On The Equivariant Isotopy Classes of Some Equivariant Imbeddings of Spheres

By

Kojun Abe

§ 0. Introduction

The purpose of this paper is to study the G-isotopy classes of G-imbeddings of spheres into spheres, where the spheres are equipped with semi-free linear G-actions for a finite group G.

Let V be an m-dimensional real G-module. Throughout this paper we shall assume that V is a product module $V = R \oplus V_1$ of a trivial real G-module R of positive dimension n and an $(m-n)$-dimensional real G-module V_1 on the G-invariant unit sphere $S(V_1)$ of which G acts freely. Let W be a real G-module which contains V as a direct summand. Let S_v and S_w denote the one-point compactifications of V and W respectively. Then S_v and S_w are spheres on which G acts linearly. The direct sum of d copies of V will be denoted by dV.

Theorem A. Let G be a cyclic group Z_q and let $W = dV \oplus R^t$ for $k > m+1$. If $d \geq \max \{(n+3)/2, (m+2)/(m-n)\}$, then any G-imbedding of S_v into S_w is G-isotopic to the standard imbedding.

Theorem B. Let G be a cyclic group Z_q for $q \geq 2$ and let $W = dV \oplus R^t$ for $k > m+1$. Suppose that $d \geq (m+1)/(m-n)$ and V_1 is a direct sum of $(m-n)/2$ copies of an irreducible 2-dimensional real G-module.

(1) If $d = (m+1)/(m-n)$, then there are infinitely many G-
imbeddings of \(S^r \) into \(S^w \) which are not G-isotopic to each other, and

(2) if \(d > (m+1)/(m-n) \), then any G-imbedding of \(S^r \) into \(S^w \) is G-isotopic to the standard imbedding.

The paper is organized as follows. For any G-imbedding \(f: S^r \to S^w \), we shall show that, by G-isotopies, \(f|S^r \) can be deformed to be standard in § 1, \(f \) can be deformed to be linear on a neighborhood of \(S^* \) in § 2 and \(f \) can be deformed to be orthogonal on a neighborhood of \(S^* \) in § 3. Moreover we shall prove that, if two G-imbeddings of \(S^r \) into \(S^w \) are G-isotopic and are orthogonal on a neighborhood of \(S^* \), then there exists a G-isotopy between them which is orthogonal on a neighborhood of \(S^* \) in § 3. Then we see that the G-isotopy class of \(f \) is determined by the homotopy class of the orbit map of \(f|S^r - U \) relative to the boundary, where \(U \) is a neighborhood of \(S^* \). In § 4, using the obstruction theory, we shall prove Theorem A and Theorem B.

The author wishes to thank Professors M. Adachi and T. Matumoto for their kind advices and valuable criticism.

§1. Imbeddings Can Be Deformed to Be Standard on the Fixed Point Set

In this paper we shall assume that all manifolds and all actions are differentiable of class \(C^\infty \). Until Section 3 the results are valid in the case of \(G \) a compact Lie group.

In this section we shall prove that any G-imbedding of \(S^r \) into \(S^w \) is G-isotopic to a G-imbedding which is standard on \(S^* \) (see Proposition 1.3), and if two G-imbeddings of \(S^r \) into \(S^w \), which are standard on \(S^* \), are G-isotopic, then there exists a G-isotopy between them which is standard on \(S^* \) (see Proposition 1.4).

Definition 1.1. Let \(M \) be a G-submanifold of a G-manifold \(N \). Let \(I \) denote the unit interval \([0,1]\) with trivial G-action. A smooth map (resp. smooth G-map) \(f: M \times I \to N \) is said to be an isotopy (resp. G-isotopy) if each \(f_t: M \to N \) is an imbedding (resp. G-imbed-
EQUIVARIANT IMBEDDINGS OF SPHERES 657

ding), where \(f_i(x) = f(x, t) \), and \(f_i \) is independent of \(t \) in some neighborhood of 0 and in some neighborhood of 1 (see G. Bredon [1, Chapter VI, §3]). Two imbeddings (resp. G-imbeddings) \(f_i : M \to N \) \((i = 0, 1)\) are said to be isotopic (resp. G-isotopic) if there exists an isotopy (resp. G-isotopy) \(F : M \times I \to N \) with \(F_0 = f_0 \) and \(F_1 = f_1 \). If \(\partial M \) is not empty, we shall consider \(M \times I \) as a smooth manifold with corners.

Let \(I(S^r, S^w) \) denote the set of all G-isotopy classes of G-imbeddings \(f : S^r \to S^w \). Our purpose is to determine the set of \(I(S^r, S^w) \), provided that \(W = dV \oplus \mathbb{R}^q \) for \(k > m + 1 \).

Remarks. 1. It is easy to see that any G-map \(f : S^r \to S^w \) is G-homotopic to the standard imbedding.

2. Using the method of A. Wasserman [7, § 1], we can see that any G-imbedding \(f : S^r \to S^w \) is G-isotopic to the standard imbedding if \(d > 2m + 2 \).

The following lemma will be useful.

Lemma 1.2. Let \(N \) be a \(q \)-dimensional manifold on which \(G \) acts semi-freely and let \(M \) be a \(p \)-dimensional G-submanifold of \(N \). Let \(K \) denote \(I \) or \(I \times I \) and let \(L \) be a closed subset of \(K \) which contains \(\partial K \). Let \(f : M \times K \to N \) be a continuous G-map such that each \(f_k : M \to N \) is a G-imbedding, where \(f_k \) is defined by \(f_k(x) = f(x, k) \). If \(f \) is a smooth G-map on \(M \times L' \), where \(L' \) is a neighborhood of \(L \) in \(K \), then there exists a smooth G-map \(H : M \times K \to N \) such that each \(H_k \) is a G-imbedding and \(H = f \) on \(M \times L \), where \(H_k : M \to N \) is defined by \(H_k(x) = f(x, k) \).

Proof. We shall prove Lemma 1.2 by an equivariant version of J. Munkres' argument [4, Chapter I, §4]. Let \(\{ U_i \} \) (resp. \(\{ V_j \} \)) be a family of locally finite countable invariant open sets of \(M \) such that \(\bigcup_i U_i \subset M^o \) (resp. \(\bigcup_j V_j \supset N^o \)) and \(U_i \) (resp. \(V_j \)) is equivariant diffeomorphic to a \(p \)-dimensional disc or half disc (resp. \(q \)-dimensional
euclidean space or euclidean half space) with linear G-action, where M^o and N^o denote the fixed point set of M and N respectively. We can choose the family $\{U_i\}$ such that, for any $k \in K$ and for any i, $f_k(U_i)$ is contained in V_j for some j depending on k and i. There exists a positive continuous function δ_i on M as follows. For any continuous map $g : M \times K \rightarrow N$, such that g_ϵ is δ_i-approximation to f_k for each k, has these properties. Let $\{W_i\}$ be a family of invariant open sets of M with $\bigcup_i W_i \supseteq M^o$.

Let $C_r(y)$ denote a closed r-neighborhood of y in K for a positive number r and $y \in K$. There exists a sufficiently small positive number r such that, for any $y \in C_r(y)$ and for any $y \in K$, $f_k(U_k)$ is contained in V_j for some j depending on y. Then we can find a finite number of $C_r(y)$, say $C_r = C_r(y)$ $(n=1, 2, \ldots, l)$, such that $\bigcup C_r \subseteq K - L'$. We can assume that $C_r \cap L = \emptyset$ for any n. Let $\phi_i : M \rightarrow I$ be an invariant smooth function on M which equals 1 on W_i and 0 outside of U_i. Let A_n and B_n, $n=1, 2, \ldots, l$, be open sets of K such that $\bar{A}_n \subseteq B_n \subseteq \bar{B}_n \subseteq \text{int} C_r$ and $\bigcup A_n$ contains $K - L'$. Let $\xi_n : K \rightarrow I$, $n=1, 2, \ldots, l$, be smooth functions on K which equals 1 on \bar{A}_n and 0 outside of B_n.

We shall identify U_i and V_j as euclidean spaces or euclidean half spaces with linear G-actions. For any n, we can find $j(n)$ such that $f_k(U_k) \subseteq V_j$ for any $z \in C_r$. Let $f_i : M \times C_r \rightarrow V_j$, be a G-map defined by $f_i(x) = \phi_i(x) \cdot f_k(x)$ for $x \in U_i$ and $z \in C_r$, and $f_i = 0$ outside of $U_i \times C_r$. Let $g_i : M \times K \rightarrow V_j$, be a G-map defined by $g_i(x) = \xi_n(x) \cdot f_i(x)$ for $x \in M$ and $z \in K$. Since $g_i = 0$ for $z \notin C_r$, we can extend g_i trivially on $M \times R$ (resp. $M \times R^2$) if $K = I$ (resp. $I \times I$). Define a smooth G-map $h_i : M \times K \rightarrow V_j$ by

$$h_i(x) = \int_{C_r} \varphi_\ast(y) \cdot g_i(x) dy \text{ for } x \in M \text{ and } z \in K,$$

where $C(\epsilon_\ast)$ is a closed ϵ_\ast-disc in K and φ_\ast is a smooth function on R or \mathbb{R}^2 which is positive on int $C(\epsilon_\ast)$ and 0 outside of $C(\epsilon_\ast)$ and $\int_{C(\epsilon_\ast)} \varphi_\ast(y) dy = 1$. Choose the positive number ϵ_\ast less than the distance from B_n to the complement of C_r. Then $h_i = 0$ outside of $U_i \times C_r$.

Let $F^{1,0} = f$. Assume that $F^{1,0} : M \times K \rightarrow N$ is defined such that
F^{i,-1}_n is smooth on $\bar{W}_1 \times (\bar{A}_1 \cup \ldots \cup \bar{A}_{i-1})$ and $F^{i,-1}_n = F^{i,-2}_n$ outside of $U_1 \times C_{i-1}$. Moreover we assume that $F^{i,-1}_n$ is a $\delta_i / 2^{i-1} + 1$-approximation to $F^{i,-2}_n$ for each $k \leq K$. Then $F^{i,-1}_n$ is a δ_i-approximation to f_i.

Let $F^i : M \times K \rightarrow N$ be a G-map defined by

$$F^i_n(x) = F^{i,-1}_n(x) (1 - \psi_i(x) \xi_i(x)) + h_i(x),$$

for $x \in M$ and $z \in K$.

Since $F^i_n = h^i_n$ on $\bar{W}_i \times \bar{A}_n$, F^i_n is smooth on $\bar{W}_i \times (\bar{A}_1 \cup \ldots \cup \bar{A}_n)$ (note that, if F^i_n is smooth on a subset of $M \times K$, F^i_n is smooth on the subset of $M \times K$). Since $h^i_n = 0$ outside of $U_i \times C_n$, $F^i_n = F^{i,-1}_n$ outside of $U_i \times C_n$. By the argument of J. Munkres [4, Chapter I, §4], we can choose the positive numbers $\varepsilon_i (i = 1, 2, \ldots, n)$ so small that F^i_n is a $\delta_i / 2^{i-1} + 1$-approximation to $F^{i,-1}_n$ for each k. Then we can see that F^i_n is a δ-approximation to f_i and $F^{i,-1}_n$ is defined. By the induction, we have a G-map $F^{i,-1} : M \times K \rightarrow N$ such that $F^{i,-1}$ is smooth on $\bar{W}_i \times (\cup \bar{A}_n)$ and $F^{i,-1} = F^{i,-1}_{n+1}$ outside of $U_i \times C_n$. Set $F^i = F^{i,-1}$. Since $\cup \bar{A}_n$ contains $K - L'$, F^i is smooth on $\bar{W}_i \times K$. And since $C_n \cap L' = \emptyset$, $F^i : M \times L$.

There exists a positive continuous function $\delta \leq \delta_i$ on M such that, for each $k \leq K$, any C^1-map from M to N, which is a δ-approximation in C^1-topology to f_i, is an imbedding (see J. Munkres [4, Chapter I, Theorem 3.10]). We can choose the positive numbers $\varepsilon_n, n = 1, 2, \ldots, l$, so small that F^i_n is a $\delta / 2^{i-1} + 1$-approximation to f_i in C^1-topology for each $k \leq K$.

By the induction we have G-maps $F^i : M \times K \rightarrow N \ (i = 2, 3, \ldots)$, which is smooth on $(\cup \bar{W}_i) \times K$, such that $F^i = f$ on $M \times L$ and $F^i = F^i_{i-1}$ outside of $U_i \times K$. Moreover we can choose F^i_n is a $\delta / 2^i$-approximation to F^i_{i-1} in C^1-topology for each $k \leq K$. Define a G-map $F : M \times K \rightarrow N$ by $F_i(x) = \lim_{i \rightarrow \infty} F^i_i(x)$; F_i is well defined because $F^i_i = F^i_{i+1} = \ldots$ on some neighborhood of x, for sufficiently large i. $F : M \times K \rightarrow N$ is smooth on $(\cup \bar{W}_i) \times K$ and $F = f$ on $M \times L$. Moreover F_i is a δ-approximation to f_i in C^1-topology, for each $k \leq K$.

Let T be a closed invariant neighborhood of M^o in M such that T is contained in $\cup \bar{W}_i$. $F_i(M - M^o)$ is contained in $N - N^o$, for
each k, since F_k is a G-imbedding. Let $\tilde{F} : (M-M^o) / G \times K \to (N-N^o) / G$ be the orbit map of F. Then \tilde{F} is a smooth map on a neighborhood of $(T-M^o) / G \times K$ and $\tilde{F} = \tilde{f}$ on $(M-M^o) / G \times L$, and \tilde{F} is a δ-approximation to \tilde{f}_i for each $k \in K$, where \tilde{f}_i is the orbit map of f_i. By the relative version of the argument of J. Munkres [4, Chapter I, §4], we have a smooth map $\tilde{H} : (M-M^o) / G \times K \to (N-N^o) / G$ such that $\tilde{H} = \tilde{F}$ on $(T-M^o) / G \times K$ and \tilde{H} is homotopic to \tilde{F} relative to $(T-M^o) / G \times L$. Moreover \tilde{F}_i is a δ-approximation to \tilde{f}_i in C^1-topology, for each $k \in K$. By the covering homotopy property, we have a smooth G-map $H : (M-M^o) \times K \to N-N^o$ whose orbit map is \tilde{H}. Define $H = \tilde{F}$ on $T \times K$. Then $H : M \times K \to N$ is a smooth G-map such that H_i is a δ-approximation to f_i in C^1-topology, for each $k \in K$, and $H = \tilde{f}$ on $M \times L$. This completes the proof of Lemma 1.2.

Let $f : S^v \to S^w$ be a G-imbedding. The fixed point set of S^v and S^w are S^v and S^{s+1} respectively. Let $f^o : S^v \to S^{s+1} \subset S^w$ denote an imbedding which is a restriction of f to S^v. Let $j : S^v \to S^w$ be the standard imbedding.

Proposition 1.3. Let $f_0 : S^v \to S^w$ be a G-imbedding. Then there exists a G-isotopy $f : S^v \times I \to S^w$ between f_0 and f_1 with $f^v_0 = j$ on S^v.

Proof. Since $dn + k \geq 2n$, we have an isotopy $h : S^{s+1} \times I \to S^{s+1}$ such that $h_0 = 1$ and $h_1 \cdot f^o_0 = j$. By the isotopy extension theorem, there exists an isotopy $H : S^w \times I \to S^w$ such that $H_0 = 1$ and $H = h$ on $S^{s+1} \times I$. Using a result of G. Bredon [1, Chapter VI, Theorem 3.1], we have a G-isotopy $K : S^w \times I \to S^w$ such that $K_0 = 1$ and $K = H$ on $H^o \times I$, where $H^o = \{ x \in S^w \ ; \ H_t(g \cdot x) = g \cdot H_t(x) \}$ for any $t \in I$ and $g \in G$. Note that $S^{s+1} \subset H^o$. Let $f : S^v \times I \to S^w$ be a G-isotopy between f_0 and f_1 defined by $f_i = K \cdot f^o_i$. Then $f^v_0 = j$ and this completes the proof of Proposition 1.3.

Proposition 1.4. Let $f : S^v \times I \to S^w$ be a G-isotopy with $f^o_i = j$ for $i = 0, 1$. Then there exists a G-isotopy $h : S^v \times I \to S^w$ such that
$h_i = f_i$ for $i = 0, 1$ and $h^*_i = j$ for $0 \leq t \leq 1$.

Proof. Let $f : S^* \times I \to S^w \times I$ be a G-imbedding defined by $f(x, t) = (f_i(x), t)$. Let $f^* : S^* \times I \to S^{d+n+k} \times I$ be an imbedding which is a restriction of f to $S^* \times I$. Let $E(S^*, S^{d+n+k})$ denote the set of all imbeddings of S^* into S^{d+n+k} with C^∞-topology. By a result of J. Dax [2, Chapter VI, §3], $\pi_1(E(S^*, S^{d+n+k})) = 0$ since $dn + k > 2n + 2$. Then we have a continuous map $a : I \times I \to E(S^*, S^{d+n+k})$ such that, for a sufficiently small $\varepsilon > 0$,

$$a(t, s) = \begin{cases} f_i^* & \text{for } (t, s) \in I \times [0, \varepsilon] \\ j & \text{for } (t, s) \in [0, \varepsilon] \times I \cup I \times [1 - \varepsilon, 1] \cup [1 - \varepsilon, 1] \times I. \end{cases}$$

Using Lemma 1. 2, we may assume that $a : S^* \times I \times I \to S^{d+n+k} \times I$ is an isotopy, where $a(x, t, s) = (a(t, s)(x), t)$. Then we have an imbedding $\tilde{a} : S^* \times I \times R \to S^{d+n+k} \times I \times R$ defined by

$$\tilde{a}(x, t, s) = \begin{cases} \tilde{a}(x, t, s), s) & \text{for } 0 \leq s \leq 1 \\ \tilde{a}(x, t, 0), s) & \text{for } s < 0 \\ \tilde{a}(x, t, 1), s) & \text{for } s > 1. \end{cases}$$

$\tilde{a}(S^* \times I \times R)$ is a closed G-submanifold of $S^w \times I \times R$, and $\tilde{a}(S^* \times I \times R)$ intersects normally on $\partial(S^* \times I \times R)$ with respect to a product G-invariant Riemannian metric on $S^w \times I \times R$. By using the proof of G. Bredon [1, Chapter IV, Theorem 2.2] with respect to the Riemannian metric, we have an invariant open δ-tubular neighborhood N of $\tilde{a}(S^* \times I \times R)$, where δ is a G-invariant positive real valued function on $\tilde{a}(S^* \times I \times R)$.

The tangent vectors to the curves $\tilde{a}(x \times t \times R)$ define an invariant vector field \tilde{X} on $\tilde{a}(S^* \times I \times R)$ of the form $\tilde{X}(\tilde{a}(x, t, s)) = (X(x, s, t), 0, 1) \in T_{\tilde{a}(x, t, s)}(S^w \times I \times R)$, where $T(S^w \times I \times R)$ is the tangent bundle of $S^w \times I \times R$. Identifying N with a G-invariant normal bundle to $\tilde{a}(S^* \times I \times R)$ in $S^w \times I \times R$, we denote $p : N \to \tilde{a}(S^* \times I \times R)$ the bundle projection. Let $r : I \to R$ be a C^∞-function such that $r(t) = 1$ for $0 \leq t \leq 1/3$, $0 < r(t) < 1$ for $1/3 < t < 2/3$ and $r(t) = 0$ for $2/3 \leq t \leq 1$. Let Y be a G-invariant vector field on $S^w \times I \times R$ defined by $Y(v) = r(||v||/\delta(p(v))) \cdot X(p(v))$ for $v \in N$ and $Y = 0$ on the outside of N, where $|| \cdot ||$ denote the G-invariant metric of $S^w \times I \times R$.
Since \(a(x, t, s) = (j(x), t, s) \) for \(0 \leq t \leq \varepsilon \) and \(1 - \varepsilon \leq t \leq 1 \), and since \(a(x, t, s) = (a(x, t, 0), s) \) for \(s \leq 0 \) and \(a(x, t, s) = (a(x, t, 1), s) \) for \(s \geq 1 \), \(\text{Supp}(Y) \) is contained in \(S^w \times [\varepsilon, 1 - \varepsilon] \times I \) which is compact. We can regard \(Y \) as a time-dependent \(G \)-invariant vector field on \(S^w \times I \), and \(Y \) generates a \(G \)-isotopy \(F : S^w \times I \times I \rightarrow S^w \times I \) (see M. Hirsch [3, Chapter 8, Theorem 1.1]). Since \(I \) component of \(Y \) is 0, each \(F_t : S^w \times I \rightarrow S^w \times I \) is level preserving. Let \(h : S^v \times I \rightarrow S^w \) be a \(G \)-isotopy defined by \(h = p_1 \cdot F_t \cdot f \), where \(p_1 : S^w \times I \rightarrow S^w \) is the projection on the first factor. Then \(h_t \vDash f_t \) for \(t = 0, 1 \) and \(h_t \vDash j \) on \(S^* \) for each \(t \). This completes the proof of Proposition 1.4.

§ 2. Linearity on a Neighborhood of the Fixed Point Set

In this section we shall prove that any \(G \)-imbedding of \(S^v \) into \(S^w \) is \(G \)-isotopic to a \(G \)-imbedding which is linear on a neighborhood of \(S^* \) (see Proposition 2.1), and if two \(G \)-imbeddings of \(S^v \) into \(S^w \), which are linear on a neighborhood of \(S^* \), are \(G \)-isotopic, then there exists a \(G \)-isotopy between them which is linear on a neighborhood of \(S^* \) (see Proposition 2.3).

Since the fixed point set of \(S^v \) is \(S^* \) and since \(S^v \) is a \(G \)-submanifold of \(S^w \), we can regard \(S^* \) as a \(G \)-submanifold of \(S^w \). Let \(U \) and \(N \) denote invariant open tubular neighborhoods of \(S^* \) in \(S^v \) and \(S^* \) in \(S^w \) respectively. We shall identify \(U \) and \(N \) with invariant normal bundles to \(S^* \) in \(S^v \) and to \(S^* \) in \(S^w \) respectively. Let \(f : S^v \rightarrow S^w \) be a \(G \)-imbedding with \(f^o \vDash j \). We shall assume that \(f(U) \) is contained in \(N \). Let \(f^o : U \rightarrow N \) be a \(G \)-bundle monomorphism defined by the differential of \(f \).

Proposition 2.1. Let \(f : S^v \rightarrow S^w \) be a \(G \)-imbedding with \(f^o \vDash j \). Then there exists a \(G \)-isotopy \(h : S^v \times I \rightarrow S^w \) such that \(h_0 = f \) and \(h_i = f^o \) on some invariant neighborhood of \(S^* \) in \(S^v \).

In order to prove Proposition 2.1, we start with the following lemma.
Lemma 2.2. Let M be a G-submanifold of a G-manifold N. Let $f : M \times I \to N$ be a G-isotopy such that $f_t(\partial M) \subseteq \partial N$ and $f_t(M)$ intersects transversally on ∂N for each t. Let A be an invariant subspace of M such that \bar{A} is compact. Then there exists a G-isotopy $F : N \times I \to N$ such that $F_0 = 1$ and $F_t \cdot f_0 = f_t$ on A for $0 \leq t \leq 1$.

Proof. Let $\tilde{f} : M \times R \to N \times R$ be a G-imbedding defined by

$$\tilde{f}(x, t) = \begin{cases} (f_t(x), t) & \text{for } 0 \leq t \leq 1 \\ (f_0(x), 0) & \text{for } t < 0 \\ (f_t(x), t) & \text{for } t > 1. \end{cases}$$

We can assume that G acts by isometries in some product metric on $N \times R$. Let ν be an invariant normal bundle of $\tilde{f}(M \times R)$ in $N \times R$ and let $p : \nu \to \tilde{f}(M \times R)$ be the projection. Then the exponential map is defined on some neighborhood of $\tilde{f}(M \times R)$ in ν and is an equivariant immersion on a smaller invariant open neighborhood of $\tilde{f}(M \times R)$ (see the proof of G. Bredon [1, Chapter VI, Theorem 2.2]). Let B be an invariant open neighborhood of \bar{A} such that \bar{B} is compact. Since \bar{B} is compact, the exponential map is a G-imbedding on an invariant neighborhood of $\tilde{f}(B \times I)$ in $\nu \mid \tilde{f}(B \times I)$. By a method of the proof of G. Bredon [1, Chapter VI, Theorem 2.2], we have a G-imbedding $\varphi : \nu \mid \tilde{f}(B \times I) \to N \times R$. We shall identify $\nu \mid \tilde{f}(B \times I)$ as the image of φ.

The tangent vectors to the curves $\tilde{f}(x \times R)$ $(x \in M)$ define an invariant vector field \tilde{X} on $\tilde{f}(M \times R)$ of the form $\tilde{X}(\tilde{f}(x, t)) = (X(x, t), 1) \in T_{f_t(x, t)}(N \times R)$. Note that $\text{Supp}(X)$ is contained in $\tilde{f}(M \times I)$. Take an invariant C^∞-partition of unity subordinate to the covering $\{B, M - \bar{A}\}$ of M, and let u be the invariant function correspondence to B. Let X' be an invariant vector fields on $\tilde{f}(M \times R)$ defined by $X'(\tilde{f}(x, t)) = u(x) \cdot X(x, t)$ and $X' = 0$ outside of $\tilde{f}(B \times R)$. Then $\text{Supp}(X')$ is contained in $\tilde{f}(B \times I)$ and $X' = X$ on $\tilde{f}(\bar{B} \times R)$.

Let $r : R \to [0, 1]$ be a C^∞-function such that $r(t) = 1$ for $t \leq 1$, $0 < r(t) < 1$ for $1 < t < 2$ and $r(t) = 0$ for $t \geq 2$. Let Y be an invariant vector field on $N \times I$ defined by $Y(\nu) = r(||\nu||) \cdot X'(p(\nu))$ on $\nu \mid \tilde{f}(B \times I)$ and $Y = 0$ outside of $\nu \mid \tilde{f}(B \times I)$, where $|| \cdot ||$ is an invariant Rie-
mannian metric on \(\nu \). Then we can regard \(Y \) as a time-dependent invariant vector field on \(N \). Note that \(\text{Supp}(Y) \) is contained in \(\nu(2) \) \(|B \times I| \) which is compact, where \(\nu(2) = \{ \nu \in \nu; ||\nu|| \leq 2 \} \). Therefore \(Y \) generates a \(G \)-isotopy \(F : N \times I \rightarrow N \) such that \(F_{0} = 1 \) and \(F_{t} \cdot f_{0} = f_{t} \) on \(A \) for \(0 \leq t \leq 1 \). This completes the proof of Lemma 2.2.

Proof of Proposition 2.1. Let \(g : U \times I \rightarrow N^{\nu} \rightarrow S^{w} \) be a homotopy of \(G \)-imbeddings defined by \(g_{t}(v) = 1/(1-t) \cdot f((1-t) v) \) for \(0 \leq t < 1 \) and \(v \in U \), and \(g_{t} = f_{t} \). Note that \(g_{0} = f_{0}|U \), \(\lim_{t \rightarrow 1} g_{t} = f_{t} \) and \(g_{t} \) is a \(G \)-imbedding for each \(t \). By Lemma 1.2 we can assume that \(g \) is a \(G \)-isotopy between \(f|U \) and \(f \). By Lemma 2.2 there exists a \(G \)-isotopy \(G : S^{w} \times I \rightarrow S^{w} \) such that \(F_{0} = 1 \) and \(F_{s} \cdot g_{s} = g_{s} \) on some neighborhood of \(S^{\nu} \). Let \(h : S^{\nu} \times I \rightarrow S^{w} \) be a \(G \)-isotopy defined by \(h_{s} = F_{s} \cdot f_{s} \). Then \(h_{0} = f \) and \(h_{1} = f_{1} \) on some neighborhood of \(S^{\nu} \). This completes the proof of Proposition 2.1.

By Proposition 1.3 and Proposition 2.1, any element of \(I(S^{\nu}, S^{w}) \) is represented by a \(G \)-imbedding \(f : S^{\nu} \rightarrow S^{w} \) such that \(f_{0} = j \) and \(f = f_{t} \) on an invariant tubular neighborhood of \(S^{\nu} \).

Proposition 2.3. Let \(f : S^{\nu} \times I \rightarrow S^{w} \) be a \(G \)-isotopy such that \(f_{0} = j \) \((0 \leq t \leq 1) \) and \(f_{i} = f_{i}^{'} \) \((i = 0, 1) \) on an invariant tubular neighborhood \(U \) of \(S^{\nu} \). Then there exists a \(G \)-isotopy \(h : S^{\nu} \times I \rightarrow S^{w} \) such that \(h_{i} = f_{i} \) \((i = 0, 1) \) and \(h_{i} = h_{i}^{'} \) on an invariant neighborhood of \(S^{\nu} \) for \(0 \leq t \leq 1 \).

Proof. Let \(\bar{f} : S^{\nu} \times I \rightarrow S^{w} \times I \) be a \(G \)-imbedding defined by \(\bar{f}(x, t) = (f_{i}(x), t) \). We can assume that \(f_{i}(U) \) is contained in \(N \) for each \(t \). Let \(\bar{f} : U \times I \rightarrow N \times I \) be a \(G \)-imbedding defined by \(\bar{f}(v, t) = (f^{'}(v), t) \). Let \(F : U \times I \rightarrow N \times I \) be a \(G \)-map defined by \(F_{s}(v, t) = (1/(1-s) \cdot f_{i}((1-s)v), t) \) for \(0 \leq s \leq 1 \) and \(F_{0} = f_{s} \). Then \(F_{0} = \bar{f} \) and \(\lim_{s \rightarrow 1} F_{s} = \bar{f}^{'} \) and \(F_{s} \) is a \(G \)-imbedding for each \(s \). Note that, by the definition of \(G \)-isotopy, there exists a positive number \(\varepsilon \) such that \(f_{i} = f_{i} \) for \(0 \leq t \leq \varepsilon \) and \(f_{i} = f_{i}^{'} \) for \(1 - \varepsilon \leq t \leq 1 \). Thus \(F_{s} = f_{s} \times 1 \) for \(0 \leq t \leq \varepsilon \) and \(F_{s} = f_{i}^{'} \times 1 \) for \(1 - \varepsilon \leq t \leq 1 \). By Lemma 1.2 we can assume that \(F \)
is a G-isotopy between $\tilde{f}|U \times I$ and \tilde{f}. Let $\tilde{F} : U \times I \times R \rightarrow N \times I \times R \rightarrow S^w \times I \times R$ be a G-imbedding defined by

$$\tilde{F}(x, t, s) = \begin{cases} (F(x, t, s), s) & \text{for } 0 \leq s \leq 1 \\ (F(x, t, 0), s) & \text{for } s < 0 \\ (F(x, t, 1), s) & \text{for } s > 1. \end{cases}$$

Let U and U_2 be invariant open tubular neighborhoods of S^w such that $U_1 \subseteq U_2 \subseteq U$. Let ν be an invariant normal bundle of $\tilde{F}(U \times I \times R)$ in $S^w \times I \times R$ and let $\rho : \nu \rightarrow \tilde{F}(U \times I \times R)$ be the projection. Similarly as the proof of Lemma 2.2, we have a G-imbedding $\varphi : \nu|\tilde{F}(U_1 \times I \times I) \rightarrow S^w \times I \times R$. We shall identify $\nu|\tilde{F}(U_2 \times I \times I)$ as the image of φ.

The tangent vectors to the curves $\tilde{F}(x \times t \times R)$ ($x \times t \in U \times I$) define an invariant vector field \tilde{X} on $\tilde{F}(U \times I \times R)$ of the form $\tilde{X}(\tilde{F}(x, t, s)) = (X(x, t, s), 0, 1) \in T_{F(x, t, s)} (N \times I \times R)$. Note that $\text{Supp}(X)$ is contained in $\tilde{F}(U \times [\varepsilon, 1 - \varepsilon] \times I)$. Take an invariant partition of unity subordinate to the covering $\{U_2, U - U_1\}$ of U, and u be the invariant C^∞-function corresponding to U_2. Let $X' = \text{X}'(\tilde{F}(x, t, s)) = u(x) \cdot X(x, t, s)$ for $(x, t, s) \in \tilde{U}_2 \times I \times R$ and $X' = 0$ outside of $\tilde{F}(\tilde{U}_1 \times I \times R)$. Then $\text{Supp}(X')$ is contained in $\tilde{F}(\tilde{U}_2 \times [\varepsilon, 1 - \varepsilon] \times I)$ and $X' = X$ on $\tilde{F}(\tilde{U}_1 \times I \times R)$.

Let $r : R \rightarrow [0, 1]$ be a C^∞-function such that $r(t) = 1$ for $t \leq 1$, $0 < r(t) < 1$ for $1 < t < 2$ and $r(t) = 0$ for $t \geq 2$. Let Y be an invariant vector field on $S^w \times I \times R$ defined by $Y(v) = r(||v||) \cdot X'(\rho(v))$ for $v \in \nu|\tilde{F}(\tilde{U}_1 \times I \times I)$ and $Y = 0$ outside of $\nu|F(\tilde{U}_1 \times I \times I)$, where $|| ||$ is an invariant Riemannian metric on ν. Then we can regard Y as a time-dependent invariant vector field on $S^w \times I$. Note that $\text{Supp}(Y)$ is contained in $\nu(2) \mid \tilde{F}(\tilde{U}_1 \times [\varepsilon, 1 - \varepsilon] \times I)$, where $\nu(2) = \{v \in \nu : ||v|| \leq 2\}$. Then Y generates a G-isotopy $H : S^w \times I \times I \rightarrow S^w \times I$ such that $H_0 = 1$ and $H_s F = F$, on $\tilde{U}_1 \times I$ for $0 \leq s \leq 1$. Since I component of Y is 0, each $H_s : S^w \times I \rightarrow S^w \times I$ is level preserving equivariant diffeomorphism. Let $h : S^w \times I \rightarrow S^w$ be a G-isotopy defined by $h = p \cdot H_t \cdot \tilde{f}$, where $p_t : S^w \times I \rightarrow S^w$ is the projection on the first factor. Then $h_0 = F$, for $i = 0, 1$ and $h_i = h_i$ on U. This completes the proof of
Proposition 2.3.

Definition 2.4. Let \(f_i : S^\nu \to S^\omega \) \((i=0, 1)\) be \(G \)-imbeddings such that \(f_i = f'_i \) on \(U \). \(f_0 \) and \(f_i \) are said to be equivalent if there exists a \(G \)-isotopy \(f : S^\nu \times I \to S^\omega \) between \(f_0 \) and \(f_i \) such that \(f_t = f'_i \) on some neighborhood of \(S^\nu \). Let \(I_i(S^\nu, S^\omega) \) denote the set of all equivalence classes of these \(G \)-imbeddings.

Corollary 2.5. The natural map \(i_i : I_i(S^\nu, S^\omega) \to (S^\nu, S^\omega) \) is bijective.

Proof. By Proposition 1.3 and Proposition 2.2, \(i_i \) is surjective. By Proposition 1.4 and Proposition 2.3, \(i_i \) is injective, and Corollary 2.5 follows.

§ 3. Orthogonality on a Neighborhood of the Fixed Point Set

In this section we shall prove that any \(G \)-imbedding from \(S^\nu \) into \(S^\omega \) is \(G \)-isotopic to a \(G \)-imbedding which is orthogonal on a neighborhood of \(S^\nu \). Moreover we shall prove that, if two \(G \)-imbeddings \(f_0 \) and \(f_i \), which are orthogonal on \(U \), coincide on \(U \), then there exists a \(G \)-isotopy \(f \) between \(f_0 \) and \(f_i \) such that \(f_t = f'_i \) \((0 \leq t \leq 1)\) on \(U_i \), where \(U \) and \(U_i \) are invariant neighborhood of \(S^\nu \).

As in § 2, let \(U \) and \(N \) be invariant normal bundles of \(S^\nu \) in \(S^\nu \) and to \(S^\omega \) in \(S^\omega \) respectively. Note that \(U \) and \(N \) are isomorphic to product bundles \(S^\nu \times V_1 \) and \(S^\nu \times (dV_1 \oplus R^{(d-1)*+1}) \) as a \(G \)-vector bundles over \(S^\nu \) respectively. Let \(f : S^\nu \to S^\omega \) be a \(G \)-imbedding with \(f_0 = j \). Then \(f : U \to N \) induces a continuous map

\[
f : S^\nu \to Mon^G(V_1, dV_1 \oplus R^{(d-1)*+1}),
\]

where \(Mon^G(V_1, dV_1 \oplus R^{(d-1)*+1}) \) is the set of all \(G \)-module monomorphisms from \(V_1 \) to \(dV_1 \oplus R^{(d-1)*+1} \) with usual topology. By Schur’s lemma, \(Mon^G(V_1, dV_1 \oplus R^{(d-1)*+1}) \) is isomorphic to \(Mon^G(V_1, dV_1) \).
Proposition 3.1. Let $f : S^v \to S^w$ be a G-imbedding with $f^0 = j$. Let $h : S^s \times I \to \text{Mon}^G(V_1, dV_1)$ be a homotopy with $h_0 = f$. Then there exists a G-isotopy $F : S^v \times I \to S^w$ such that $F_0 = f$ and $F_1 = h_1$.

Proof. Let $p : U \to S^s$ be the bundle projection. Let $F' : U \times I \to N$ be a homotopy of G-imbeddings defined by $F'_t(u) = h_t(p(u)) (u)$ for $u \in U$. Then, by Lemma 1.2, we can assume that F' is a G-isotopy. By Lemma 2.2, we have a G-isotopy $H : S^v \times I \to S^w$ such that $H_0 = 1$ and $H_t \cdot f' = F'_t$ on some invariant neighborhood of S^s for each t. Let $F : S^v \times I \to S^w$ be a G-isotopy defined by $F_t = H_t \cdot f$. Then $F_0 = f$ and $F_1 = h_1$, and this completes the proof of Proposition 3.1.

Let $O^G(V_1, dV_1)$ denote the set of all G-module orthogonal monomorphisms from V_1 to dV_1. Let F denote the field of real numbers R, complex numbers C or quaternionic numbers H. Let $U(q, F)$ denote the orthogonal group $O(n)$, the unitary group $U(n)$ or the symplectic group $Sp(n)$ in the case of $F = R$, C or H respectively. Let $\text{Hom}^G(V_1, V_1)$ denote the group of G-module endmorphisms of V_1. Let $V_{s,t}(F)$ denote the Stiefel manifold (over F) of s-frames in F.

Lemma 3.2. Suppose that V_1 is isomorphic to $\bigoplus_i k_i W_i$, where W_i runs over the inequivalent irreducible real G-modules. Then

$$\text{Mon}^G(V_1, dV_1) = \prod_i V_{d^k_i, 1_i}(F_i)$$

and

$$O^G(V_1, dV_1) = \prod_i U(dk_i, F_i) / U((d-1)k_i, F_i),$$

where $F_i = R$, C and H when dim $\text{Hom}^G(W_i, W_i) = 1, 2$ and 4 respectively.

Proof. If W_i is a real restriction of an irreducible complex (resp. quaternionic) G-module W_i, then $\text{Hom}^G(W_i, W_i)$ is isomorphic to C (resp. H) given by the scalar multiplication of W_i. Otherwise $\text{Hom}^G(W_i, W_i)$ is isomorphic to R given by the scalar multiplication of W_i (see J. -P. Serre [6, 13.2]). Therefore $\text{Mon}^G(k_i W_i, dk_i W_i)$.
and \(O^g(k_i W_i, dk_i W_i) \) are identified with \(V*_{a_i, t}(F_i) \) and \(U(dk_i, F_i)/U((d-1)k_i, F_i) \) respectively. By Schur's lemma \(\text{Hom}^g(V_i, dV_i) \) is isomorphic to \(\bigoplus_i \text{Hom}^g(k_i W_i, dk_i W_i) \). Then \(\text{Mon}^g(V_i, dV_i) \) and \(O^g(V_i, dV_i) \) are identified with \(\Pi \text{Mon}^g(k_i W_i, dk_i W_i) \) and \(\Pi O^g(k_i W_i, dk_i W_i) \) respectively. This completes the proof of Lemma 3.2.

Proposition 3.3. Let \(f : S^v \times I \to S^w \) be a \(G \)-isotopy such that \(f^0_t = j, f_t = f_1 \) on \(U \) for each \(t \) and \(f^0_1 = f_t \). If \(\pi_{n+1}(\text{Mon}^g(V_i, dV_i)) = 0 \), then there exists a \(G \)-isotopy \(h : S^v \times I \to S^w \) such that \(h_t = f_t \) for \(i = 0, 1 \) and \(h_1 = f_0 \) for \(0 \leq t \leq 1 \).

Proof. Let \(a_f : S^v \times \partial(I \times I) \to \text{Mon}^g(V_i, V_i) \) be a continuous map defined by

\[
a_f(x, t, s) = \begin{cases}
 f^0_t(x) & \text{for } s = 0 \text{ and } 0 \leq t \leq 1 \\
 f^1_t(x) & \text{for } s = 1 \text{ and } 0 \leq t \leq 1 \\
 f_t(x) & \text{for } t = 0, 1 \text{ and } 0 \leq s \leq 1.
\end{cases}
\]

Since \(\pi_{n+1}(\text{Mon}^g(V_i, dV_i)) = 0 \), the only obstruction to extend \(a_f \) to \(S^v \times I \times I \) is a well defined cohomology class \(o(a_f) \in H^n(S^v \times I \times I, S^v \times \partial(I \times I)) \); \(\pi_n(\text{Mon}^g(V_i, dV_i)) = \pi_n(\text{Mon}^g(V_i, dV_i)) \). If \(d \geq 3 \), \(\text{Mon}^g(V_i, dV_i) \) is 2-connected by Lemma 3.2, and \(o(a_f) = 0 \).

Now we will consider the case of \(d = 1 \). In this case \(\text{Mon}^g(V_i, dV_i) \) is a group \(A^g(V_i) \), where \(A^g(V_i) \) is the group of all \(G \)-module automorphisms of \(V_i \). Let \(b_f : \partial(I \times I) \to \text{Mon}^g(V_i, dV_i) = A^g(V_i) \) be a continuous map defined by \(b_f(x) = a_f(\ast, x) \) for \(x \in \partial(I \times I) \), where \(\ast \) is a point of \(S^v \). Then the above obstruction class \(o(a_f) \) is represented by \(b_f \). Note that an element of \(A^g(V_i) \) can be regarded as an equivariant linear diffeomorphism of \(S^w \) in the natural way. Let \(g : S^v \times I \to S^w \) be a \(G \)-isotopy between \(f_0 \) and \(f_1 \) defined by \(g_t = f^0_t(\ast) \cdot f_t(\ast)^{-1} \cdot f_t \). Then \(b_f(x) = f^0_t(\ast) \) for any \(x \in \partial(I \times I) \), and \(o(a_f) = 0 \). Replacing the \(G \)-isotopy \(f \) between \(f_0 \) and \(f_1 \) by \(g \), we can assume \(o(a_f) = 0 \).

We now turn to the case \(d = 2 \). If \(V_i \) is isomorphic to \(\bigoplus_i k_i W_i \), then \(\text{Mon}^g(V_i, 2V_i) = \Pi V*_{a_i, t}(F_i) \) by Lemma 3.2. Note that \(\pi_1(V*_{a_i, t}(F_i)) \) is 0 beside the case \(F_i \equiv R \) and \(k_i = 1 \). Let \(J \) be the set of index \(i \)
such that \(F_i = R \) and \(k_i = 1 \). Let \(p : \prod_{i \in J} V_{2i, i}^1(F_i) \to \prod_{i \in J} V_{2i, i}^1(R) \) be the natural projection. Then \(p_* : \pi_1(\prod_{i \in J} V_{2i, i}^1(F_i)) \to \pi_1(\prod_{i \in J} V_{2i, i}^1(R)) \) is isomorphic. Let \(r : I \to \prod_{i \in J} V_{2i, i}^1(R) \) be a continuous map defined by \(r(t) = p \cdot f_t(\ast) \). Since \(\pi : \prod_{i \in J} GL(2, R) \to \prod_{i \in J} F_{2i, i}^1 \) is a product bundle, there exists a continuous map \(\hat{r} : I \to \prod_{i \in J} GL(2, R) \) such that \(\pi \circ \hat{r} = r \) and \(\hat{r}(0) = \hat{r}(1) \). Note that, for each \(i \in J \), \(GL(2, R) \) can be regarded as the automorphism group \(A(2W_i) \) of \(G \)-module \(2W_i \) whose element defines an equivariant linear diffeomorphism of \(S^n \).

Let \(q : U \times I \to S^n \) be a \(G \)-isotopy between \(f_0 \) and \(f_1 \) defined by \(q_t = f_t(\ast) \). Since \(\pi \) is identified with the natural map \(\pi_n^+ : \prod_{i \in J} A^0(2W_i) \to \prod_{i \in J} \text{Mon}^\sigma(W_i, 2W_i) \), \(p \cdot f_t(\ast) = f_t(\ast) \) and \(o(q_t) = 0 \). Replacing the \(G \)-isotopy \(f \) between \(f_0 \) and \(f_1 \) by \(g \), we can assume that \(o(a_j) = 0 \).

Therefore we can assume that \(a_j \) can be extended to \(S^n \times I \times I \). Let \(F : U \times I \times I \to N \times I \) be an equivariant map defined by \(F(v, t, s) = (a_j(q(v), t, s)(v), t) \), where \(q : U \to S^n \) is the bundle projection. Then each \(F(\ast, t, s) \) is a \(G \)-imbedding, and \(F_t(u, t) = (f_t(u), t) = (f_t(u), t) \) and \(F_t(u, t) = (f_t(u), t) = (f_t(u), t) \) for \((u, t) \in U \times I \). By Lemma 1.2 we can assume that \(F \) is a \(G \)-isotopy. In the same way as the proof of Proposition 2.3, we have a \(G \)-isotopy \(h : S^n \times I \to S^n \) such that \(h_i = f_i \) \((i = 0, 1) \) and \(h_t = f_t(0 \leq t \leq 1) \) on some invariant neighborhood of \(S^n \). Therefore \(h_t = f_t(0 \leq t \leq 1) \) on some invariant neighborhood of \(S^n \). Therefore \(h_t = f_t \) for each \(t \), and this completes the proof of Proposition 3.3.

Remark. I don't know whether Proposition 3.3 is valid without the assumption \(\pi_{n+1}(\text{Mon}^\sigma(V_1, dV_1)) = 0 \).

Now we shall assume \(\pi_{n+1}(\text{Mon}^\sigma(V_1, dV_1)) = 0 \). Choose a continuous map \(a_j : S^s \to O^\sigma(V_1, dV_1) \), which represents an element \(\lambda \) for each element \(\lambda \) of \(\pi_s(O^\sigma(V_1, dV_1)) \). Let \(A = \{a_j : \lambda \in \pi_s(O^\sigma(V_1, dV_1))\} \)

Definition 3.4. Let \(f_i : S^n \to S^n \), \(i = 0, 1 \), be \(G \)-imbeddings, which represent elements of \(I_i(S^n, S^n) \), such that \(f_i \) \((i = 0, 1) \) are elements of \(A \). \(f_0 \) and \(f_1 \) are said to be equivalent if there exists a \(G \)-isotopy \(f : S^n \times I \to S^n \) between \(f_0 \) and \(f_1 \) such that \(f_t = f_0 \) for \(0 \leq t \leq 1 \). Let
$I_2(S^r, S^w)$ denote the set of equivalence classes of these G-imbeddings.

Corollary 3.5. If $\pi_{n+1}(\text{Mon}^G(V_1, dV_1)) = 0$, the natural map $i_2 : I_2(S^r, S^w) \rightarrow I_1(S^r, S^w)$ is bijective.

Proof. Let $f : S^r \rightarrow S^w$ be a G-imbedding which represents an element of $I_1(S^r, S^w)$. By Lemma 3.2 $O^G(V_1, dV_1)$ is a deformation retract of $\text{Mon}^G(V_1, dV_1)$. Therefore, by Proposition 3.1, we can assume that f is an element of A, and i_2 is surjective. By Proposition 3.3, i_2 is injective, and this completes the proof of Corollary 3.5.

§4. Proof of Theorem A and Theorem B

In this section we shall prove that, if G is a finite group and $\pi_{n+1}(\text{Mon}^G(V_1, dV_1)) = 0$, then the G-isotopy class of a G-imbedding $f : S^r \rightarrow S^w$ is determined by the homotopy class of the orbit map of $f|_U(S^r - U)$ relative to the boundary, where U is an invariant open neighborhood of S^r. And, using the obstruction theory, we shall prove Theorem A and Theorem B.

In this section we shall assume that G is a finite group and $\pi_{n+1}(\text{Mon}^G(V_1, dV_1)) = 0$. Let $f_i : S^r \rightarrow S^w$, $i = 0, 1$, be G-imbeddings which represent elements of $I_1(S^r, S^w)$. Let U be an invariant open ε-tubular neighborhood of S^r in S^r. We can choose a sufficiently small positive number ε such that $f_i = f_i^+U$ on U and $f_i(S^r - U) \subset S^w - T$ for $i = 0, 1$. By Corollary 3.5, we have the following:

Lemma 4.1. With the above notations, f_0 and f_1 are G-isotopic if and only if there exists a G-isotopy $f : S^r \times I \rightarrow S^w$ such that $f_t(S^r - U)$ is contained in $S^w - T$ and $f_t = f_0^+U$, $0 \leq t \leq 1$, on U.

It is clear that free G-manifolds $S^r - U$ and $S^w - T$ are equivariant diffeomorphic to $S(V_1) \times D^{r+1}$ and $S(dV_1) \times D^{d+1}$ respectively. Let L and L' denote the orbit spaces $S(V_1)/G$ and $S(dV_1)/G$ respectively. Then the orbit spaces $(S^r - U)/G$ and $(S^w - T)G$ are diffeomorphic to $L \times D^{r+1}$ and $L' \times D^{d+1}$ respectively. Let $f_i : L \times D^{r+1} \rightarrow L' \times D^{d+1}$,
Proposition 4.2. With the above notations, f_0 and f_i are G-isotopic if and only if f_0 and f_i are homotopic relative to $L \times S^s$.

Proof. By Lemma 4.1, if f_0 and f_i are G-isotopic, then f_0 and f_i are homotopic relative to $L \times S^s$. Conversely if f_0 and f_i are isotopic relative to $L \times S^s$, then f_0 and f_i are isotopic relative to $L \times S^s$ because $\dim (L' \times D^{n+l}) > \dim (L \times D^{n+1}) + 1$. Since G is a finite group, $S^s - U \to (S^s - U)/G$ and $S^w - T \to (S^w - T)/G$ are covering spaces. By the covering homotopy property, there exists a G-isotopy $h_t : S^s - U \to S^w - T$ $(0 \leq t \leq 1)$ such that $h_0 = f_0$ and $h_1 = f_i$ for $0 \leq t \leq 1$. Since $h_t \mid \partial (S^s - U) = f_t \mid \partial (S^s - U)$ and $h_t = f_i$, by the property of the covering space, we have $h_t = f_i$ on $S^s - U$. Therefore f_0 and f_i are G-isotopic and this completes the proof of Proposition 4.2.

Proof of Theorem A. Suppose that $V_i = \bigoplus k_i W_i$, where W_i runs over the inequivalent irreducible real G-modules. If $q > 2$, $\text{Mon}^g (V_i, dV_i) = \Pi_{k_i} V_{d_i, k_i} (C)$ by Lemma 3.2. Since $V_{d_i, k_i} (C)$ is $2(d-1)k_i$-connected, $\pi_{n+1} (\text{Mon}^g (V_i, dV_i)) = 0$ if $d \geq (n+3)/2$. If $q = 2$, $V_i = (m-n) W_i$ and $\text{Mon}^g (V_i, dV_i) = V_{d(m-n), n-1} (R)$, where W_i is the non-trivial 1-dimensional real representation of Z_2. Since $V_{d(m-n), n-1} (R)$ is $(d-1)(m-n) - 1$-connected, $\pi_{n+1} (\text{Mon}^g (V_i, dV_i)) = 0$ if $d \geq (m+2)/(m-n)$. Therefore, combining Corollary 2.5 and Corollary 3.5, the set $I_2 (S^s, S^w)$ can be identified with the set $I_2 (S^s, S^w)$. Let $f_s : S^s \to S^w$ be the standard imbedding. Let $f : S^s \to S^w$ be a G-imbedding which represents an element of $I_2 (S^s, S^w)$. Since $\pi_s (\text{Mon}^g (V_s, dV_s)) = 0$, we can assume $f = f_s$. With the notation of Proposition 4.2, f and f_s are G-isotopic if and only if f and f_s are homotopic relative to $S^s \times L$.

Note that L (resp. L') is an $m-n-1$ (resp. $d(m-n)-1$)-dimensional lens space or real projective space. Since $d \geq (m+2)/(m-n)$, $\pi_i (L' \times D^{n+l}) = 0$ for $2 \leq i \leq m$. By the obstruction theory of P. Olum [5, Theorem 9.10 and Theorem 16.5], f and f_s are homotopic relative to $L \times S^s$. This completes the proof of Theorem A.
Proof of Theorem B. By Lemma 3.2, $\text{Mon}^G(V_1, dV_1) = V_d^{(m-n)/2, (m-n)/2}$ (C). Thus $\text{Mon}^G(V_1, dV_1)$ is $(d-1)(m-n)$-connected, and if $d \geq (m+1)/(m-n)$, $\pi_{*_t} (\text{Mon}^G(V_1, dV_1)) = 0$. Combining Corollary 2.5 and Corollary 3.5, the set $I(S^r, S^w)$ can be identified with $I_1(S^r, S^w)$.

Let $f : S^r \rightarrow S^w$ be a G-imbedding which represents an element of $I_1(S^r, S^w)$. Similarly as the proof of Theorem A, we can assume $f|L \times S^t = f_s|L \times S^t$, and in the case of $d > (m+1)/(m-n)$, f is G-isotopic to the standard imbedding f_s.

Now consider the case of $d = (m+1)/(m-n)$. Since $H^i(L \times D^{d+1}, L \times S^t ; \pi_i(L' \times D^{d+1})) = H^{i-s-1}(L ; \pi_i(L')) = 0$ for $i < m$ and $H^{i-1}(L \times D^{d+1}, L \times S^t ; \pi_i(L' \times D^{d+1})) = H^{i-s-2}(L ; \pi_i(L')) = 0$ for $i < m$, by the obstruction theory, the homotopy classes of maps $f : L \times D^{d+1} \rightarrow L' \times D^{d+1}$ relative to $L \times S^t$ are in one to one correspondence with the elements of $H^m(L \times D^{d+1}, L \times S^t ; \pi_m(L' \times D^{d+1})) = \pi_m(L')$.

Since $\dim L' = d(m-n) - 1 = m$ in the case of $d = (m+1)/(m-n)$, by Proposition 4.2, we have $I(S^r, S^w) = \mathbb{Z}$. This completes the proof of Theorem B.

Remark. Suppose that $V_1 = \bigoplus k_i W_i$ and $k_i \geq 3$ for each i if $\dim \text{Hom}^G(W_i, W_i) = 1$, where W_i runs over the inequivalent irreducible real G-modules. Then Theorem A is valid when G is a finite group.

References