_* : H_*(B) \rightarrow H_*(B') \) satisfies \(f_*([S_i^p]) = [S_i^p], f_*([e_i^q]) = [e_i^q], \) for \(i = 1, 2, \ldots, r, \) then \(e_i = e_i', \) \(i = 1, 2, \ldots, r, \) where \(e_i = \pi_\#a_i, e_i' = \pi_\#a_i', \) and \(\{a_i\} = \{a_i'\}, i = 1, 2, \ldots, r. \) in \(\pi_{q-1}(S_i^p) = \pi_{q-1}(S_i^p'). \)

Proof. The former half of the assertion is known immediately from Lemma 2.2. To prove the latter half, we apply Section 3. By the assumption, we may assume that \(f \) maps each \(S_i^p \) identically onto \(S_i^p \) and \(S_i^p \) can be identified by means of \(\left(e_i^q \cup \rho(\tilde{e}_i^p) \right)^{-1} \) and \(f(\vee_{i=1} (S_i^p \cup e_i^q)) \subset \vee_{i=1} (S_i^p \cup e_i^q). \) Let \(f^0 = f|_{\vee_{i=1} (S_i^p \cup e_i^q)} \) and let \(\rho : K \rightarrow \vee_{i=1} (S_i^p \cup e_i^q) \) be the retraction defined by \(\rho|_{\vee_{i=1} (S_i^p \cup e_i^q)} = f_0 \) and \(\rho|_{\vee_{i=1} (S_i^p \cup e_i^q)} = \text{identity}. \) Then, we have the following commutative diagram.

\[
\begin{array}{ccccccccc}
\pi_q \left(\bigvee_{i=1} S_i^p \right) & \xrightarrow{k_i^p} & \pi_q(K) & \xrightarrow{\rho_0^q} & \pi_q(K, \bigvee_{i=1} S_i^p) \\
\downarrow \rho_{i=1} & & \downarrow \rho_+ & & \downarrow \rho_+ \\
\pi_q \left(\bigvee_{i=1} S_i^p \right) & \xrightarrow{i_i^q} & \pi_q \left(\bigvee_{i=1} (S_i^p \cup e_i^q) \right) & \xrightarrow{i_i^q} & \pi_q \left(\bigvee_{i=1} (S_i^p \cup e_i^q), \bigvee_{i=1} S_i^p \right)
\end{array}
\]
where \(k^0, l^0, k', \) and \(l' \) are inclusion maps and \(\tilde{\rho} \) is the relativization of \(\rho \).

Let \(j: (S^p_i \cup e^q_i, S^p_i) \to (\vee_{i=1} S^p_i \cup e^q_i), \vee_{i=1} S^p_i \to (K, \vee_{i=1} S^p_i) \) be inclusion maps and let \(j', \tilde{m} \) be similar for \((S^p_i \cup e^q_i, S^p_i)\). Let \(\kappa_q^i \in \pi_q(S^p_i \cup e^q_i, S^p_i) \cong H_q(S^p_i \cup e^q_i, S^p_i) \) be the generator corresponding to \([e^q_i]\) and define \(\kappa_q^i \in \pi_q(S^p_i \cup e^q_i, S^p_i) \) similarly. Then, we have

\[
(4.2) \quad \tilde{\rho} \circ \tilde{m} \cdot (\kappa_q^i) = j_q^i \kappa_q^i, \quad \tilde{\rho} \circ \tilde{m} \cdot (\kappa_q^i) = j_q^i \kappa_q^i.
\]

The former is clear since \(\tilde{\rho} \circ \tilde{m} = j_q' \). The latter is known from the following commutative diagram including the factorization of \(\tilde{m} \).

\[
\begin{array}{ccc}
\pi_q(S^p_i \cup e^q_i, S^p_i) & \xrightarrow{j_q^i} & \pi_q(K, (\vee_{i=1} S^p_i)) \\
\tilde{\rho} \circ \tilde{m} \cdot (\kappa_q^i) & \mapsto & \tilde{\rho} \circ \tilde{m} \cdot (\kappa_q^i)
\end{array}
\]

where \(j_q(\kappa_q^i) = j_q^i \kappa_q^i \) since \(j_q^i[e^q_i] = [e^q_i] \) by the assumption.

We apply the homomorphism \(h^*: \pi_q(\vee_{i=1} S^p_i, S^p_i) \to \pi_q(K) \). \(l^q_{0} h^* \zeta_q^i = \tilde{m} \kappa_q^i - \tilde{m} \kappa_q^i \) is clear from the definition of \(h \). Hence, by (4.1) and (4.2),

\[
l^q_{0} h^* \zeta_q^i = \tilde{\rho} \circ \tilde{m} \cdot (\kappa_q^i) - \tilde{\rho} \circ \tilde{m} \cdot (\kappa_q^i)
\]

So that,

\[
(4.3) \quad \rho^* h^* \zeta_q^i = k_q^i \theta_q^i \quad \text{for some} \quad \theta_q^i \in \pi_q(\vee_{j=1} S^f_j).
\]

Then, applying \(\rho^* \) to (3.6) and by (4.3),

\[
\begin{align*}
\sum_{i=1}^r \rho^* \delta_i - \sum_{i=1}^r \rho^* \delta_i &= \sum_{i=1}^r \rho^* h^* (\zeta_p^i \circ \eta_i + [\zeta_p^i, \zeta_p^i]) \\
&= \sum_{i=1}^r (\rho^* h^* \zeta_p^i \circ \eta_i + [\rho^* h^* \zeta_p^i, \rho^* h^* \zeta_p^i]) \\
&= \sum_{i=1}^r (k_q^i \zeta_p^i \circ \eta_i + [k_q^i \theta_q^i, k_q^i \zeta_p^i]) = \sum_{i=1}^r k_q^i (\zeta_p^i \circ \eta_i + [\theta_q^i, \zeta_p^i]).
\end{align*}
\]

On the other hand, let \(\sigma \in \pi_{p+q}(B, \vee_{i=1} (S^p_i \cup e^q_i)), \sigma' \in \pi_{p+q}(B', \vee_{i=1} (S^{p'}_i \cup e^{q'}_i)) \) be the orientation generators and let \(\delta = \partial \sigma, \delta' = \partial \sigma' \). Since \(f \) is of degree 1

\[
f^q_{0} \delta = f^q_{0} \partial \sigma = \partial f_{0} \sigma = \partial \sigma' = \delta',
\]

and therefore,

\[
\sum_{i=1}^r \rho^* \delta_i - \sum_{i=1}^r \rho^* \delta_i = \sum_{i=1}^r f^q_{0} \delta_i - \sum_{i=1}^r \delta_i = f^q_{0} (\sum_{i=1}^r \delta_i) - \sum_{i=1}^r \delta_i
\]

\[
=f^q_{0} \delta - \delta' = 0.
\]
Thus, we have

\begin{align*}
\sum_{i=1}^{r} k_a^* (\epsilon_p^i \ast \eta_i + [\theta_i^i, \epsilon_p^i]) = 0.
\end{align*}

(i) Now, we assume that \(2p > q + 1\). Then, \(\pi_q(\vee_{i=1}^r S_i^j) \cong \pi_q(S_i^p) \oplus \cdots \oplus \pi_q(S_i^p)\) and we have the unique summation \(\theta_i^j = \sum_{j=1}^r \theta_i^j, \theta_i^j \in \pi_q(S_i^j), j = 1, 2, \ldots, r\). Let \(\theta_i = \epsilon_p^j \ast \theta_i^j, \theta_i \in \pi_q(S_i^p)\), for \(j = 1, 2, \ldots, r\). Then,

\begin{align*}
\epsilon_p^i \ast \eta_i + [\theta_i^i, \epsilon_p^i] = & \epsilon_p^i \ast \eta_i + \sum_{j=1}^r [\theta_i^j, \epsilon_p^i] \\
= & \epsilon_p^i \ast \eta_i + \sum_{j=1}^r [\epsilon_p^j \ast \theta_i^j, \epsilon_p^i] \\
= & \epsilon_p^i \ast (\eta_i + [\theta_i^j, \epsilon_p^i]) + \sum_{j \neq i} [\epsilon_p^j \ast \theta_i^j, \epsilon_p^i],
\end{align*}

and by Barcus-Barratt [1] or G. W. Whitehead [15],

\[[\epsilon_p^j \ast \theta_i^j, \epsilon_p^i] = [\epsilon_p^j, \epsilon_p^i] \circ (-1)^{p+q} E^{p-1} \theta_i^j, \]

where \(\theta_i^j, j = 1, 2, \ldots, r\), are the suspension elements. Hence, we have

\begin{align*}
(4.5) \quad \epsilon_p^i \ast \eta_i + [\theta_i^j, \epsilon_p^i] = & \epsilon_p^i \ast (\eta_i + [\theta_i^j, \epsilon_p^i]) + \sum_{j \neq i} [\epsilon_p^j, \epsilon_p^i] \circ (-1)^{p+q} E^{p-1} \theta_i^j.
\end{align*}

Let \(a_i = \epsilon_p^i \ast (\eta_i + [\theta_i^j, \epsilon_p^j]), \beta_{ji} = (-1)^{p+q} E^{p-1} \theta_{ij} + (-1)^{q} E^{p-1} \theta_{ji}\), and \(b_{ji} = [\epsilon_p^j, \epsilon_p^i] \circ \beta_{ji}\), where \(a_i \in \pi_{p+q-1}(S_i^j) \subset \pi_{p+q-1}(\vee_{i=1}^r S_i^j)\) and \(b_{ji} \in \pi_{p+q-1}(S_i^j \cup S_i^j) \subset \pi_{p+q-1}(\vee_{i=1}^r S_i^j), i, j = 1, 2, \ldots, r\). Then, by (4.4) and (4.5), we know

\begin{align*}
(4.6) \quad \sum_{i=1}^{r} k_a^* a_i + \sum_{i<j} k_a^* b_{ij} = 0, \quad \text{for} \quad k_a^*: \pi_n(\vee_{i=1}^r S_i^j) \longrightarrow \pi_n(\vee_{i=1}^r (S_i^j \cup e_i^q)), \quad n = p + q - 1.
\end{align*}

Here, each \(k_a^* a_i\) belongs to the direct summand \(\pi_{p+q-1}(S_i^j \cup e_i^q)\). Now, assume temporarily that every \(k_a^* b_{ij}\) belongs to another direct summand independent of \(\pi_{p+q-1}(S_i^j \cup e_i^q), i, j = 1, 2, \ldots, r\). This is the fact which will be shown in Assertion 3. Then, (4.6) yields \(k_a^* a_i = 0\) for \(i = 1, 2, \ldots, r\), and by the commutative diagram

\[
\begin{array}{ccc}
\pi_{p+q-1}(S^p) & \xrightarrow{k_a} & \pi_{p+q-1}(S^p \cup e_i^q) \\
\cong & \epsilon_p^i & \cong \mu_e \\
\pi_{p+q-1}(S_i^p) & \xrightarrow{k_a^*} & \pi_{p+q-1}(S_i^p \cup e_i^q),
\end{array}
\]

where \(k_a^*\) is induced from the inclusion map and \(\mu_e\) is the canonical isomorphism, we have
(4.7) \[k_\alpha(\eta_i + [\theta_{ii}, \xi_p]) = 0, \quad i = 1, 2, \ldots, r, \]

where \(\eta_i = J\xi_{ii}, \xi_i \in \pi_{q-1}(SO_p) \), and \(i_\alpha\xi_i = \alpha_i - \alpha_{i'}, \quad i = 1, 2, \ldots, r \). Here, \([\theta_{ii}, \xi_p] = -J_\theta\theta_{ii}, \partial : \pi_{q-1}(SO_p) \to \pi_{q-1}(SO_p) \). Let \(\xi_i = \xi_i - J\partial\theta_{ii} \in \pi_{q-1}(SO_p) \). Then, \(k_\alpha J\xi_i = k_\alpha(J\xi_i - J\partial\theta_{ii}) = k_\alpha(\eta_i + [\theta_{ii}, \xi_p]) = 0, \quad i = 1, 2, \ldots, r \). Since \(\text{Ker} k_\alpha = \text{Im} (\xi_i)_\alpha \), \((\xi_i)_\alpha = \xi_i : \pi_{p+q-1}(S^{q-1}) \to \pi_{p+q-1}(SO_p) \) by (3.2) of James-Whitehead [10], \(J\xi_i \) belongs to \(\text{Im} (\xi_i)_\alpha \), and \(i_\alpha\xi_i = i_\alpha(\xi_i - J\partial\theta_{ii}) = i_\alpha\xi_i = \alpha_i - \alpha_{i'} \). Hence, we know that \(\alpha_i - \alpha_{i'} \in i_\alpha(J^{-1}(\text{Im} (\xi_i)_\alpha)) = G(\xi_i) \). That is, \(\{\alpha_i\} = \{\alpha_i\} \) in \(\pi_{q-1}(SO_{p+1})/G(\xi_i) = \pi_{q-1}(SO_{p+1})/G(\xi_i), \quad i = 1, 2, \ldots, r. \)

(ii) Let \(2p = q + 1 \) (\(p, q > 1 \)). Then, \(\pi_q(\cup f_{i=1}^p S_i^{q-1}) = \bigoplus_{j<k} [\xi^j_p, \alpha^k_p] \pi_q(S^{2p-1}) \) by Hilton [4]. So that, we have the unique sum \(\theta_i = \bigoplus_{j=1}^p \xi^j_p \circ \theta_{ij} + \sum_{j<k} [\xi^j_p, \alpha^k_p] \circ \theta_{ijk} \), where \(\theta_{ij} \in \pi_q(S^{2p}), \quad \theta_{ijk} \in \pi_q(S^{2p-1}) \approx \mathbb{Z} \) for any \(i, j, k \). Therefore,

\[[\theta_{i}, \xi_{p}] = \sum_{j=1}^p [\xi^j_p \circ \theta_{ij}, \alpha^k_p] + \sum_{j<k} [[\xi^j_p, \alpha^k_p] \circ \theta_{ijk}, \xi_p]. \]

By (7.4) of Barcus-Barratt [1],

\[[\xi^j_p \circ \theta_{ij}, \alpha^k_p] = [\xi^j_p, \alpha^k_p] \circ (-1)^{p-1} E^{p-1} \theta_{ij} + [\xi^j_p, [\xi^j_p, \alpha^k_p]] \circ (-1)^{p-1} E^{p-1} H_0(\theta_{ij}), \]

where \(H_0 \) is the Hopf-Hilton homomorphism and the second term vanishes if \(p \) is odd since \(\theta_{ij} \) becomes a suspension element. And,

\[[[\xi^j_p, \alpha^k_p] \circ \theta_{ijk}, \alpha^l_p] = [[\xi^j_p, \alpha^k_p], \alpha^l_p] \circ E^{p-1} \theta_{ijk} \]

\[= [\xi^j_p, [\xi^j_p, \alpha^k_p]] \circ (-1)^{p-1} E^{p-1} \theta_{ijk}. \]

So that, we have

(4.8) \[[\theta_{i}, \xi_{p}] = \xi^i_p \circ \theta_{ii}, \alpha^l_p] + \sum_{j \neq i} [\xi^j_p, \alpha^l_p] \circ (-1)^{p-1} E^{p-1} \theta_{ij} \]

\[+ \sum_{j<k} [\xi^j_p, [\xi^j_p, \alpha^k_p]] \circ (-1)^{p-1} E^{p-1} H_0(\theta_{ij}) \]

\[+ \sum_{j<k} [\xi^j_p, [\xi^j_p, \alpha^k_p]] \circ (-1)^{p-1} E^{p-1} \theta_{ijk}. \]

Every Whitehead product of weight 3 is a linear combination of the Whitehead products \([\xi^i_p, [\xi^j_p, \alpha^k_p]] \) such that \(i \geq j < k \) by using the Jacobi identity (Hilton [4]). Hence,

(4.9) \[\sum_{i=1}^r (\xi^i_p \circ \eta_i + [\theta_{ii}, \xi_p]) = \sum_{i=1}^r \xi^i_p \circ (\eta_i + [\theta_{ii}, \xi_p]) + \sum_{j<k} [\xi^j_p, [\xi^j_p, \alpha^k_p]] \circ \beta_{ij} \]

\[+ \sum_{i \geq j<k} [\xi^j_p, [\xi^j_p, \alpha^k_p]] \circ \gamma_{ijk}, \]

where \(\beta_{ji} \in \pi_{3p-2}(S^{2p-1}) (j < i) \) is defined as in (i) and \(\gamma_{ijk} \) (\(i \geq j < k \)) is a certain element of \(\pi_{3p-2}(S^{2p-2}) \approx \mathbb{Z} \).
Let \(a_i = \varepsilon_p^i \eta_i + [\theta_{ii}, \varepsilon_p^i] \), \(b_{ji} = [\varepsilon_p^i, \varepsilon_p^j] \beta_j \) as in (i), and let \(c_{ijk} = [\varepsilon_p^i, [\varepsilon_p^j, \varepsilon_p^k]] \). Then, by (4.4) and (4.9), we know

\[
\sum_{i=1}^r k'_* a_i + \sum_{i<j} k'_* b_{ij} + \sum_{i \leq j < k} k'_* c_{ijk} = 0,
\]

where \(k'_*: \pi_{p+q-1}(\vee_{t=1}^r S^p_t) \to \pi_{p+q-1}(\vee_{t=1}^r (S^p_t \cup e_t^q)) \), \(q = 2p-1 \). Therefore, if we show that every \(k'_* b_{ij} \) and every \(k'_* c_{ijk} \) belong to the direct summands independent of \(\pi_{p+q-1}(S^p_t \cup e_t^q) \), \(i = 1, 2, \ldots, r \), then \(k'_* a_i = 0 \) for \(i = 1, 2, \ldots, r \) by (4.10), and we can complete the proof similarly as in (i).

Thus, the following will conclude the proof of Assertion 2.

Assertion 3. Every \(k'_* b_{ij} \) \((i < j) \) and every \(k'_* c_{ijk} \) \((i \geq j < k) \) are included in a direct summand of \(\pi_{p+q-1}(\vee_{t'=1}^r (S^p_t \cup e_t^q)) \) which is independent of \(\pi_{p+q-1}(S^p_t \cup e_t^q) \), \(i = 1, 2, \ldots, r \).

Proof. Let \(X_t = S^p_t \cup e_t^q \), \(t = 1, 2, \ldots, r \). Then, \(\pi_n(\vee_{t'=1}^r X_{t'}) = \sum_{t=1}^r \pi_n(X_t) \otimes \partial \pi_n+1(\prod_{t=1}^r X_t, \vee_{t'=1}^r X_{t'}) \), \(n = p+q-1 \). We have the following commutative diagram.

\[
\begin{array}{cccc}
S^{p+q-1} \xrightarrow{\beta_{ij}} S^{2p-1} & \xrightarrow{[\varepsilon_p^i, \varepsilon_p^j]} & S^p_t \vee S^p_j & k' \xrightarrow{\pi_n} \vee_{t=1}^r X_t \\
\downarrow & \downarrow & \downarrow & \downarrow \\
D^{p+q} \xrightarrow{c(\beta_{ij})} D^{2p} & \xrightarrow{[\varepsilon_p^i, \varepsilon_p^j]} & S^p_t \times S^p_j & k' \xrightarrow{\pi_n} \vee_{t=1}^r X_t,
\end{array}
\]

where vertical maps and \(k' \) are inclusions. Hence, \(k'_* b_{ij} \) belongs to \(\partial \pi_n+1(\prod_{t=1}^r X_t, \vee_{t'=1}^r X_{t'}) \) which is independent of \(\pi_n(X_t) \), \(t = 1, 2, \ldots, r \).

Generally, every basic product of weight \(\geq 2 \) belongs to \(\partial \pi_n+1(\prod_{t=1}^r S^p_t, \vee_{t'=1}^r S^p_{t'}) \). In fact, in the splitting exact sequence

\[
0 \xrightarrow{i} \pi_n+1(\prod_{t=1}^r S^p_t) \xrightarrow{\varepsilon_P} \pi_n(\vee_{t=1}^r S^p_t) \xrightarrow{\pi_n(\vee_{t=1}^r S^p_t)} \pi_n(\prod_{t=1}^r S^p_t) \xrightarrow{\sum_{t=1}^r \pi_n(S^p_t)} 0,
\]

such Whitehead products are mapped to zero. So, for any basic product \([\varepsilon_p^i, [\varepsilon_p^j, \varepsilon_p^k]] \) \((i \geq j < k) \), there exists an element \(\chi \in \pi_n+1(\prod_{t=1}^r S^p_t, \vee_{t'=1}^r S^p_{t'}) \) such that \([\varepsilon_p^i, [\varepsilon_p^j, \varepsilon_p^k]] = \partial \chi \). Therefore, we have the following commutative diagram.
Hence, k'_*c_{ijk} belongs to $\partial \pi_{n+1}(\bigcap_{i=1}^n X_i, \bigvee_{i=1}^n X_i)$. This completes the proof.

Assertion 4. For "any" admissible basis $\{w'_1, \cdots, w'_r\}$ of $H'=Hq(\#_{i=1}^r B'_i)$, there exists an admissible basis $\{w_1, \cdots, w_r\}$ of $H=Hq(\#_{i=1}^r B_i)$ such that

(i) $e(w_i) = e'(w'_i)$, \hspace{1cm} i = 1, 2, \cdots, r.

(ii) $\{\alpha(w_i)\} = \{\alpha'(w'_i)\}$ in $\pi_{q-1}(SO_{p+1})/G(e(w_i)) = \pi_{q-1}(SO_{p+1})/G(e'(w'_i))$,
\hspace{1cm} i = 1, 2, \cdots, r.

Proof. There exists another expression of $\#_{i=1}^r B'_i$ into a connected sum of p-sphere bundles over q-spheres $\#_{i=1}^r B_i'$ such that in the cell decomposition $\#_{i=1}^r B'_i = \{\bigvee_{i=1}^r (\tilde{S}_i^p \cup \tilde{e}^g_i)\} \cup \tilde{e}^{p+q}$, each homology class $[\tilde{e}^g_i]$ corresponds to w'_i, $i = 1, 2, \cdots, r$. Hence, Assertion 1 and Assertion 2 conclude the proof.

This completes the proof of the necessity for Theorem 4.

§ 5. Proof of the Sufficiency for Theorem 4

Let B_i, B'_i be p-sphere bundles over q-spheres $(2p>q>1)$ with the characteristic elements α_i, α'_i respectively and let $e_i = \pi_{q}(\alpha_i)$, $e'_i = \pi_{q}(\alpha'_i)$, where $i = 1, 2, \cdots, r$. Let $\{w_1, \cdots, w_r\}$, $\{w'_1, \cdots, w'_r\}$ be the admissible bases of H, H' respectively, satisfying

(i) $e(w_i) = e'(w'_i)$, \hspace{1cm} i = 1, 2, \cdots, r, and

(ii) $\{\alpha(w_i)\} = \{\alpha'(w'_i)\}$ in $\pi_{q-1}(SO_{p+1})/G(e(w_i)) = \pi_{q-1}(SO_{p+1})/G(e'(w'_i))$,
\hspace{1cm} i = 1, 2, \cdots, r.

By adopting the representations of the connected sums of given bundles using the admissible bases $\{w_1, \cdots, w_r\}$, $\{w'_1, \cdots, w'_r\}$, we may assume that w_i, w'_i are represented by zero cross-sections of B_i, B'_i respectively, $i = 1, 2, \cdots, r$. Then, $\alpha(w_i) = \alpha_i$, $\alpha'(w'_i) = \alpha'_i$, $e(w_i) = e_i$, and $e'(w'_i) = e'_i$, $i = 1, 2, \cdots, r$. Hence, the proof is accomplished by directly extending that of James-Whitehead [10] ((1.5), p. 163).

Since $\alpha_i - \alpha'_i \in G(e_i)$, there exists an element $\xi_i \in \pi_{q-1}(SO_p)$ such that $i_*\xi_i = \alpha_i - \alpha'_i$ and $J\xi_i \in \text{Im } (e_i)_{\#}, i = 1, 2, \cdots, r$. By (3.2) of [10], the sequence
\[\pi_{p+q-1}(S^{q-1}) \xrightarrow{(e_i)_*} \pi_{p+q-1}(S^p) \xrightarrow{(k_i)_*} \pi_{p+q-1}(S^p \cup e^g) \]
is exact, where \((k_i)_{\ast} \) is induced from the inclusion. Hence, \(J_{\xi} \in \text{Im} (e_{\ast}) \)

\(= \text{Ker} (k_{\ast}) \), \(i = 1, 2, \cdots, r \). Let \(B_i = \mathbb{S}_p \cup e_i^q \cup e_i^{p+q} \), \(B'_i = \mathbb{S}_p \cup e_i^q \cup e_i^{p+q} \) be the cell-decompositions given by (3.3) of [9], where \(e_i^q \), \(e_i^{p+q} \) are attached by \(\zeta_p^{(q)}e_i \), \(\zeta_p^{(p+q)}e_i \) respectively. We identify \(\mathbb{S}_p \) canonically with \(\mathbb{S}_1 \), \(\mathbb{S}_1^q \) so that \(\zeta_p^{(q)} = \zeta_p^{(1)} \).

Since \(e_i = e_i', \) there exists a homotopy equivalence \(g_i : \mathbb{S}_p \cup e_i^q \to \mathbb{S}_p \cup e_i^{p+q} \) such that \(g_i \big| \mathbb{S}_p = \text{id} \). Let \(\sigma_i \in \pi_{p+q}(B_i, \mathbb{S}_p \cup e_i^q), \sigma_i' \in \pi_{p+q}(B'_i, \mathbb{S}_p \cup e_i^{p+q}) \) be the orientation generators and let \(\delta_i = \partial \sigma_i, \delta_i' = \partial \sigma_i' \). Then, by (3.3) and Lemma (3.8) of [10],

(i) \((g_i)_{\ast} \delta_i - \delta_i' = \pi_q \xi_i' \) for some \(\xi_i' \in \pi_{q-1}(SO_p) \) such that \(i \ast \xi_i' = \alpha_i - \alpha_i' \), and

(ii) \(g_i \) can be chosen so that \(\beta_i \) is a given element in \(\pi_{q-1}(\alpha_i - \alpha_i') \).

Hence, by taking \(\xi_i \) as \(\xi_i' \), there exists a homotopy equivalence \(g_i : \mathbb{S}_p \cup e_i^q \to \mathbb{S}_p \cup e_i^{p+q} \) such that \(g_i \big| \mathbb{S}_p = \text{id} \) and \((g_i)_{\ast} \delta_i = \delta_i' \), where \(i = 1, 2, \cdots, r \).

In the cell-decompositions \(\#_i \bigcirc B_i = \{ \bigvee_i (\mathbb{S}_1^q \cup e_i^q) \} \cup e_i^{p+q}, \#_i \bigcirc B'_i = \{ \bigvee_i (\mathbb{S}_1^p \cup e_i^{p+q}) \} \cup e_i^{p+q}, \) \(\sigma \in \pi_{p+q}(B, \bigvee_i (\mathbb{S}_1^q \cup e_i^q)), \sigma' \in \pi_{p+q}(B', \bigvee_i (\mathbb{S}_1^p \cup e_i^{p+q})) \) be the orientation generators, and let \(\delta = \partial \sigma, \delta' = \partial \sigma' \). Then,

\[
\delta = \delta_1 + \delta_2 + \cdots + \delta_r, \quad \delta' = \delta_1' + \delta_2' + \cdots + \delta_r',
\]

where it is understood that \(\sum_i \pi_{p+q-1}(\mathbb{S}_1^q \cup e_i^q) \subset \pi_{p+q-1}(\bigvee_i (\mathbb{S}_1^q \cup e_i^q)) \) and \(\sum_i \pi_{p+q-1}(\mathbb{S}_1^p \cup e_i^{p+q}) \subset \pi_{p+q-1}(\bigvee_i (\mathbb{S}_1^p \cup e_i^{p+q})) \). Now, let

\[
g = \bigvee_i (g_i)_{\ast} : \bigvee_i (\mathbb{S}_1^q \cup e_i^q) \longrightarrow \bigvee_i (\mathbb{S}_1^p \cup e_i^{p+q}).
\]

Then, \(g_{\ast} \delta = \sum_i (g_i)_{\ast} \delta_i = \sum_i \delta_i = \delta' \), that is, \(g_{\ast} \delta = \delta' \). Hence, \(g \) has an extension \(f : B \to B' \) of degree 1. \(f_{\ast} : H_\ast(B) \to H_\ast(B') \) is isomorphic for \(n = 0, p, p+q \), and for \(n = q \) as is shown by the following diagram

\[
\begin{align*}
H_\ast(B) & \xrightarrow{\sim} H_\ast(B') \\
\cong \downarrow D & \cong \downarrow D \\
H_\ast(B) & \xrightarrow{f_{\ast}} H_\ast(B'),
\end{align*}
\]

where \(f_{\ast} = (D \circ f_{\ast} \circ D^{-1}) = \text{id} \) and \(D \) is the Poincaré duality isomorphism. Since \(B, B' \) are simply connected, \(f \) is a homotopy equivalence. This completes the proof.

References

