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Canonical Linear Transformation
on Fock Space with an Indefinite Metric

By

Keiichi R. ITO*

Abstract

Canonical fields $?(/) on the Fock space with an indefinite metric < , >= ( ,9 )
and their canonical linear transformations (Bogolyubov transformations) are investigated.

Let T be a bijective real linear operator preserving the ̂ -symplectic form < , / >r =
Real ( ,tpj ) in one particle Hilbert space 3?, where ip is unitary and hermitian and J=

V—T. It is shown that, under some conditions, T has a decomposition T=ViSV2, where V%

are ^-unitary and S is a generalized ^-scaling, namely S^^<pS*<p = S, JSJ~1 = S~1
) SKdK

and SJKC.JK for a decomposition tf=K®JK.
T is called (9-unitarily implementable if there exists a 0-unitary (bounded bijective ©-

isometric) operator UT on the Fock space & such that UT0<P(f)Ul>1 = 0v(Tf). This defini-
tion is too restrictive. It is shown that T is 0-unitarily implementable if and only if IT, <p]
= 0 and anti-linear part T- of T is of Hilbert-Schmidt class.

We introduce a less restrictive notion : T is called weakly <9-unitarily implementable if there
exist a (9-isometric operator Ur1 (not necessarily bounded) and a cyclic vector QT^^ such
that Ur1^ (771)... ®v (T/,) Q = 0V (/i)... Qf (/„) 0r, where Q is the Fock vacuum. A neces-
sary and a sufficient condition for this implementability are obtained.

As an application, a mass-shift model of the vector field of an indefinite metric formalism
(Stuckelberg formalism) is discussed. A time-evolution of the system by the model Hamil-
tonian is investigated.

§ 1. Introduction

Let & be a Hilbert space equipped with usual (i. e. positive

definite) hermitian inner product (. , . ) > and let 27 be a unitary and

hermitian operator: jf — j]~l = 37. We define a new (indefinite) sesqui-

linear form < . , . > = ( . , 37.) on J£. This is a "Hlibert space equip-

ped with an indefinite inner product < , >", and denoted {&, (, )>} •

One familiar example of this space is our Minkowski space M=

{<&=R\ ^diag (1, — 1, — 1, — I ) } - Historically speaking, Pontryagin
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first investigated this space in order to study differential equations,

and physicist also investigated this space in order to describe quantum

electrodynamics (QED)•

Some examples of indefinite metric formalism in physics are :

(1) An indefinite metric is needed to describe a massless vector

field (photon field) in a manifestly covariant way.

(2) In the Stiickelberg formalism of the massive vector field, an

indefinite metric is used to cancel divergences due to p^p"/' fjf in the

propagator of the Proca field ( = vector field of positive metric for-
malism) .

In these examples, a Fock space with an indefinite metric < , > =

( ,0 ) is constructed by the usual tensor algebra constructions from

the (one-particle) Hilbert sapce tf with indefinite metric ( ,9? ). In

this space, fields are defined in terms of creation annihilation

operators in a similar manner as the definite metric case.

Real linear transformations on ffl which preserve the commuta-
tion relations of these fields are called ^-symplectic transformations

and the corresponding transformations of fields are called Bogolyubov

transformations.

In this paper, we study the implementability of such Bogolyubov

transformations B by linear transformation UB preserving the inde-

finite metric ( ,© ) in the Fock space.

Our main results are about three different kinds of implemen-

tability :

Definition 0-1. B is said to be 0-unitarily implementable if UB

and its inverse are bounded in addition to being 0-isometric.

We shall show (Theorem 11) that B is 0-unitarily implementable

if and only if UB is unitary with respect to the definite inner product

which we use to give the topology for the Fock space. This shows

that the restriction of bounded UB (and C/B1) is too restrictive for

our purpose.

Definition 0-2e B is said to be weakly 0-unitarily implementable
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if the Fock vacuum state is transformed by B to a state given by a

cyclic vector in the original Fock space.

This includes a wider class of B compared with Definition 0-1, and

UB may be unbounded though it will preserve the indefinite sesqui-

linear form in the Fock space. We obtain some conditions on B

which are necessary or sufficient for the implementability (Theorems

12, 13). However it is shown that this notion is not invariant under

^-unitary transformations (bijective linear transformations preserving

( , # > ) ) of the space ffl. We introduce a weaker notion called ©-uni-

tary quasi-implementability, which is invariant under ^-unitary trans-

formations. For this purpose, we study a decomposition of canonical

linear transformations B : A canonical linear transformation B is a
bijective real linear transformations of jf, which preserves the sym-

plectic form given by the imaginary part of the indefinite inner

product < , >=( ,<p ) on ffl .

Under some conditions3 such B has the following decomposition :

(1-1) B=V1SV2

where Vl and V2 are ^-unitary and S is a generalized ^-scaling in

the sense that S is a ^-self ad joint canonical linear transformation

commuting with C for some fixed complex conjugation operator
(Theorems 9, 10).

Definition 0-38 A canonical linear transformation B is said to

be 9-unitarily quasi-implementable if S-l is of Hilbert-Schmidt class

and its eigenvalues 1 satisfy

It is shown that B is (9-unitarily quasi-implementable in cases

Definitions 0-1 and 0-2 and that the ©-unitary quasi-implementability

is invariant under ^-unitary transformations. The ©-unitary quasi-

implementability is shown to be equivalent to the requirement that a

kind of non-zero finite inner product between the Fock vacuum



506 KEIICHI R. ITO

state and its transformed state can be defined in a certain sense. It
is shown, however, that there exists an example of 0-unitary quasi-
implementable B for which the cyclic space for the transformed
vacuum has no intersection with the original Fock space.

The organization of this paper is as follows : In §2, we define a
Hilbert space equipped with an indefinite metric, and construct a
Fock space with an indefinite metric. In § 3, we study a ^-sym-
plectic transformation which is a bijective real linear transformation
preserving the CCR.

In §4— §6, we consider polar and spectral resolutions of a <p-
symplectic transformation. In §7 — §10, the implementability is dis-
cussed. Examples are in § 11.

An application is discussed in § 12, where amass-shift model of
the vector field of an indefinite metric formalism (Stiickelberg for-
malism) is investigated. The time-evolution by the 0-selfadjoint
Hamiltonian is also discussed.

Concluding remarks are in § 13.

§ 2. Fock Space with an Indefinite Metric

In this section we define notation for the Fock space with an
indefinite metric. Let J^,- (*=+, — ) be a Hilbert space with (posi-
tive definite hermitian) inner product ( , ),, and let 3? = =£?+©=£?_
be a Hilbert space with inner product ( , )=£{( , ),.

Let Pi be projection operator to & i9 and let

(2-1) rj = P+-P_.

We consider an indefinite hermitian inner product

(2-2) < , >=( ,T] ),

and we call the pair {J5P, < , >} "a Hilbert space with an indefinite

metric". See Refs. [4,16-18,21].
The set of bounded linear operators C: J*?,.— >J^ is denoted by

#(J?,, J2?,), and 9(2, JZP) by

Any Ae^(J^) is decomposed as
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on £? — £?+0=^_ where

(2-4) A,.,:

Its ^-adjoint A^EE,^ (=£?) is uniquely defined by

(2-5) <

It is given by

(2-6) _

Definition 1. A

(1) -rj-self adjoint if A = A(*\

(2) y-unitary if A~l =

Remark 1. Even if an operator preserves < , ), it is not neces-

sarily a bounded operator. Note that our definition of an ^-unitary

operator requires the boundedness. In this case, if U is ^-unitary,

then

This also means l^||[7jj, and it is easily confirmed that ||C7||=1 if

and only if U commutes with 37.

We want to introduce a Fock space ^ over a Hilbert sapce Jf

with an indefinite metric ( 9 y> ). The space & is defined by

Here 5n is the following symmetrizatioii operator :

S.^®--®^^^

Definition 28 For Ae^(jf), T(A) w rf^nerf 63;

®A (n-times),
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and dF(A) by

Their domains of definition are extended by linearity and closure.

Remark 2. r(A) is a bounded operator if and only if ||

and dF(A) is unbounded whenever

The Fock space & has a positive definite hermitian inner pro-
duct ( , ) naturally constructed from ( , ) in ffl . We now introduce
on ^ the following indefinite inner product

Note that 9 is unitary and hermitian.
The usual creation operator a*(/) for/e^f is defined by

and the self adjoint (Segal) field by

(2-7) 0(/) = (2) -"2[>* (/)+(«*(/))*]•

Though a* (f) is complex linear for f ^ J f , ^(/) is not complex
linear for /<E Jf .

The 0-self ad joint field is defined by

(2-8) <P,(0 - (2)-1/2[^* (/) + (a* (/))(0)r

where the bar denotes the closure. Since (a* (/))(0) = 0(a* 00)*6 =
(a* (<pf))* by the definition of ©, we have the following commuta-
tion relation :

(2-9) [<!>,(/), (Pffe)] = f Im(/3 W) = f Im </, ^>.

The creation operator a* (f) can be expressed in terms of ®9(f) by

(2- 10) «*(/•)= (2) -1/2[0, (/) - i<P, (J/) ]

where J is the multiplication operator of z = V — 1 .

Remark 3. ^(/) is ©-selfadjoint but not * selfadjoint. Then

exp [^(/)] is unbounded in general.
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§ 3. Canonical Linear Transformation

Definition 3. A real linear bounded operator B on ffl shall be
called a canonical linear transformation if the commutation relation

is preserved, namely if

(3-1) Im(B/, <pBg) = Tm(f, <pg).

A canonical linear transformation B shall be called a tp-symplectic
transformation if B is bijective.

From the definition, it follows that canonical linear transformations

form a semi-group, and ^-symplectic transformations (^^-Bogolyubov
transformations) a group.

To obtain an operator form of the condition for B, we introduce
a real bilinear inner product on Jf by

(3-2) (/;*), = Re (/,*),

and denote the multiplication of i by J. The adjoint of real linear
operator B with respect to ( , )r will be also denoted by B*. It
coincides with ordinary * if B is complex linear (namely if [JB, J]
= 0). We define Bw = foB*p.

Lemma 1. B is canonical linear transformation if and only if

(3-3) BWJB=J.

Proof. (3-1) is equivalent to

which is equivalent to

for all /,£€=.#. Q. E. D.

Any real linear operator B can be uniquely decomposed as a
sum of complex linear and anti-linear operators :
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When B is a <p-symplectic operator, B_ is called as its "off- diagonal

part".

Lemma 2. B is a canonical linear transformation if and only if

Proof. (3-3) is equivalent to

(BPB+-BWB.) + (B^B^-B^B^ = L

Complex linear and anti-linear parts of two sides of this equation

are the two equations in this lemma. Q,. E. D.

We are interested in the transformation of the field under

Bogolyubov transformation, which is given by

(3-5) TT, (0, (/) ) = $™ (/) = Q, (Bf) .

§ 48 Polar Decomposition of $0-SympIectie Transformation

The main purpose in this section is to prove the following theo-

rem :

Theorem 3. A (p-symplectic operator T such that 0 is not an

eigenvalue of T(9>)T+ \T\W\T\ has the following decomposition:

(4-1) T=OO\T\

where O, 6 and \T\ are (p-symplectic operator such that \T\ is

self ad joint positive,

(1) 6 is orthogonal and (p- self adjoint,

(2) O is complex linear and unitary,

This decomposition is unique up to the transformation

(O, 0)

by selfadjoint, unitary operator V commuting with (p.

We prove this theorem through several lemmas [20, 24, 27].
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Lemma 4, Let T be a (p-symplectic operator. Then there is a

unique decomposition of T as follows :

(4-2) T=Q|T| ,

where \T\ and Q are (p-symplectic and

(4-3) |T|*=m>0, Q* = Q-1.

Proof. Let

T=Q|T|

be the unique polar decomposition of an invertible operator in a

real Hilbert space. Since T is ^-symplectic, we have

Hence

By the uniqueness of the decomposition, we have

Q, E. D.

Lemma 5. Let Q be an orthogonal operator commuting with <pJ*

Assume that —1 is not an eigenvalue of QWQ. Then there is the

following decomposition of Q :

(4-4) Q=06,

where

lO^O-1, JOJ~l=(pO(p=O.

This decomposition is unique up to a unitary and hermitian operator

commuting with (p.

Proof. We explicitly construct 6=(QWQ)1/2.

Let

P=-~(<P+V=P+, P'=Q*PQ

be two projection operators- For any two projections E and F? we
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define [2]

We first note that p'A(l—p~)+pA(l—p")=0 due to the absence of

the eigenvalue -1 for QWQ=|>- (!-£)] |>' -(!-/»')]•
Let

where

/>) (I-/) d-p)T/2+

Then by the construction [2],

Next let

0= Q0~\

Then O is again orthogonal and commutes with (pJ. Further 0 also
commutes with <p (then also with J) :

O~l(pO= OQ-l<pQO-l= 6<p626-l= (p.

Q. E. D.

§ 5. Another Decomposition of ^-Symplectie Transformations

We first introduce several notions [16—18, 21] :

Definition 4. A closed subspace Q of a Hilbert space 3? equip-

ped with an indefintie sesqui-linear form <( , )> is said to be

(1) non-negative (resp. non-positive) if and only if

<x> ^>^0 (resp. ^0) for any X^!Q,
(2) positive (resp. negative) if and only if

<X .r»0 (resp. < 0) for any ^(^O)e^,

(3) uniformly positive (resp. uniformly negative) if and only if

there is a non-zero positive constant /* such that

<x.> xy^fj,(x, x) (resp. <—fi(x, x)) for any
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(4) (p-complementary if and only if

where §<J-> is the orthogonal complement of !Q in ffl with res-

pect to < , >.

Definition 5. A <p-selfadjoint operator A is said to be

(1) non-negative (resp. non-positive) if and only if

<x, Ar>^0 (resp. <;0) for any x^tf,

(2) positive (resp. negative) if and only if

<*, Ar»0 (resp. <0) for any x(^Q)^.^,

(3) uniformly positive (resp. uniformly negative) if and only if

there is a non-zero positive constant ft such that

^/jt(x, x) (resp. <^ — [jt(x, x)) for any

We study absolute value \T\ of a ^-symplectic operator T on ffl

relative to the real indefinite inner product < , >r= ( ,<p )r. Let

(5-1) H=9\T\.

Then this satisfies

(5-2) H(^ = H, JHJ-l = H~l.

Moreover H is uniformly positive with respect to < , >r :

(5-3) <*,#*>,= (*, \T\x)^p(x, x)

with ^inn-1!!-1.
For a uniformly positive ^-selfadjoint operator A on a complex

Hilbert space ffl with an indefinite metric 57, A has the following

spectral resolution in terms of 57-5 elf ad joint projection operators

{£(£) ; £c(-oo, oo)} (see for example [16-18]) :

(5-4)

where E(Q) is <r-additive3

£«(0)

£(-00, (30) =1
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and E(Q} is uniquely determined by A.

We take the complexification of ffl to be Jf c. Define the complex

conjugation operator C on Jfc by

(5-6) C(f®ig}=f@-ig.

We extend H to be an operator on Jfc satisfying CHC=H. Then H

satisfies the requirement for Aabove and hence we have a spectral

resolution

(5-7) H=(~ ME(Z).
J-oo

From CHC=C and the uniqueness of E(Q), we have CE(Q)C

= E(Q) and hence E(Q) leaves the real linear subspace Jf of Jfc

invariant. Hence we can restrict the above resolution to ^f.

Since JHJ~1 = H~\ we also have

(5-8)

Lemma 6. Let H be a <p- self ad joint <p-symplectic operator which

is uniformly positive with respect to < , >r. Then there exists a real

subspace K' drf such that K'r\JK'= {0}, ̂ =K'®JK' with respect to

< , >r and

(5-9) HK' c K', H(JK') dJK'.

Proof. We use the spectral resolution (5-7). Let

Then J^({± 1} ) = tf ( [± 1} ). Since ±< , > r^/ / ( , ) on J f ( [ ± l } ) 9

it is possible to find a subspace I(±l) of ^f({±l}) satisfying

/ (±DnJ / (± i )={oi ,

where direct sum re feres to the orthogonality with respect to < , \.

Let

Then

JK'=(E(-oo, -!)+£(!, oo)) t3f©/7(+l)©J/(-l),

and
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'9 K'nJK'=(Q},

Q, E. D.

To state the main result of this section, we introduce the follwing

terminology :

Definition 6. In a 2x2 operator entry representation of an

operator on 3? relative to the given decomposition 3? = K®J K where

direct sum referes to the orthogonality with respect to ( , )r and

< , >r an operator

/A 0
(5-'0) Ko A-

with (p-selfadjoint uniformly positive operator A is called a (p-scaling.

(The unique J-linear extension of A to ffl will be denoted by the

same letter A.)

Our discussion above yields the following main result in this

section :

Theorem 7. A <p-symplectic operator T, such that the orthogonal

part Q in the polar decomposition of T commutes with <p (or equiva-

lently commutes with J)3 has the decomposition

(5-11) T=U1SU2

with <f -unitary C7t- and a (p-scaling 5.

Proof, Let

-If _ -If I /T\ T?*'
A — A + (J7A_5

where

Since for

(x9 x)r^

there exists a bijective ^-isometric (namely ^-orthogonal) operator

U on Jf which maps K and JK onto K' and JK' respectively. Then
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U is ^-unitary and T=QpH=Q<pU-lSU-l=UlSU2.

ft E. D.

A notion of ^-scaling is an extension of the notion of scaling

operator in symplectic space [15, 27]. When <p=l, this decomposition

is in [24].

The operator T of Theorem 6 corresponds to the case 0=1 in

Theorem 3. On the other hand, the operator 6 itself has a similar

diagonalization as above.

Lemma 8. Let 0 be an orthogonal operator such that

Then there exists a d-invariant real subspace K" such that K"nJK"

= {0}, K" and JK" are mutually orthogonal with respect to both

< , >r and ( , )P and

(5-12) je=K"@JK".

In this case

(5-13) u=6\K', u-l=0\JK"

are orthogonal operators such that <pu<p=u~l.

Proof. After the complexification, we have

(5-14) 0=(* e*dP(r)
j — t

where (P(fl) ; ^C[ — ̂ , TT]} are selfadjoint projections such that

|PP(fl)P=JPWJ~1 = P(-fl) for
U[P(-^)+PW]^=J[P(-^)+P

Since P(fi) commutes with <pJ for all flc(0, TT), there exists a

decomposition tf (fl) = P (fl) Jf = 4 (fl) © <pJk (Q) into subspaces A(fi)

and <pJk(Q) which are P (Q) -in variant for all Qi P(O)jf is decom-

posed as

where k(Q) LyJk(Q) with respect to ( , )r. Let P^fl) and P2(£)

be selfadjoint projections to k(Q) and <pJk(Q} respectively. They
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satisfy

(5-16) P2 (fl) = (pJP, (0) pj-* , P, (Q) P2 (fl) = 0,

and

(5-17) P(Q)=P,(Q)+P2(Q}

Define

(5-18) P l(-fl) = pPl(fl)?> f= l , 2.

Then {P.. (-5)} again satisfy (5-16) and (5-17), and

(5-19) JP^J-^P.C-fl), JP2(Q)J-i=P1(-Q) for flc(0, JT).

By the construction P.- (£) + P,. ( - Q) with z = 1, 2 are selfadjoint

projection operators commuting with <p.

For jf(l)=P(0)Jf and jf (- 1) = (P(jr) +P(-ff))jf, there are

similar decompositions as Lemma 6 :

(5-20)

where I± are orthogonal to J/± with respect to both ( , )r and

< , X-
Let

(5-2D ir=[p1((-ff, o
Then

(5-22) JK" = [P, ( ( - TT, 0) ) + P2 ( (0, *) ) ] jf ©JI+JI_

and

(5-23) «=

where P± are projections to I±. Q. E. D.

§ 60 ^j-Polar Decomposition of ^-Sympleetie Operator

We shall discuss the polar decomposition of a ^-symplectic

operator relative to the ^-inner product :

T=UH
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where U should be ^-unitary operator and H <p-s elf ad joint, p-sym-

plectic with spectrum in the right half plane- Even in a finite

dimensional case, there are examples of T for which such a decom-

position is not possible. Therefore we impose a condition in the

spectrum of T in the following theorem :

Theorem 9» Let T be cp-symplectic, T± = ~-(T±JTJ~1} be its com-

plex linear and anti-linear parts. Assume that T_ is of Hilbert-

Schmidt class and the closed negative real axis [—00, 0] belongs to

the resolvent set of T(f T+. Then there exists a (p-unitary operator U

and <p-selfadjoint tp-symplectic H with its spectrum in the right half

plane satisfying

(6-1) T=UH.

Such a pair ([/, H) is unique and satisfies

(6-2) JU= UJ, JHJ~l = H~l.

Definition 7. Relative to a given orthogonal and (p-orthogonal

decomposition 3^=K@JK,a (p-selfadjoint (p-symplectic operator S is

called a generalized (p-scaling if S has the form

fh 0
(6-3) vo *-
in the 2x2 matrix representation of an operator on ffl relative to the

decomposition 3? — K®JK, where h is a (p-selfadjoint operator leaving

K and JK invariant.

Theorem 10. For an orthogonal and <p-orthogonal decomposition

assume that a (p-symplectic operator T leaves K and JK invariant and

satisfies the assumption of Theorem 9. Then T has the following

unique decomposition :

(6-4) T= US

where U is (p-unitary and S is a generalized (p-scaling with its spec-

trum in the right half plane.
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Proof of Theorem 9. Let

A= T^T= (2T$ T+- 1) +2T<? T_.

By assumption, A has the following properties :

(1) A-1 is compact because T<?T+-1 = T(_!}T_ (3-4) is of

trace class and T_ is of Hilbert-Schmidt class.

(2) A does not have a negative or zero eigenvalues. This is an

immediate consequence of the assumption about the spectrum of

T^ T+ and the identity

which follows from JAJ^ = A'1 and JTyT-J~l= - T^T..

We construct the operator

(A-z)'lz-l/2dz

in the complexification of the real Hilbert space pf, ( , )r}, where

z-i/2 js Defined on the complex plane with the cut on the negative

real axis such that z~l/2^>0 for positive real z and contour F may be

taken to be the union of the upper side of the cut from — °o to 0

and the lower side of the cut from 0 to — oo.

Due to the two properties of A, the operator calculas in Chapter 7

of [8] is applicable. By Theorems 10 and 11 in that Chapter, H2 =

A and the spectrum of H lies in the right half plane. By a straight-

forward calculation, we have

7T J-o

Hence H can be considered as a real linear operator on Jf7. By <p-

selfadjointness of A, we have

7T J-o

Since A is ^-symplectic,
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1 i °°
7T J-oo

by the change of variable r—a~l. Since A = H2, we have JHJ~1 =

H'1. Hence H is a p-s elf ad joint, ^-symplectic operator with its

spectrum (on the complexified space) in the right half plane.

Let U=TH-\ We have

Hence

C7W 17= H-1 T^ TH'1 = H~l (H2) H'^l.

Since U is invertible, U is ^-unitary. Since T(?) and H are ^-sym-

plectic, C7 is also ^-symplectic, which implies

Thus we have the desired decomposition T= UH.

To show the uniqueness, let U^H^ be another decomposion. Then

Hl=T^T=H2. By the uniqueness of the square-root with the spec-

trum in the right half plane (see, for example, Chapter 7 in [8]),

we have H^H, and hence U,= U. Q. E. D.

Proof of Theorem 10. We define

TlK=Tly T\JK=T2.

Since T is ^-symplectic,

JT?J-l=TP

and hence

Let

h= (T1
(5B)T1)

and let

U= T, (T{rt TO

Then for /e JX:
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and

= Ty-lh~y= T1h~1f= Uf.

Q.. E. D.

Our question is whether the ^-selfadjoint, ^-symplectic operator

H is always similar to a generalized ^-scaling 5 via suitable ^-unitary

operator V:

H= VSV'1.

This is affirmative for dim Jf<oo, and T in Theorem 9 always has

a decomposition

T=

where S is a generalized ^-scaling with its spectrum in the right half

plane and V{ are ^-unitary operators. But for dim Jf=oo) ^-isomet-

ric operator V seemes to be unbounded in general.

As we have already proved in Theorem 7 and Lemma 83 this

diagonalization is always possible if H is uniformly positive or ortho-

gonal.

For given generalized ^-scaling S, let ^-symplectic operator T be

given by ViSV2 where V{ are ^-unitary. By the boundedness of Vl

and V2, (H. S. means Hilbert-Schmidt)

T_ is H. S. <-> S-S-1 is H. S.

<-> S2-l is H. S.

The role of condition that (—°°3 0] is in the resolvent set of

T(fT+ in Theorem 9 is necessary by the following example which

does not have a ^-polar decomposition as (6-1) :

0 cosh Tx+Csinh rx"

cosh T2+ Csinh r2 0

on ffl—C2 where T1=^T29 ^=diag(l, —1) and C denotes the complex

conjugation.
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§ 78 0-TJnitary Implementability

Recall that a ^-symplectic operator T is 0-unitarily implementable
if there exists a 0-unitary operator UT such that UT0,(f) C/f1— ®9(Tf).

The main result in this section is the following :

Theorem 11. T is 0-unitarily implementable if and only if T
commutes with <p and T_ is in the Hilbert-Schmidt class.

Proof. We first prove that if T does not commute with p, then
UTI does not exist. Let /ejf + = P+Jf . Then #,(/) is self adjoint and
exp [^(/)] is a bounded operator with norm one- U9 implements

where @9(P+Tf) and i®9(P-Tf) are self adjoint and commute each
other. Thus @v(Tf) is a normal operator. If UT is <9-unitary3 then
\\UT\\=\\Url\\<oo and

UTe'W tff '= e'V^'V'V*-™

must be a bounded operator. But ||exp[z^(P_T/)||= oo whenever
P_T/^0. Then P_TP+-0 if C7r is 0-unitary. Next let /ejf_.
Then i$9(f) is selfadjoint in this case. By similar reasons, we see
that P+TP- = 0 if UT is 0-unitary. Thus T commutes with <p when-
ever T is 0-unitarily implementable.

We may restrict our attention to the case where T commutes
with (p. We use the decomposition Jf=^f+0^f_ according to the
eigenvalue ±1 of (p. Correspondingly we have T=T1©T2,
= ^(^+)(X)Jr(e?f_). Each Tf. is symplectic as well as being
plectic.

If T_ is of Hilbert-Schmidt class, then (T f)_ is of Hilbert- Schmidt
class and hence the corresponding Bogolyubov transformation is
unitarily implementable by a result of Shale [24, 27]. Furthermore
the unitary operator implementing the Bogolyubov transformation
commutes with Q(9=T((p) being identity on -^ (.#%.) and (-1)* for
a number operator Af on ^(Jf_)) and hence is 0-unitary.

Next we assume that T_ is not of Hilbert-Schmidt class. Since
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T is symplectic, the result of Shale [24] implies that the Fock

vacuum state is transformed to a state which yields a representation

of the canonical commutation relations disjoint from the original one

and hence has no non-zero intertwining operator. Thus there is no

bounded invertible C7T(be it unitary or 0-unitary). Q,. E. D.

§ 88 Weakly 0-Unitary ImpIementaMIity

Recall that a Bogolyubov transformation TB = B+ + B_ is weakly

(9-unitarily implementable if there exist a complex linear (9-isometric

operator U^1 on & (jff} and a cyclic vector QB^3F(^ such that

(8-1) C7

for any polynomial P of (non-commutative) fields and any test func-

tions fj(UBl is not necessarily a bounded operator).
For this implementability, we do not have a complete criterion.

A necessary condition and a suffcient condition are given by the

following theorems :

Theorem 12. If a Bogolyubov transformation TB is weakly 0-

unitarily implementable, then jB_ is of Hilbert- Schmidt class and the

negative real axis and zero is in the resolvent set of B(fB+.

Theorem 13. Bogolyubov transformations Ts and T5-i are weakly

&-unitarily implementable if the following conditions are all satisfied :

( i ) S- is of Hilbert- Schmidt class,

( ii ) S is a generalized <p- scaling :

on 3?= K®JK where K is a real linear subspace of ffl such that K.LJK

with resect to ( , )r and <( , >r.

(iii) The spectrum of the selfadjoint part ar— (a + a*)/2 of a — h~2

is in [c, c"1] for some l^

Remark 4. For the necessity of the positivity of an see Theorem
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27.

In connection with the discussion of 0-unitary quasi-implement-

ability, we compute the overlap of the vacuum Q and the transform-

ed vector Qs as follows :

Theorem 14. Under the condition of Theorem 13, the overlap

!<£?, Qsy\ of the Fock vacuum Q and the transformed vacuum Qs is

given by

(8-2) der'/2(Ai^),

which is non-vanishing finite. Further for B= ViSV2 with Vt <p-uni-

tary, if QE exists, then

(8-3) |<A QBy i = |<0, £5> \ =

- det-1/4(l

Remark 5. When <p=l, from Theorems 12 and 13, we see that

symplectic operator TB is unitarily implementable if and only if £_is

in the Hilbert-Schmidt class [Shale]. Further

if and only if 5_ is in the Hilbert-Schmidt class, and hence TB is

unitarily implementable if and only if the overlap is no n- vanishing.

In these theorems Os is well defined by the following lemma :

Lemma 15. Under the assumption of Theorem 13, a vector Qs

in the Fock space, which is cyclic for the polynomials of fields and

satisfies

for all polynomials P and test functions f19 • • - , / „ is unique up to a

multiply of identity.
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The following theorem means that the vacuum Os is in the

domain of the number operator N.

Theorem 16. Under the assumption of Theorem 13,

where N is the number operator.

The proof of Theorem 13 involves the ccQ,-space" method, which

we shall discuss in the next section. The proofs of Lemma 15, which

is related to Theorem 13, and Theorems 13, 14 and 16 will be given

in § 10. We shall prove Theorem 12 in this section.

Proof of Theorem 12. We shall use the following well known

property of the Fock vacuum vector Q:

(8-4) [a* (/) ] ̂  0= ,= (0V (/) + 10. (J/) ) 0= 0

for all/^Jf. By definition QB satisfies

(8-5) (09 (IT
1/) + i0v (B-1 J/) ) 0B = 0

for all/eEjT.

To show that 5_ is of Hilbert- Schmidt class, let

where ^w = Sn (®n#P) is the n-particle space. Then (8-5) implies

(8-6) <(£-%/, a»c«> = 0,

(8-7) ~~

where m^\ and Wm is the following mapping of 3ff into S^-^

*(®m-i $?} defined by the vector a)M in 5m((8)»^) through the
characterizing equation

relative to the inner product < ? >= ( 5 0 ). In particular W2 is in

the Hilbert-Schmidt class.

First we show that the kernel of B+ is {0}. Assume B+f=0 for

. Then
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**(f)Q*=jj(*,(f)-

= ^==U^(

due to B+f=0 and the equation (8-5) (with/ replaced by S_/). A

vector in the Fock space which is annihilated by a creation operator

a* (f) must vanish, which contradicts to

(8-8) <0, £>=<£B, QBy=l.

The first consequence of this result is that the range of (5~1)+ is

dense because

for all g^Jf? implies

where we have used B'l = JBP J~l = B!*> - B«> .

As a consequence coM = Q for all odd m: For, (8-6) implies a>(1) = 0

by the density of the range of (5~1)+. The relation (8-7) then

recursively implies coM = 0 for all odd m again due to the density of

the range of (5~1)+.

Since ^0=0 would imply Q)M = 0 for all even m by the same

recursive argument and this would contradict with (8-8). Hence

We can now use (8-4) for m— 1 to obtain

Since W2 is in the Hilbert- Schmidt class, so is (B~l)_. Hence

is also in the Hilbert-Schmidt class.

Now we assume that B(?B+g=—Ag with ^0, ||g-||=l and we

shall derive a contradiction. First we consider the case

Let L be the set of all vectors satisfying B(fB+g=—Ag.

For g^L, we have
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By B+By B.g= By B+B^B+g

and hence B(fB.g again belongs to L. Namely B(fB, is a Hilbert-

Schmidt operator leaving L invariant. Furthermore

+- 1).

Hence

is in the eigen space of J5(^J5_ belonging to the eigenvalue ± [2(2+ l)]1/2
3

and at least one of them is non-zero. Let g be a non-zero vector

in one of these spaces. Then f±=B(£)f, f=B-g has the following

property :

By (8-5), we have

(8-9) [0, (B-1/) + f <Pf (fi-V/) ]fia= 0.

By the canonical commutation relation

(8-10) [^te), <P fCff,)*] = [^fei),

we obtain

(8-11) [ (0, (5-1/) + i«P, (B-' J/) } , {«2>, (B-1/) + 1 <Pf (B-1 J/) }

where we have used (A, Jh}r=Q for any /zGJf and JB~lJ~l = BM =

Combining (8-9) and (8-11), we obtain the following contradic-

tion :

This proves that B(fB+ does not have negative eigenvalues.

Finally consider the case 2=0. By the same computation as the

previous case, we obtain
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for gl=(B(?B_)g. Because ByB- = B™B+, we obtain

By the invertibility of Bw, we obtain B+gl = Q. Since KerCB+) = {0},
& = (). Thus

The same argument as above now shows that g=Q. Therefore 0 is
not an eigenvalue of B(fB+. Since B(fB+ - 1 = £(_p)5_ is compact, this

shows that the negative axis and zero are in the resolvent set of

B(?B+. Q. E. D.

§9B Q-Space Method

As a preparation of the full proof of Theorems 13, 14 and 16,

we prove them for a special case of finite dimensional tf using the
following Q-space method.

Corresponding to any direct orthogonal decomposition ffl=KQ@JKQ

with respect to the positive definite inner product ( , )r, we have a

maximal abelian algebra generated by (the spectral projections of)
self adjoint fields

2-1/2(a*(/) + (a* CO)*),

and hence we can identify the Fock space as a certain L2 space
where fields $(/) with f^KQ are multiplication of certain functions.

We shall use such a structure in this section to discuss ^ (3?) with

indefinite metric < 3 >= ( , 0) and the ©-self adjoint fields #,(/).
If we fix an orthonormal basis e19 • • • , en in K0 relative to the

definite metric, there exists a unitary map W from 3^(3?) onto

L2(Q, dfr) such that

for any polynomial P where Q— R" and

(9-1) ^ = ^-/a
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Let ffl—K®JK, K and JK be ^-invariant and mutually ortho-

gonal, K± = P±K and K0= K^®JK.. W should implement

(9-2)
{resp.

qf {resp. — i-=— +iql] for

— iqAresp. — ——+ gj for
oqt

Let (p=P+ + iP-. Then <p commutes with <p and (p* = <fi~1
5 <p2=(p.

For the decomposition of S relative to K@JK, <fi*h~l(p is ^?-selfadjoint

and symmetric in the sense that Atr = CA*C=A for the complex

conjugation C=(+l)0(- l ) on K®JK and A = <f>*h'ty

We introduce a matrix a by (q, aq) = ^ijal]qiqj where atj =

(et, (f>*h~2<fiej) is symmetric due to ((p*h~2(pyr = <p*h~2({> and Cej = e3.

We claim that

(9-3) £5= [det a]1/4expr-4-fe («-

has the following two properties :

( i ) For n^Q, and any polynomial P.

(9-4)

( i i ) For

(9-5)

The property (i) is immediate from the definition due to the assump-

tion that zero and negative real number are not eigenvalues of ar

— (a + a*)/2 and hence @s has Gaussian fall-off for largely . The

property (ii) follows immediately

Proof of Theorem 13 and Lemma 15 for finite dimensional ffl .

We define an operator Us1 by

(9-6)

where the polynomial P and test functions /15 • • - , /„ are arbitrary.

Since any polynomial annihilating 13 is known to belong to the

left ideal generated by annilhiation operators @9 (/) + i @p ( Jf) , (9-5)

guarantees that zero vectors are mapped to zero vectors by U^1 and
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hence Uj1 is a well-defined linear operator.

Since Os^0 for all q and Qs exp[ — -~-2]<?5] has a Gaussian de-

crease at q=oo;> Qs is cyclic for the polynomial P in L2(Q9 d[j.Q).

Hence the image of C/J1 is dense in L2(Q, dju0).

Next (9-5) and the canonical commutation relations uniquely

determine

because (0v(S~1f)+i0?(S-1Jf)) and its 0-adjoint (0v(S~1f)-i0v

( S ~ l J f ) ) generate the polynomial algebra. Hence it must be equal to

which means that C/s1 is 0-isometric.
Finally to prove that S~l is also weakly @-unitarily implementable3

let

where ar and iat are selfadjoint and skew-self ad joint parts of a

respectively. For /S"1, we have

Since (a~1)r= (ar + at.ar~
1a,)~1 is again a positive operator, S~l is also

weakly 0-unitarily implementable. Q; E. D.

For the purpose of our proof for the infinite dimensional case,

we need a few more estimate about QS' First we mention the

following two lemmas due to Klein [15, 27] :

Lemma 17. Let (Q:-3 d/j,^) be a sequence of probability measure

spaces. Assume /,-^0, fi^L2(Q{) dftj, and ||/i||2=l for all i. Let

FJ=u{atlfi. if nr.iii/nx00 f°r some P>Z> then f°r some F<=L2nLp,
FJ-+F

in L2.

Lemma 18. Let f>(q} = fy exp[-y (^2- 1)^], and let\\-\\p be the
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norm of f with respect to the probability measure d ft0 = 7r~1/2 exp( — q2}

dq. Let l^c^>0 be given so that cr^/PrSc"1. Then there is a constant

r] for some />>2 (any £<2(1 — c)"1) such that

These two lemmas imply that a formal vacuum given by

is in L2 if 2 (%— I)2<oo3 and can be directly applied to our case if

</>=l, because S is a selfadjoint scaling operator in this case ({/I2}

are eigenvalues of a in this case).

In order to prove the following theorem and as a preparation

of the next section, we briefly discuss the compact operators and

determinant of Hilbert space operators [see, for example, 6, 23, 25,

26].

Let jf be a separable Hilbert space and let # (tf ) be the

C*-algebra consisting of the bounded operators on ffl . For a complete

orthonormal basis {<f>{ ; &"= 1, 2, • • • } in 3? relative to the inner prod-

uct ( , ), the trace of operators is defined by

(9-7) TrGA) = S,(0., A0,).

If A is positive, selfadjoint, then Tr(A) does not depend on the

choice of the basis.

Let |A|=(A*A)1/2, and define

(9-8) ^,

and

(9-9) \\A\\P= (Tr(\A

Especially ^2 is called the Hilbert-Schmidt class and is a two-sided

ideal in # (Jf ) .

We summarize several inequalities without proof [16, 25, 26]. If

Ae<g%, B^tfq with />~1 + g"1=l, />, g^l, then both AB and BA are

in # ! and Holder inequality holds :
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(9-10) lTr(AB)\^\\AB\\^ \\A\\,\\B\\..

If Ae*(^P), fie»w then

(9-11)

Let {%i(A) ; z'= 1, 2, • . . } be a listing of all the non-zero eigenvalues

of A counted up to (algebraic) multiplicity. We define

Let (fJti(A) ; *' = 1, 2, . . . } be a listing of all the non-zero eigenvalues

of \A\ counted up to multiplicity. Then

(9-12) l^det( l+ |A|) = n(l + ̂ (4))^exp||A||13

and det(l+ |A|)<oo if and only if Ae^. The following inequal-

ity is due to Weyl [6, 26] :

(9-13) ZI

for p^l. Therefore det(l + A) exists for A^tf,. Further [6, 26]

(9-14) |det(l + A) |^

Our final theorem in this section is the following that is a gene-

ralization of Lemmas 17 and 18:

Theorem 19. Let a and ft be bounded symmetric operators (of

arbitrarily large but finite rank n) such that

(i) 0<c^ar9 pr-£c-\ l^c>0?

( ii ) —m^at, fi^m,

(iii) \\ct- 1||2, \ \ f i - l\\2^K, for some K<(^OO independent of n.

Here ar and ia^resp. j$r and i^) are self adjoint and skew-selfadjoint

parts of a(resp. ft) respectively. Let

.= (det a)1/4 exp[— ̂ (q, (a-

and let | |-- | |^ be the norm with respect to a probability measure djj,Q
= IIn=i x~1/2 exp[ — (£\dqi. If\\a — fi\\2 is sufficiently small, then there

is a constant r such that
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for an appropriate choice of the quadratic root of det(a) and

det(/3).

For the proof of this theorem, following lemmas are useful:

Lemma 20» Under the same assumption of Theore?n 19,

ii / ,„_ Idet a\p/*

[det(l + |-(ar-l))J
/:

for p<^2(l — c) l. Further in this case, there is a finite constant rj

such that

Lemma 21. Let ar and /3r be the operators defined in Theorem

19. Then

2 - 1 / 2

Lemma 22. Le^ ar anJ ^8r &e «5 above. Then

Lemma 23. L^^ a=of r + z'af-3 ^=^r + i^{ be as in Theorem 19.

A= ar-
1/2a2ar~

1/2, B=^1/2^~1/2,

and let

M=[det1/8(l+^2)-det1/8(l + S2)]2.

w a constant CQ for sufficiently small \\a — fi\\2 such that
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(For example, c0=exp-rze2ar, r= Imc"1 (mc~2 + c~l) , for ||a-/3||2^

Proof of Lemma 20. Since

|/.| = | det a |I/4 exp[— i-(ft («,-

the first equation is obvious, while

|deta |2= det («,. + ««,•) det (a,— za,-)

= det (a?) det (1 + a71/2aia7iaia7l/2}

£ exp [| |ar-
I/ia,arla.«rI/1l li] det (a?)

Then

ii/ji^expr^-ikiB] r
L8c J L

Hence we obtain the desired inequality

Q. E. D.

Proof of Lemma 21. Let {0,} be the complete orthonormal eigen-

vectors of a.]/2' + ft1/2', and let { -̂} be the eigenvalues. Then
2. Since

) (a^-^)+ (a

we have

Other inequalities follow by substitution. Q^. E. D.



FOCK SPACE WITH AN INDEFINITE METRIC 535

Proof of Lemma 22. Let x= «r-'
/2/3rar-'

/2>0. Then \\x~l\\^C-2, and

a E. D.

Proof of Lemma 23.

Note A, Be*";,. By Holder inequality,

Further

1.4 _ Rll — ll/v-^/v /r~1/2 _ /Q~1/2fl fl~l/2i|h^i -D||z— l l«r a.'ar pr p,-pr ,b

= | K172 ( - «f + $" ) ̂ ata-^ + /3r"
1/2 (a,. -

Then by Lemma 21, we finally have

Thus

and then there is a suitable constant d such that

We set c0=rfexpM-|iA||2 to complete the proof. Q.. E. D.

Proof of Theorem 19.



536 KEIICHI R. ITO

= fi det(op ,!/,_ | detQ3) |1 /<)2
11 det (a,) ' ' det(]8r) ' '

+ 2 1 det (a) det (/S) det"1 (ar) det"1 (£)1/4

Let

— ^.-1/2-, n-1/2 D 0-1/20 0-1/2 /nr / "r ~T pr
— ar ctzar , £>—p r Pf-Pr 3 ^—\—^—~~

Then these are in ^2, and

We have

X [det1/4(l-zA)det1/4(l + ̂ )det1/2(l + z'C) + (A, 5, C->-A, -B, -C)].

Let

/= det1/4 (1 - 1 A) det'/4 (1 + iB) det'/2 (1 + iQ .

Then

| / = det1/8 ( 1 + A2) det'/8 ( 1 + B2) det1/4 ( 1 + C2)

and / is given as

|/|0), [« =1.

Let o>r=Re <w. Then we finally have

where M and K are quantities given in Lemmas 22 and 23. By

previous lemmas, it suffices to prove that, if ||a — fi\\l is sufficiently

small,
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for some constant ^.

For this purpose, note that

where

H=A(B-A)-i(A-B-2C)+iCAB+iABC+(A-B)C+C(A-B)

-C2 + iC(A-B}C-CABC.

We prove H^e^1 and H/ fH^^Ha — /J||2 for some constant 3?2. Since

A5 5 and C are in ^ 23

\\A(A-B)\\^\\AUA-B\\2^ const. l|«-/9||2,

IIABCII^IIABIMICH,^ const, \\a-B\\,.

Thus it suffices to prove \\A — B— 2C||l^3||a — /3||2 for some constant

7,: A-B-2C

= a-'*a a-^-B-^B B^-zf "r+ '?' Y^( K~^' Y "r + ^'ar a,ar /ir p,/ir ^^— - -j \ 2 A 2 /
-1/2

a1/2)

Here a,, j8,etf2 , and by Lemma 21, ̂ _ ^ ± / 2 _ ^ / 2 and 1

— j^2 are of Hilbert-Schmidt class whose Hilbert- Schmidt norms are

dominated by const. ||a — /3||2. Then there is a suitable constant )?3

such that ||A-B-2C||a^a||a-|8||a.

Let Hr and z'W,- be the self adjoint and skew-self adjoint parts of

H respectively, and let

where

is a selfadjoint operator such that
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Then

and

O)T= cos^ fTrCSin-1//; (1+H'*} ~1/2]},

which completes the proof. Q,. E. D»

§10. Proof of Main Theorems in §9.

For a generalized ^-scaling S given by (6-7), S-. is given by

1 /h-h~l ON

on K@JK. Then

(10-2) S. is H. S. <^h-h~l is H. S. <->ar-l = /r2-l, a"1-! are

H. S. ->ar-l, af, (o:-1).-!, (a~ l), are H. S.

Let J5W be an increasing sequence of finite dimensional orthogonal
projections commuting with <p and tending to 1 as ?z— >oo. Let hn =
(EnaEn)~

1/2+(l-En) andSn=hn@h-1 on K®JK. Then [Sn] is a
sequence of generalized ^-scalings of finite rank with an=h~2 satisfy-
ing \\an— \\\2<^K, c^(an)r^c~l for all n and

as w, 72—*oo. The sequence of transformed vacua {@sn} with

is Cauchy is L2(Q, dfa) by Theorem 19:

(10-3) ^->

The phase of (det (a.) ) 1/4 is chosen so that (det(an))1/4>0 if det
(aB) ^>0. Thus we can prove Theorem 13 and Lemma 15 through
Lemmas 24-26 :

Lemma 24. Let P be a polynomial of the fields [®9 (/,-)}• Then
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(10-4) SupJ|P£5J!2<oo.

Proof. It suffices to prove the lemma for a polynomial of [qt] .
In fact derivative terms {9/3gJ in <P,(./i) are only to induce linear

terms of {#,-} as ZL- (<*«)« A- in P> which stay in a bounded set of

L'(Q, dft) with p^2: Z / l ( O u l 8 ^ ( l + *)' for any n and x.
By Holder inequality

where/, g'^1 and (p')~l+ (q}~l:= 1- By Lemma 205 there is a

constant /> in (2, 2C1-C)'1) such that

We put /= ^/2>1, which completes the proof. Q. E. D.

Lemma 25e

(10-5) <^5? PQ8>=<Q, ^S

Proof. Let Wn = PQSn. By the above lemma, ??*„ has a sequence

converging to a vector F. Since P is a closed operator,

{£5, f}e graph P.

Then f does not depend on the subsequence and Wn weakly conver-

ges to

W=PQS,

For finite rank S,,

Then
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Lemma 26. Qs is a cyclic vector for

Proof. First note that {Q@s} = [PQS], where {QQS} denotes the

set of Q(q)Qs with Q (g) polynomials of {q}. As we have already

proved.

if a — a0 is of finite rank and c^(a) r, (a0)r^c"1 for some l^

Let En be an increasing sequence of finite dimensional orthogonal

projections tending to 1 as n-^oo and commuting with <p. Let an =

En+(\-En)a(\-EH). Let hn= (O~1/2 and Sn = hn®h~l on K®JK.

Therefore {QQS} ̂ @sn and \\an— 1!|2-»0 as n-^oo, which implies

in L2(Q5 d#>) and

By the explicit evaluation of \\qn
3QQs\\2 as a function of n, it is

seen that QQS for any polynomial Q of [q] is an (entire) analytic

vector of q^. Hence exp(zag;-) QQS^ [QOS] for any real a. This

shows that {QOS} is invariant under the commutative von Neumann

algebra M generated by {exp(za#_,)}. Since the Fock vacuum is

known to be cyclic for M, {QQS}=>Q implies that {Q@s} is the

whole Fock space &. Q,. E. D.

To complete the proof of Theorem 12, it suffices to prove that

T5_! is again weakly 0-unitarily implementable. This is obvious since

if a—I is H. S., then a"1—1 is again H. S. (see (10-2)) and if ar

is strictly positive, then (a-1)r is again strictly positive as we have

already proved in finite dimensional case. Q,. E. D.

Proof of Theorem 14,

For finite rank Sn,
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ff(*.-WJ.
Take the limit n-»oo. Since Os^^ and h — h~l is H. S.5 this is non-

vanishing finite. (Moreover this is positive since det (A)>0 if A is

symmetric ^-selfadjoint operator such that Ar>0).

If TB=V£V2 with Vs ^-unitary, then

For the above TB, UB = T (VJ USF (VJ . Since {r(F,)l do not change

the Fock vacuum, if Os^D(r(V^9 then

E.

Proof of Theorem 16.

The number operator N is given by

in the Q-space. Let

O' = Arn — v Q(t)
<J^S - XV Ms — 2-1 i^S 5

where

} = - -

Since oc— le^2 and a"1 is bounded, it is explicitly shown that

/yi^i2^o<oo.
Q.. E. D.

Remark 6. By similar method, it will be proved that Qs

for n— 1, 2, ••• . This is the "locally Fock property" of the vacuum

defined by Glimm and Jaffe [7, 8].
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Finally in this section, we prove that the condition spec ar>0 is

necessary to ensure Os^^,

Theorem 2T« Let S be a generalized (p-scaling. The vector Qs

such that

<Q, 7r,(P) £> = <£,, PQS>

is not in the Fock space if inf spec ar<^0.

Proof, a=h~2 takes the following form on JK+@JK_ = JK due

to the <p-s elf adjoint ness of a :

namely ar— (ar)++0(ar) __ on JK+@JK— First assume that inf spec

(ar}++= — /l<0. Then there is an eigenvector f^JK+ of ar belong-

ing to the eigenvalue — ̂ . In this case ^(/) is selfadjoint and

||exp i®,(f)\\=l. Now

If ^>0, then the right hand side can be made arbitralily Iarge5

which contradicts |<£s, exp (i0,(f))Qs> ^H^IK00-

The case of inf spec (orr) __ <^0 is similarly discussed. Q,. E. D.

We remark that the state pB=(Q, ^ B ( - )^) cannot be extended

in general to a state on the C*-a gebra generated by {exp i@(f) ;

/ejf}, as can be immediately seen from the above proof.

§ 11. Examples of ©-unitary Quasi-ImpIementaMlity

For weakly 0-unitary implementability of a Bogolyubov trans-

formation B, we obtained the following sufficient condition in
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Theorem 13 :

SLeH. S., and spec O)r>0

and the following necessary condition in Theorems 12 and 27 :

S_eH. S., and spec (a) r^Q8

We now want to present two examples of B where this necessary
condition is not satisfied and yet a quantity which can be interpreted
to be the overlap (Q, OBy is-non vanishing finite in contrast to the
situation of positive definite metric where the last condition is equiv-
alent to the unitary implementability [Remark 5].

The first simple example provides the case where 5_ is H. S. but

spec ar can become negative. The second example provides a case
with JB_ non Ho S.

Let {$?i\ 1=1, 2,-"} be a sequence of two-dimensional Hilbert
space ^>

l = C2 equipped with an indefinite sesquilinear form <( , > =

( 5 <PI ) where ^,= diag(l, — 1). Let 3£ = © ̂  , be a Hibeit space

equipped with an indefinite sesquilinear form < 5 >= ( , # ? ) , <P=@i<Pi'
Let {T(0 ; /= 1, 2 3 - - - } be a sequence of ^-symplectic operator on ffl ^

and let {^h < 3 )} be a Fock space equipped with an indefinite
sesquilinear form < , >=( 3 r / (^ / ) ) constructed from {jf,? < , >}

with the Fock vacuum Q^ The Fock space over ffl is identified
with

Example 1.

on Kj@JKh where Kt= Kl+®Kl- and hl is such that the correspond-

ing matrix a{J is given by

/cos 261/ z'sin 2
a, = 4

\fsin 2#? cos 2

with 0^^^^/23 0<^ for all /.

The formal vacuum Q(f is given by
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[det(a,)]1/4exp[- l(q(», («,-

- - (qw, (%u (20,)

where

>
Then fi^e^, only for 0^20,O/2 and

with

for 0^<2(l-c)~1 (c=cos 2^Xmin {^, ^r2})- The transformed

total vacuum is given by

(O\ 00)y^)i^T •

T. = @1T
(1} is Hilbert-Schmidt if and only if

2] i [cosh^sin2^ + sinh2^ cos2 6^ < oo

where ^, = exp(r/) and 2:/ = ^exp(z^/). 2, is one of the eigenvalues of
A/. T is weakly 0-unitarily implementable if 0^0/<;r/4 for all /

and T_eH. S.

The overlapping of the vacua is

where fl(/) is the Fock vacuum in «^V The formally defined overlapp-

ing nz 2 ^z + ^r1!"1 can converge to a non-vanishing finite quantity
even if spec #r>0 does not hold. In this example, the overlapping
is non-vanishing if and only if T_eH. S.

Example 2.
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on Kt@JKl9 where on Kt= Kl
+®KL

Note that hl—l = nl j is a ^-selfadjoint nilpotent operator,

and

1 1

(I i
al=l-2nl(.

\z — 1

Thus T_ is H. S. if and only if £/N/!<°°, and T is weakly 9-

unitarily implementable if T_6EH. S. and n^^l/2 for all /• But the
overlapping is independent of {nj :

§ 12. Applications to Physics

As an illustration, we consider, in this section, a mass-shift model
of vactor field A^ in two-dimensional space-time with periodic bound-
ary condition (other more non-trivial models, see [5, 11 — 13, 19, 29]).

We shall consider Bogolyubov transformations related to this model
and discuss its implementabilities. First we consider the Bogolyubov
transformations which diagonalize the Hamiltonian of this model
and second we consider the time-translation operator of this model
as Bogolyubov transformations.

The (Stiickelberg) vector field A^ in two-dimensional space-time
can be described in terms of a scalar field 0 on the Fock space ^n

with a positive definite inner product and another scalar field B on
the Fock space ^B with an indefinite inner product :

where /*^>0 is a mass of 0, e^ is the antisymmetric tensor with values

±1, and we assume B has a mass //igrO. (£/,, = — s^S"^ is the Proca
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field of mass /2 in two dimensions and B is the gaugeon field of mass

//. See [9, 11-13].)

The total Hamiltonian H of the mass-shift model is then

A*(x, 0)-AK*, 0) : dx

where H0(<j>) and HQ(B) are the free Hamiltonians and: : denotes

the Wick product. To set up simple well defined model, we limit

the space to the finite interval A=[ — L/2, L/2]dR with periodic

boundary condition and furthermore use the cutoff (periodic) field

A^a(x^ 0) instead of Alt(x9 0) (high momentum parts ( | /> |>f f ) and

zero momentum parts are completely omitted in AUia(x, 0). See

[11-13] for details).

Without loss of generality, we set // = 0 in the following, which

corresponds to the Landau gauge formalism of the vector field [9,

11-13, 19, 29].

In terms of creation and annihilation operators {a^~(p), a(p), b+(p),

b(p) ; p^F = 2nZ/L} of 0 and B, the Hamiltonian is

(12-1) H=H(L, a)=-=£-Zter..*p>0: ^+(p)tf(P)^(p) : -E(L, *)

where

E(L <j) = Y. Q(QQ~~PQ~ }

/ 9 I 9 N 1 / 9 X 9 I ^ 9\ 1/7/) — ( /> ~p </ }*•'* Q — r ĵ'2 -4- Q if \>-i*-

is a constant (the vacuum energy) chosen so that inf spec H(L, <r)

= 0,

and 3C(p) is a 4x4 hermitian matrix given by

(12 2)
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with

(
, o i dif - da2 / f *

p + w >-£-""

-,•-?£-«/(/>) -\p I

^-(p}=\ .,,-i^(p} °^\p\
where

(pQ+\p\)p , (PQ~\P\)P

In this approximation, Jf + = Jf_ = I2 (F) and ^u = ^

_) and the following CCR with an indefinite metric hold ;

L 9

vany other commutator = 0.

Here

and (a(p), b(p) ; ^G/"'} are the annihilation operators:

for all p.

We shall now discuss the following items about the Hamiltonian

(12-1) :

( I ) Diagonalization of H=H(L, a) by a ^-symplectic operator Ta in

the sense which shall be explained.

( I ) The implementability of Ta.

(I) The Bo golyubov transformation at (=exp[^5H]) induced by H.

( IV) The implementability of at.

Before studying these problems, we shall note a property of

H(L, a\ namely H(L, a) is ©-symmetric :

<& H(L, .7)^>-<H(L3 a}^ <py for ^ <p^B(H(L, a)).

Further in the present case H(L, a) is (9-self adjoint. In fact the
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symmetric operator 0H(L, a} is self adjoint since cr<^oo3 which implies
that H(L9 <j) is 0-self adjoint [5, 13].

I and II: We choose a 4x4 matrix S(p) which diagonalizes

and leaves the CCR (with indefinite metric) invariant:

S* (/>) jf (p) S (p) = diagonal matrix,

where

(<P 0
T=f

with £>=diag(l, — 1 ) . This S(p) is obtained by solving the following

equations:

with the normalization with respect to ( , T ) = < , >T:

<M,, UjyT= (T)tJ.

Here {^,; *"= 1, • • • , 4} are the roots of the characteristic equation,

and are given by {±q°= ±(p2+fjt2 + dfjfy/2
9 ±\p\}. Then S ( p ) t j =

where

[ fi2PQ+v2qQ ttftp_

+ (P) - ., , . 2

V+ft'

_ (p) =
•*• * ? 9

tOf/p

with ft=

Let
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where C is the complex conjugation operator on Jf. Let

(12-3)

and let

(12-4) B±( f f) =

Thus UTa should implement stf (/>) ->5 (/>) j/ (/>), and then implement

A^Gr, 0)-»A^ i(7Gr, 0), where A^Gr, 0) is the vector field of mass

fi= (/jf + df/)l/2 (in the Landau gauge formalism).

Since <pS±(—p)(p = S±(p) in this case, we see U0TaUol = Ta where

1 / 1

is a unitary matrix commuting with p, and

O

where i. ( ± )=©«<«.«( ±/>) with

Thus it suffices to consider the implementability of Ta. Since

for K=

T1. takes the following form on Kr<

0

VO T. .

where

)i °\ ^ /*.

and, of course, JT^J-^T^l

We investigate a = T%lT,,2 which is ^-selfadjont and symmetric

(12-5) a= © a(p)
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(12-6) a(p) = (SI (p) - S* (p))«(SI (p) - S* (p))

'£
"' f

P°P

A

with ^?>0. Therefore ar(p)^>0 for all /> if \dfjf \<^ff9 and

lim a(^) = ] .
fj.

The formal vacuum QB is given by [det(«)]1/4exp — -^-(q, (a— l)g)

which is in the Fock space if ff<^oo and
The overlapping is given by

der1/2[B+ (a)] =ajb(L, cj) - I

and is non-vanishing finite for dfj?^—fj?, and absolutely converges to
a non-vanishing finite value coQ(L5 oo) as c?->oo since

as p-»oo.

As conclusions3 Tff is weakly 0-unitarily implementable for (T<oo

and |<5//|<^2, and 0-unitarily quasi-implementable for ff^oo and

Remarks 7. (1) The following quantity exists:

a, slim --J-log«ub(Z,, ff)=-oM d/.Iog[det(54. (/>))].
L.a-»oo .L ^7T JO

This is called the effective potential in field theory (the subscript "/>"

means the periodic boundary condition). Since the indefinite metric
formalism is used., this is not necessarily positive. In fact det (5+ (/>))< 1



FOCK SPACE WITH AN INDEFINITE METRIC 551

for large \p\.

(2) The vacuum energy per unit volume converges for L3 <7->oo :

lim
t.a-»~

(3) Let 0f(/) be the ©-self adjoint field as before. Then

which converges uniformly as L, 0--*oo for any f^L2(R2\ d2x), (See

also [7, 8, 22, 23].)

Ill and IV: Let HQ(L, a} be the diagonalized Hamiltonian by

the transformation "5 (/>)", and let C7T be the operator on the Fock

space which implements the transformation of the fields. Since UT

is unbounded, we can say that H(L, a) is similar to the self adjoint

operator H0(L, a} which commutes with 0 by unbounded 0-isometric

operator [7T. By the definition of E(L, a), inf spec H0(L9 <j)=0.

We say that a closed linear subspace § in Jf is uniformly

definite (resp. strongly definite) if it is uniformly positive or negative

(resp. positive or negative). We have obtained the spectral resolution

of H(L, a) in terms of 0-selfadjoint projection operators (for | dfjf \

<//2). But their ranges are not uniformly definite.

H(L, a) is considered to be the generator of the following differ-

ential equation :

-
(12-7) dt

i. e., we formally have

(12-8)

We proved that H(L, a} is 6-self ad joint, but formally defined

cannot be bounded in general except for £=0: U(t) is an

unbounded operator which implements the following transformation

of the field :
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(12-9) at(

where B(t) = B~1K0(t)B=B+(t)+B-(t) is a one-parameter group of

^-symplectic operator and KQ(t) is a one-parameter unitary group

defined by

(12-10) cxpitdHQ'0y(f) = 0v(

B± (t) are explicitly given as follows :

Even if (B+, B_) is weakly 0-unitarily implementable, (B+(t),

5_(£)) is not necessarily weakly 0-unitarily implementable. Such a

phenomenon can be easily confirmed in a simpler example. (B+(t),

5_(0) is ©-unitarily quasi-implementable in general. (Note that

J3_(0 is H. S. if so is B_.)

Remark 8. One-parameter 0-unitary group U(t) is called stable

[18] if | |C7(OII^M for all t^R. By connecting results in [18, 21],

we see that the necessary and sufficient condition for H to be a

generator of one-parameter stable 0-unitary group is that H is

similar to a selfadjoint operator HQ. On the other hand, by a theorem

owing to Phillips [18, 21], we see that the necessary and sufficient

condition for the 0-selfadjoint operator H to be similar to a selfad-

joint operator HQ is that H has two closed invariant uniformly definite

subspaces ^(±) such that Jf" = ^c+)®«^"(-) with respect to < , >. In

physics, it is not expected that the Hamiltonian becomes a generator

of a one-parameter stable ©-unitary group.

§ 13o Concluding' Remarks

We first discuss some properties of UBI which is weakly 0-

unitarily implemented. For simplicity, we assume that B is ^-unitary
(then U^=r(B-1)).

Let <p = P+-P^ as before and let ^=^+®^- where Jf± = P±Jf.

Let B-W = B-l^+®B-l^_, The topology of Jf is introduced by
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the inner product

(13-1) (x, *)! = <>:+, ^+>-<^_3 x_>

where ^±ejf±5 while the topology of B~1^ is defined by the inner

product

(13-2) (*, *)2 = <*+, *+>-<*-, ^->

where .a^ eS^Jf ±. Since Bx±^^f±) we have

Bx_y=(Bx+, Bx+)1+(Bx.9 Ac_)i-

Thus there are constants 0<^!^^2<oo such that

(13-3) /iilWK^INIJ^^IWI?,

which means that the topologies of Jf and B~1^ are equivalent. The

unitary and hermitian operator (p is again represented as a unitary

and hermitian operator <f> :

(13-4) <p = P'+-P'-.,

where P± are projections to B~lj^± and are self adjoint with respect

to ( , )2.

Next let ^(^f)=^(^+)(g)^(^f_) and let

(13-5) 0

where 0± are projections :

on

-l on

where n=Q, 1, ••• . Let ^± = 6±^. Then the topology of the Fock

space J^ is defined by the inner product

(13-6) (0, #)!=<#+, ^+>-<^_, #->

where ^±^^± 5 while the topology of ^(B-ljf+) ®& (B~^J) is

given by

(13-7) (0, <*),= <$&,, $+>-<$., ?5_>

where ^e^Cfi-'jf) and ^± (fl-'Jf) = ©...„. WflJf (5"^



554 KEIICKI R. ITO

fr(")(B"1)=Jr(J3"1) \^(n\^}=B~l®'--®B~l (w-times)
(13-8)

I <^"(n) ( f}4P\ — ST\ (3S"(ra-4-) f tiP \ (\?\ £fif{-n —) /" is^7 "\
I tX ^£76 y vT/n +« = ntx^ I eXfc 4- y \^/e-:' I eX& J .

Then for 0e^^(B"1^) = r(n) (B~l) ^M (3?), we see

(13-9) ||^||^!|r(n)(B)^||?.

Therefore there is a vector ^ in ^ such that ||^ii?<°° and i i^Hz^ 0 0 -

This shows that &'(Jf) and ^(B~1^) are different.

Due to this phenomenon, the set of weakly 0-unitarily implemen-

table B does not form a group and is not invariant by ^-unitary

operators.

Remark 9. If V is ^-unitary, <P,(V/) = T(V}0v(f)r(V~1}. Then

for a decomposition T= V^Vz with V,- ̂ -unitary, we define UT =

r(VJUsr(V2). Since r(V)Q=Q, QT = QS if T= VS (as in Theorem

14). Contrary to the case of generalized <p-scalings, even if QT^^,

QT-i is not necessarily in the Fock space.

In this paper, we considered the properties of OB which satisfies

where P is a polynomial of fields {C

and

Let

(13-10)

In physics, expectations {/oB(P)} are easily calculated rather than

7TB(P) themselves. To obtain TTB from pB is the converse problem

which should be investigated in the next step. (See, e. g.3 [10, 28],

See also [13, 29] for the problem in physics.)
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