G-Homotopy Types of G-Complexes and Representations of G-Cohomology Theories

By

Shōrō ARAKI* and Mitutaka MURAYAMA

Dedicated to Professor Ryoji Shizuma on his 60th birthday

Let G be a finite group throughout the present work. Bredon [2] discussed CW-complexes on which G acts nicely, and called them G-complexes. In the present work we discuss first, about G-spaces having G-homotopy types of G-complexes, parallel properties to Milnor [8] in § 2, where main results are Theorem 2.3 and Corollary 2.6. Then, in § 3 we apply Corollary 2.6 to representations of G-equivariant cohomology theories, defined by Segal [9], by G-G-spectra (Theorems 3.3 and 3.4).

§ 1. G-Complexes

By a G-complex X we mean a CW-complex X on which G acts as a group of automorphisms of its cell-structure such that X^g, the fixed-point set of g, is a subcomplex for each $g \in G$, Bredon [2]. We refer the basic properties of G-complexes to [2]. By G-maps and G-homotopies we mean equivariant maps between G-spaces and equivariant homotopies between G-maps, respectively, for simplicity.

First we quote two basic properties of G-complexes.

G-Homotopy Extension Property ([2], Chap. I, § 1). Let (X, A) be a pair of G-complex X and its G-subcomplex A, and Y a G-space. Given a G-map $f:X \to Y$ and a G-homotopy $F:A \times I \to Y$ such that $F|A \times \{0\} = f|A$, then there exists a G-homotopy $\tilde{F}:X \times I \to Y$ such that $\tilde{F}|X \times \{0\} = f$ and $\tilde{F}|A \times I = F$.

Communicated by N. Shimada, April 4, 1977.

* Department of Mathematics, Osaka City University, Osaka 558, Japan.
G-Cellular Approximation Theorem ([2], Chap. II, Proposition (5.6)). Let \((X, A)\) be a pair of \(G\)-complexes and \(Y\) another \(G\)-complex. Given a \(G\)-map \(f: X \rightarrow Y\) such that \(f|A\) is cellular, then there exists a \(G\)-homotopy \(F: X \times I \rightarrow Y\) such that \(F|A \times \{t\} = f|A, 0 \leq t \leq 1, F|X \times \{0\} = f\) and \(F|X \times \{1\}\) is cellular.

Because of these two properties we can make constructions such as mapping-cylinders, mapping-cones, equalizers, telescopes, \(G\)-cofibration sequences (Puppe sequences) etc., in the category of (pointed) \(G\)-complexes.

Secondly we quote

Theorem of J.H.C. Whitehead for \(G\)-Complexes ([2], Chap. II, Corollary (5.5)). Let \(f: X \rightarrow Y\) be a \(G\)-map between two \(G\)-complexes. \(f\) is a \(G\)-homotopy equivalence iff \(f^H: X^H \rightarrow Y^H\) is a weak homotopy equivalence for every subgroup \(H\) of \(G\).

As to the denomination of the above theorem we refer to Matumoto [5].

Now, in our case \(X^H\) is a \(CW\)-complex for each subgroup \(H\) of \(G\) by definition. Thus the above theorem can be restated in the following form:

Proposition 1.1. Let \(f: X \rightarrow Y\) be a \(G\)-map between two \(G\)-complexes. \(f\) is a \(G\)-homotopy equivalence iff \(f^H: X^H \rightarrow Y^H\) is a homotopy equivalence for every subgroup \(H\) of \(G\).

The above proposition holds also for pairs of \(G\)-complexes. By \(f \simeq g\) we denote that two \(G\)-maps \(f\) and \(g\) are \(G\)-homotopic.

Proposition 1.2. Let \(f: (X, A) \rightarrow (Y, B)\) be a \(G\)-map between two pairs of \(G\)-complexes. \(f\) is a \(G\)-homotopy equivalence iff \(f^H: (X^H, A^H) \rightarrow (Y^H, B^H)\) is a homotopy equivalence for every subgroup \(H\) of \(G\).

Proof. The "only if" part is clear. To prove the "if" part we

\[\text{We would like to appreciate Professor Peter S. Landweber who kindly communicated us the error of our original proof.}\]
need the following

Lemma. Let \((K, L)\) be a pair of \(G\)-complexes and \(f: X \to Y\) be a \(G\)-homotopy equivalence of \(G\)-spaces. Let \(g: L \to X\) and \(h: K \to Y\) be \(G\)-maps such that \(h \upharpoonright L = f \circ g\). Then there exists a \(G\)-map \(\tilde{g}: K \to X\) such that \(\tilde{g} \upharpoonright L = g\) and \(f \circ \tilde{g} \simeq \alpha h\) relative to \(L\).

This lemma follows from [2], Chap. II, Lemma (5.2), if we replace \(f\) by an inclusion map making use of the mapping cylinder of \(f\).

Now suppose that \(f'' : (X'', A'') \to (Y'', B'')\) is a homotopy equivalence for every subgroup \(H\) of \(G\). Then \(f'' : X'' \to Y''\) and \((f \upharpoonright A)'' : A'' \to B''\) are homotopy equivalences for all subgroups \(H\) of \(G\). Thus, by Proposition 1.1 we see that \(f : X \to Y\) and \(f \upharpoonright A : A \to B\) are \(G\)-homotopy equivalences.

Let \(g_B : B \to A\) be a \(G\)-homotopy inverse of \(f \upharpoonright A\), and \(H_B : (f \upharpoonright A) \circ g_B \simeq \alpha 1_B\) a \(G\)-homotopy. By \(G\)-homotopy extension property we have a \(G\)-map \(H_1 : Y \times I \to Y\) such that \(H_1 \upharpoonright B \times I = H_B\) and \(H_1 \upharpoonright Y \times 1 = 1_Y\). Put \(h = H_1 \upharpoonright Y \times 0\), then \(h \upharpoonright B = (f \upharpoonright A) \circ g_B\). Apply the above lemma to the pair \((h, g_B)\) of \(G\)-maps, and get a \(G\)-map \(g : Y \to X\) such that \(g \upharpoonright B = g_B\) and \(f \circ g \simeq \alpha h\) relative to \(B\). Let \(H_2 : f \circ g \simeq \alpha h\) be this \(G\)-homotopy relative to \(B\). The sum \(H_1 + H_2 : f \circ g \simeq \alpha 1_{(Y, B)}\) is a \(G\)-homotopy of \(G\)-maps \((Y, B) \to (Y, B)\) of pairs by construction. As is easily seen, \(H_2 + H_1 \upharpoonright B \times I\) can be equivariantly deformed to \(H_B\) relative to \(B \times 0 \cup B \times 1\). Then, by \(G\)-homotopy extension property we can deform \(H_1 + H_2\) to a \(G\)-homotopy \(H : f \circ g \simeq \alpha 1_{(Y, B)}\) such that \(H \upharpoonright B \times I = H_B\).

Take a \(G\)-homotopy \(H_A : (f \upharpoonright A) \circ g \simeq \alpha 1_A\) and apply the same argument as above to \((f \upharpoonright A, g)\), then we get a \(G\)-map \(\tilde{f} : (X, A) \to (Y, B)\) and a \(G\)-homotopy \(H' : g \circ f \simeq \alpha 1_{(X, A)}\) of \(G\)-maps of pairs such that \(\tilde{f} \upharpoonright A = f \upharpoonright A\) and \(H' \upharpoonright A \times I = H_A\). Then

\[
f \simeq f \circ g \circ \tilde{f} \simeq \alpha f
\]

as \(G\)-maps of pairs. Thus

\[
g \circ f \simeq \alpha g \circ \tilde{f} \simeq \alpha 1_{(X, A)}
\]

as \(G\)-maps of pairs. q.e.d.

More generally we obtain
Proposition 1.3. Let \(f: (A; A_1, \cdots, A_{n-1}) \to (B; B_1, \cdots, B_{n-1}) \) be a \(G \)-map between two \(n \)-ads of \(G \)-complexes. \(f \) is a \(G \)-homotopy equivalence iff \(f^H: (A^H; A^H_1, \cdots, A^H_{n-1}) \to (B^H; B^H_1, \cdots, B^H_{n-1}) \) is a homotopy equivalence for every subgroup \(H \) of \(G \).

Proof. Again the “only if” part is clear.

Suppose that \(f^H: (A^H; A^H_1, \cdots, A^H_{n-1}) \to (B^H; B^H_1, \cdots, B^H_{n-1}) \) is a homotopy equivalence of \(n \)-ads for every subgroup \(H \) of \(G \). Then \(f|_{A_{i_1} \cap \cdots \cap A_{i_r}}: A_{i_1} \cap \cdots \cap A_{i_r} \to B_{i_1} \cap \cdots \cap B_{i_r} \) is a \(G \)-homotopy equivalence for every subset \(\{i_1, \cdots, i_r\} \subset \{1, \cdots, n-1\} \). Using the same argument as in the above proof we can construct a right \(G \)-homotopy inverse \(g: (B; B_1, \cdots, B_{n-1}) \to (A; A_1, \cdots, A_{n-1}) \) of \(f \) and \(G \)-homotopy \(H: f \circ g \simeq g \circ f \) of \(G \)-maps of \(n \)-ads by stepwise construction of \(g|_{A_{i_1} \cap \cdots \cap A_{i_r}} \) and \(H|_{A_{i_1} \cap \cdots \cap A_{i_r}} \) so that they extend \(G \)-maps and \(G \)-homotopies already constructed, starting from \(g|_{A_1 \cap \cdots \cap A_{n-1}} \) and \(H|_{A_1 \cap \cdots \cap A_{n-1}} \). Then we construct a right \(G \)-homotopy inverse \(\tilde{f} \) of \(f \) as \(G \)-maps of \(n \)-ads in the same way. Finally we see that \(f \circ g \circ \tilde{f} \simeq g \circ f \) as \(G \)-maps of \(n \)-ads and that \(g \) is a left \(G \)-homotopy inverse of \(f \).

A simplicial \(G \)-complex \(K \) is a simplicial complex \(K \) endowed with a group \(G \) of automorphisms of its simplicial structure. Then, its geometric realization \(K_w \) (or \(K_\ast \)) in the weak (or strong) topology is a \(G \)-space, but not always a \(G \)-complex in our sense. As is easily seen, \(K_w \) is a \(G \)-complex when, for each \(g \in G \) and each simplex \(\sigma \) of \(K \),

\[
g \sigma = \sigma \text{ iff } g \text{ fixes all vertices of } \sigma.
\]

In particular we have

Proposition 1.4. Let \(K \) be a simplicial \(G \)-complex. The barycentric subdivision \(Sd K_w \) of \(K_w \) is a \(G \)-complex.

In virtue of this proposition we regard \(K_w \) as a \(G \)-complex.

A simplicial \(G \)-set \(K \) is a simplicial set \(K \) together with a group \(G \) of automorphisms of its simplicial structure. For each \(g \in G \) its action on \(K \) commutes with all structure maps of \(K \); hence its fixed-point set \(K^g \) is a simplicial subset of \(K \). Let \(|K| \) be the geometric realization of
K in the weak topology (Milnor [7]). G-actions on K induce G-actions on $|K|$. As is easily seen we have

Proposition 1.5. Let K be a simplicial G-set. Then $|K|$ is a G-complex and $|K|^H = |K^H|$ for any subgroup H of G.

Let X be a G-space. Its singular complex $S(X)$ is a simplicial G-set with induced G-actions. Then $S(X^g) = S(X)^g$ for any $g \in G$ as is easily seen. By a routine argument we obtain the following

Proposition 1.6. The assignment

$$X \mapsto |S(X)|$$

is functorial on the category of G-spaces, and the map

$$\alpha: |S(X)| \to X,$$

defined by $\alpha(\sigma, y) = \sigma(y)$ for $(\sigma, y) \in |S(X)|$, is a natural G-map.

Let $X = (X; X_1, \ldots, X_{n-1})$ be an n-ad of G-spaces. Then $S(X) = (S(X); S(X_1), \ldots, S(X_{n-1}))$ is an n-ad of simplicial G-sets, and $|S(X)| = (|S(X)|; |S(X_1)|, \ldots, |S(X_{n-1})|)$ is an n-ad of G-complexes.

Proposition 1.7. Let $X = (X; X_1, \ldots, X_{n-1})$ be an n-ad of G-complexes. Then

$$\alpha: |S(X)| \to X$$

is a G-homotopy equivalence of n-ads.

Proof. Since $|S(X)|^H = (|S(X^H)|; |S(X_1^H)|, \ldots, |S(X_{n-1}^H)|)$ for each subgroup H of G, we see that

$$\alpha: |S(X)|^H: |S(X)|^H \to X^H = (X^H; X_1^H, \ldots, X_{n-1}^H)$$

is a homotopy equivalence for each H by Milnor [7], Theorem 4, and [8], Lemma 1. Thus Proposition 1.3 completes the proof.
§ 2. G-Homotopy Types of G-Complexes

In this section we discuss G-spaces having G-homotopy types of G-complexes in a parallel way to Milnor [8]. Roughly to say, since G is finite, averaging procedures over G allow us parallel arguments to [8].

Let X be a G-space. A covering $\mathcal{U} = \{ U_\lambda \}_{\lambda \in \Lambda}$ of X is called a G-covering when $gU_\lambda \in \mathcal{U}$ for each $g \in G$ and $\lambda \in \Lambda$. Then, putting

$$gU_\lambda = U_{g\lambda},$$

G acts on the indexing set Λ.

Let $\mathcal{U} = \{ U_\lambda \}_{\lambda \in \Lambda}$ be an open G-covering of a G-space X. A partition of unity $\{ p_\lambda \}_{\lambda \in \Lambda}$ subordinate to \mathcal{U} is called a G-partition of unity (subordinate to \mathcal{U}) when

$$p_\lambda (g^{-1}x) = p_{g\lambda}(x)$$

for $g \in G$ and $x \in X$.

First we prove an analogue of Milnor [8], Theorem 2. We denote by \mathcal{W}_G^n the category of G-spaces having G-homotopy types of G-complexes and by \mathcal{W}_n^G the category of n-ads of G-spaces having G-homotopy types of n-ads of G-complexes.

Theorem 2.1. The following restrictions on an n-ad $A = (A; A_1, \ldots, A_{n-1})$ are equivalent:

(a) A belongs to the category \mathcal{W}_G^n,

(b) A is G-dominated by an n-ad of G-complexes,

(c) A has the G-homotopy type of an n-ad of simplicial G-complexes in the weak topology.

(d) A has the G-homotopy type of an n-ad of simplicial G-complexes in the strong topology.

Proof. The implications (c) ⇒ (a) ⇒ (b) are clear (by Proposition 1.4). Remark that, for an n-ad A of G-spaces, the barycentric subdivision of $|\Sigma(A)|$ is an n-ad of simplicial G-complexes in the weak topology. Because of Proposition 1.7 we get a proof that (b) ⇒ (c) by the same argument as [8], p.275, (using the same diagram).

Proof that (c) ⇔ (d). Let $K = (K; K_1, \ldots, K_{n-1})$ be an n-ad of simpli-
cial G-complexes, and K_w and K_s denote the n-ads of geometric realizations of K in the weak and strong topology respectively. Recall that the topology of K_s is given by the standard metric d defined by barycentric coordinates which is G-invariant.

Let $\{\beta\}$ be the set of vertices of K and $\mathcal{U} = \{U_\beta\}$ be the locally finite open covering defined as in [8], p.276. \mathcal{U} is a G-covering as is easily seen. Let $p_\beta : K_s \to R$ be defined by

$$p_\beta(x) = d(x, K_s - U_\beta) / \sum d(x, K_s - U_\gamma),$$

$x \in K_s$, for each vertex β of K, where the summation runs over all vertices γ of K. Then $\{p_\beta\}$ is a G-partition of unity subordinate to \mathcal{U}. Define $p : K_s \to K_w$ by letting $p(x)$ be the point in K_w with barycentric coordinates $p_\beta(x)$. Now it is clear that p is a continuous G-map, and maps each $(K_j)_s$ into $(K_j)_w$.

Let $i : K_w \to K_s$

be the canonical map which is obviously equivariant. The composition $i \circ p : K_s \to K_s$ maps each simplex into itself equivariantly, hence a linear homotopy gives a G-homotopy of $i \circ p$ to the identity. Similarly $p \circ i : K_w \to K_w$ is G-homotopic to the identity. q.e.d.

Let X be a G-space. $X \times X$ is a G-space by diagonal actions. X is called to be G-ELCX (G-equi-locally convex) if there exists a G-invariant neighborhood U of the diagonal in $X \times X$ and a G-map

$$\lambda : U \times I \to X$$

(which will be called the structure map) satisfying Milnor's conditions (1), (2) and (3) of [8], p.277. Even though we do not assume the open covering $\mathcal{U} = \{V_\beta\}$ of X by convex set (which we call the convex covering of X) to be a G-covering, we can actually choose \mathcal{U} so as to be a G-covering by adding all gV_β to \mathcal{U}, $g \in G$ and $V_\beta \in \mathcal{U}$, because of equivariancy of the structure map λ. This will be called the convex G-covering of X.

An n-ad $X = (X; X_1, \cdots, X_{n-1})$ is called a G-ELCX n-ad when X is G-ELCX. X_i is a closed G-subspace for each i, $1 \leq i \leq n - 1$, and X is an
ELCX n-ad in the sense of Milnor [8].

Here we remark the following. Let X be a paracompact G-space and \mathcal{U} an open G-covering of X, then we can choose a locally finite G-covering \mathcal{W} of X which refines \mathcal{U}. (Choose any locally finite refinement \mathcal{W}' of \mathcal{U}, and add all g-transforms of elements of \mathcal{W}' to \mathcal{W}; the resulting G-covering \mathcal{W} is still locally finite since G is finite.) Next, let \mathcal{W} be a locally finite open G-covering of a paracompact X. We can choose a G-partition of unity subordinate to \mathcal{W} (by averaging over G an arbitrary chosen partition of unity subordinate to \mathcal{W}).

Lemma 2.2. Every n-ad of simplicial G-complexes in the strong topology is G-ELCX.

Proof. Let $K = (K; K_1, \ldots, K_{n-1})$ be an n-ad of simplicial G-complexes in the strong topology. Use the same constructions and notations as [8], p.278, Proof of Lemma 2. It is easy to check that U is G-invariant and the maps

$$\mu: U \to K \quad \text{and} \quad \lambda: U \times I \to K$$

are G-maps. q.e.d.

Theorem 2.3. The following restrictions on an n-ad $A = (A; A_1, \ldots, A_{n-1})$ are equivalent:

(i) A belongs to \mathcal{W}_n,

(ii) A has a G-homotopy type of a metrizable G-ELCX n-ad,

(iii) A has a G-homotopy type of a paracompact G-ELCX n-ad.

Proof. Since simplicial complexes in the strong topology are metrizable, Theorem 2.1 and Lemma 2.2 imply that (i) \Rightarrow (ii). Since metrizable spaces are paracompact, it is obvious that (ii) \Rightarrow (iii).

Proof that (iii) \Rightarrow (i). This part corresponds to Lemma 4 of [8]. Let $A = (A; A_1, \ldots, A_{n-1})$ be a paracompact G-ELCX n-ad. Because of Theorem 2.1, it is sufficient to prove that A is G-dominated by an n-ad of G-complexes.

Let $\mathcal{V} = \{V_b\}$ be the convex G-covering of A. Since A is fully
normal, we can find an open covering $\mathcal{W}' = \{W_i'\}$ of A which is sufficiently fine so that the star of any point a of A with respect to \mathcal{W}' is contained in some convex set V_φ (as in [8], p.279).

Since G is finite and A_i's are closed, we can choose at every point a of A a sufficiently small open neighborhood W_a of a such that i) W_a is G_a-invariant and $W_a \cap gW_a = \phi$ for $g \in G - G_a$, where G_a is the isotropy subgroup of G at a, ii) W_a is contained in some W_i', iii) $gW_a = W_{g^a}$ for any $g \in G$, and iv) if $W_a \cap A_i \neq \phi$ then $a \in A_i$. We call each open set W_a an admissible open set centered at a. The totality $\mathcal{W} = \{W_a; a \in A\}$ of these admissible centered open sets forms an open G-covering which refines \mathcal{W}'; hence \mathcal{W} is also sufficiently fine so that the star of any point a of A with respect to \mathcal{W} is contained in some convex set V_φ.

Practically we need only a G-subsystem of \mathcal{W} which covers A. So, choosing one representative among G-orbits in \mathcal{W} which coincide mutually as families of subsets of A, we may assume that $W_a \neq W_b$ if $a \neq b$.

Let $\mathcal{U} = \{U_s\}$ be a locally finite open G-covering of A which refines \mathcal{W}. Let N denote the nerve of \mathcal{U}, considered as a geometric simplicial complex in the weak topology. Define subcomplexes N_t such that the vertices $\delta_0, \ldots, \delta_k$ span a simplex of N_t iff $U_{s_0} \cap \cdots \cap U_{s_k}$ intersects A_t. Then we obtain an n-ad $N = (N; N_1, \ldots, N_{n-1})$ of simplicial G-complexes in the weak topology. Choose a G-partition of unity $\{p_s\}$ subordinate to \mathcal{U}. Define $p: A \rightarrow N$ by letting $p(a)$ be the point in N with barycentric coordinates $p_s(a)$. p is clearly continuous and determines a G-map

$$p: A \rightarrow N$$

of n-ads of G-spaces.

Next we define a G-map

$$q: N \rightarrow A$$

of n-ads. Let SDN be the barycentric subdivision which is a G-complex. Vertices of SDN corresponds to simplices of N which are mutually identified by an abuse of notations. Order vertices of SDN so that $\sigma < \sigma'$ iff $\sigma \supset \sigma'$ in N. Then G-actions on SDN preserve this ordering. Set

$$SD\mathcal{U} = \{U'_s = U_{s_0} \cap \cdots \cap U_{s_k}\},$$

where $\sigma = \langle \delta_0, \ldots, \delta_k \rangle$ runs over all simplices of N. For each $U'_s \in SD\mathcal{U}$
we choose from \(W \) an admissible open set \(W' \) centered at \(a' \), so that
\(U' \subset W' \) and \(gW' = W' \) for any \(g \in G \).

Now we define the wanted \(G \)-map \(q \) as follows, by induction on the skeletons of \(S^d N \). For each vertex \(\sigma \) of \(S^d N \) set \(q(\sigma) = a' \). Consider any \(k \)-simplex \(\xi \) in \(S^d N \) with vertices \(\sigma_0 < \cdots < \sigma_k \). Each point \(x \) of \(\xi \) can be written uniquely in the form \(x = (1 - t) \sigma_0 + ty \), \(0 \leq t \leq 1 \), where \(y \) lies in the \((k-1)\)-face opposite to the leading vertex \(\sigma_0 \). Put
\[
q(x) = \lambda(a', q(y), t),
\]
assuming \(q \) is defined and a \(G \)-map on the \((k-1)\)-skeleton inductively by the above formula. \(q \) is well defined and continuous on the \(k \)-skeleton. As \(G \)-actions preserve ordering of \(S^d N \), it is easy to see that \(q \) is a \(G \)-map on the \(k \)-skeleton. Suppose \(q \) maps the \((k-1)\)-skeleton of \(S^d N_i \) to \(A_i \) for each \(i \), \(1 \leq i \leq n-1 \). If \(\xi \) is a \(k \)-simplex of \(S^d N_i \) with vertices \(\sigma_0 < \cdots < \sigma_k \), then \(U_{s_i} \) intersects \(A_i \) and \(a_{s_i} \in A_i \) by our choices; hence \(q(x) \in A_i \) for any point \(x \) of \(\xi \) by definition of \(G \)-ELCX \(n \)-ad. Thus \(q \) maps the \(k \)-skeleton of \(S^d N_i \) to \(A_i \) for each \(i \), \(1 \leq i \leq n-1 \), completing the induction.

For each point \(a \in A \), let \(V_a \) be a convex set which contains the star of \(a \) with respect to \(W \). Then \(q \circ p(a) \) is a convex combination of points in \(V_a \), whence \((a, q \circ p(a)) \in V_a \times V_a \subset U \). Therefore the formula
\[
(a, t) \mapsto \lambda(a, q \circ p(a), t)
\]
defines a \(G \)-homotopy between \(q \circ p \) and the identity of \(A \). q.e.d.

Corresponding to Proposition 3 of [8] we obtain the following

Proposition 2.4. If \(A \) belongs to \(\mathcal{W}_n^a \) and \(B \) belongs to \(\mathcal{W}_m^a \), then \(A \times B \) belongs to \(\mathcal{W}_{n+m-1}^a \).

Proof. The product \(A \times B \) is an \((n+m-1)\)-ad as defined in [8], p.277. Because of Theorem 2.3 we may suppose \(A \) and \(B \) to be metrizable and \(G \)-ELCX. Then \(A \times B \) is metrizable by product-metric. Using products of convex sets as convex sets, and the product of the structure maps as the structure map, it is routine to check that \(A \times B \) is \(G \)-ELCX. q.e.d.
If X and Y are G-spaces then the function space $F(X; Y)$ from X to Y, endowed with compact-open topology, is a G-space by the formula

$$(g\varphi)(x) = g \varphi(g^{-1}x)$$

for $\varphi \in F(X; Y)$, $x \in X$ and $g \in G$.

The following theorem corresponds to Theorem 3 of [8].

Theorem 2.5. If $A = (A; A, \cdots, A_{n-1})$ belongs to \mathcal{W}_n^g and if $C = (C; C_1, \cdots, C_{n-1})$ is an n-ad of compact G-spaces, then the n-ad

$$(F(C; A); F(C, C_1; A, A_1), \cdots, F(C, C_{n-1}; A, A_{n-1}))$$

belongs to \mathcal{W}_n^g.

Proof. By Theorem 2.3 we may assume that A is metrizable and G-ELCX. Since A is metrizable and C is compact, $F(C; A)$ is metrizable; and $F(C, C_i; A, A_i)$ is its closed G-subspaces for each i, $1 \leq i \leq n-1$.

Define the neighborhood U' of diagonals in $F(C; A) \times F(C; A_1)$, the structure map λ' and convex sets of $F(C; A)$ as in [8], Proof of Lemma 3. It is easy to check that U' is G-invariant and λ' is a G-map. Thus $F(C; A)$ is G-ELCX, and the n-ad mentioned in the theorem is also G-ELCX.

Let V be a finite-dimensional G-module, and Σ^V denote the one-point compactification of V. Let X be a pointed G-space with base point x_0. We put

$$\Omega^V X = F(\Sigma^V, *; X, x_0),$$

which we call the $(\dim V)$-fold loop space of X with G-actions of type V in parameters. $\Omega^V X$ is a pointed G-space with the constant map e as base point.

Corollary 2.6. If a pair (X, x_0) belongs to \mathcal{W}_2^g, then the pair $(\Omega^V X, e)$ also belongs to \mathcal{W}_2^g.

This corollary corresponds to Corollary 3 of [8], and will be used in the next section.
§ 3. **Representations of G-Cohomology Theories**

Segal [9] proposed to discuss generalized G-equivariant cohomology theories with degrees in the real representation ring $RO(G)$ of G. These are called **G-cohomology theories** for the sake of simplicity. Here we discuss to represent G-cohomology theories by ΩG-spectra (defined below) in virtue of the method of Brown [3, 4].

A reduced G-cohomology theory will be defined as follows. Let \mathcal{W}_G^Ω and \mathcal{F}_G^Ω be the categories of pointed G-spaces and G-maps whose objects have G-homotopy types of G-complexes and of finite G-complexes, respectively; and let \mathcal{F}_G^Ω and \mathcal{F}_G^Ω denote the full subcategories of them with pointed G-complexes and finite G-complexes as objects, respectively. When we are given with an abelian-group-valued contravariant functor \tilde{h}^α for each $\alpha \in RO(G)$ simultaneously on the category \mathcal{W}_G^Ω or \mathcal{F}_G^Ω, satisfying the following two axioms A1) and A2), then we call the system

$$\tilde{h}_G^\Omega = \{ \tilde{h}^\alpha; \alpha \in RO(G) \}$$

a **reduced G-cohomology theory** on \mathcal{W}_G^Ω or on \mathcal{F}_G^Ω.

A1) Each \tilde{h}^α is a G-homotopy functor satisfying wedge axiom and Mayer-Vietoris axiom on \mathcal{W}_G^Ω or on \mathcal{F}_G^Ω. (Cf., Adams [1] and Brown [4].)

A2) For each finite-dimensional G-module V, the natural suspension isomorphism

$$\sigma^v: \tilde{h}^\alpha(X) \simeq \tilde{h}^{\alpha + v}(\Sigma^vX)$$

is defined for every $\alpha \in RO(G)$ (where $\Sigma^vX = \Sigma^v \setminus X$).

Take an infinite-dimensional G-module W which contains a discrete countable G-subset S such that every finite subset of S is linearly independent and, for every subgroup H of G, there exists an infinite number of points of S at which the isotropy groups of G are H. Let L be the simplicial complex consisting of all simplices spanned by finite subsets of S. L is a simplicial G-complex and every finite simplicial G-complex is isomorphic to a G-subcomplex of L. Let \mathcal{F}_G^Ω be the full subcategory
of \(C_\mathcal{L}^g \) having all finite \(G \)-subcomplexes of \(L \) as objects. \(C_\mathcal{L}^g \) is a small category and contains countably-infinite many objects. Now the pairs \((C_\mathcal{W}^g, C_\mathcal{L}^g)\) and \((C_\mathcal{L}^g, C_\mathcal{W}^g)\) are homotopy categories and all functors \(\tilde{h}^g \), restricted to \(C_\mathcal{W}^g \) or \(C_\mathcal{L}^g \), are homotopy functors in the sense of Brown [4]; and we can apply Brown’s theory to our functor \(\tilde{h}^g \).

Here we remark the following. Every finite \(G \)-complex is \(G \)-homotopy equivalent to a finite simplicial \(G \)-complex (by simplicial approximations of attaching maps of cells); hence the set of \(G \)-homotopy types of finite \(G \)-complexes is countable, and we can choose a representative system \(\mathcal{K} = \{ K, K', \ldots \} \) such that all elements of \(K \) belong to \(C_\mathcal{L}^g \). Next, for any two complexes \(K \) and \(K' \) in \(\mathcal{K} \), the set \([K, K']^g \) is countable (where \([, ,]^g \) stands for the set of \(G \)-homotopy classes of pointed \(G \)-maps), because any \(G \)-map \(f: K \to K' \) can be \(G \)-approximated by a simplicial \(G \)-map of some subdivisions of \(K \) and \(K' \) (i.e., take barycentric subdivisions \(Sd K \) and \(Sd K' \) first to make them \(G \)-complexes in our sense, secondly subdivide \(Sd K \) sufficiently fine so that we can apply the usual simplicial approximation to \(f \), then, taking care of \(G \)-equivariancy, we can apply the usual argument of simplicial approximation to get simplicial \(G \)-approximation of \(f \)). These remarks will be used later to apply the device of Adams [1], §3, to our case.

Let \(\mathcal{C} \) be a full subcategory of \(C_\mathcal{W}^g \) and \(h \) a Brown’s homotopy functor on \(\mathcal{C} \) (in the sense of \(G \)-homotopy). Let \(Y \) be an object of \(\mathcal{C} \) and \(u \in h(Y) \). The map

\[
T_u: [X, Y]^g \to h(X),
\]

defined by \(T_u[f] = f^*u \), is a natural transformation of functors on \(\mathcal{C} \), and the correspondence

\[
u \mapsto T_u
\]
gives a bijection

\[h(Y) \approx \text{Nat Trans}([, , Y]^g, h),\]

[3], Lemma 3.1. When \(T_u \) is an isomorphism for each object \(X \) of \(\mathcal{C} \), \(Y \) is called a representing complex of \(h \) as usual.

Let \(C_\mathcal{W}^g_* \) and \(C_\mathcal{L}^g_* \) be the full subcategories of \(C_\mathcal{W}^g \) and...
\(\mathscr{F}^0 \), respectively, in which objects are \(G \)-complexes \(X \) such that \(X^H \) are arcwise connected for all subgroups \(H \) of \(G \).

As is easily seen
\[
\left(\frac{(G/H)^n \wedge S^n}{Y} \right)^\sigma = \pi_n(Y)
\]
for all \(n \geq 0 \) and all subgroups \(H \) of \(G \) (where \(G \) acts trivially on \(S^n \) and \(Y \) is a pointed \(G \)-complex). Hence, if \(f: Y \rightarrow Y' \) is a map in \(\mathscr{W}^0_\ast \)
such that
\[
f_*: [X, Y]^\sigma = [X, Y']^\sigma
\]
for all \(G \)-complexes \(X \) in \(\mathscr{F}^0_\ast \), then \(f \) is a \(G \)-homotopy equivalence by J.H.C. Whitehead's theorem for \(G \)-complexes. Thus we can apply [4], Theorem 2.8, to a Brown's homotopy functor on \(\mathscr{W}^0_\ast \) and we obtain

Proposition 3.1. Let \(h \) be a Brown's homotopy functor defined on \(\mathscr{W}^0_\ast \). There exists a representing couple \((Y, u) \) of \(h \), where \(Y \) lies in \(\mathscr{W}^0_\ast \) and \(u \in h(Y) \), i.e.,
\[
T_u: [X, Y]^\sigma \approx h(X),
\]

a natural isomorphism of sets for \(X \) in \(\mathscr{W}^0_\ast \). \(Y \) is unique up to \(G \)-homotopy equivalence.

(Let \(K_\ast \) be the subset of \(K \) consisting of all elements which belong to \(\mathscr{F}^0_\ast \). Remark that we can use only elements of \(K_\ast \) as attaching data in the constructions in the proof of Theorem 2.8 of [4], which supplements the proof of the above proposition.)

Before discussing representations of Brown's homotopy functor on \(\mathscr{F}^0_\ast \), we remark the following

Lemma. Every \(G \)-complex \(X \) in \(\mathscr{W}^0_\ast \) can be expressed as a union of finite \(G \)-subcomplexes which belong to \(\mathscr{F}^0_\ast \).

Proof. It is clear that \(X \) can be expressed as a union of finite \(G \)-subcomplexes. Hence it is sufficient to show that, for arbitrary finite \(G \)-subcomplex \(K' \) of \(X \), we can find a finite \(G \)-subcomplex \(K \) of \(X \) such
that $K \supset K'$ and K belongs to \mathcal{WF}_q.

Let H be a subgroup of G. We want to find a finite G-subcomplex K_1 of X satisfying that $K_1 \supset K'$ and, for every vertex v of K_1 such that G_v is contained in H, v can be joined to the base point by a path in K_1^q. Suppose we obtained a finite G-subcomplex K_2 of X satisfying that $K_2 \supset K'$ and, for every vertex w of K_2 such that G_w is a proper subgroup of H, w can be joined to the base point by a path in K_2^q. Now, for each vertex v of K_2 such that $G_v = H$, we can find a path L_v, which is a subcomplex of X^H and joins v to the base point. Set

$$K_i = K_1 \cup (\cup_v G_L_v)$$

where v runs over all vertices of K_1 such that $G_v = H$. K_1 is the wanted G-complex.

Now, inductively on inclusions of subgroups H of G, after a finite times of the above construction we obtain a finite G-subcomplex K of X such that $K \supset K'$ and every vertex v of K can be joined to the base point by a path in K^q, which is equivalent to saying that K belongs to \mathcal{WF}_q.

q.e.d.

Let h be a group-valued Brown’s homotopy functor on \mathcal{WF}_q. Put

$$\hat{h}(X) = \lim_{\leftarrow \gamma} h(X_\gamma)$$

for each G-complex X in \mathcal{WF}_q, where X_γ runs over all finite G-subcomplexes of X which belong to \mathcal{WF}_q. \hat{h} is a weak G-homotopy functor on \mathcal{WF}_q in the parallel sense to “weak homotopy” in [1]. For each object Y in \mathcal{WF}_q and $u \in \hat{h}(Y)$, the maps

$$T_u : [X, Y]^q \to h(X), \quad X \in \mathcal{WF}_q,$$

and

$$\bar{T}_u : [X', Y]^q \to \hat{h}(X'), \quad X' \in \mathcal{WF}_q,$$

defined by $T_u[f] = f^*u$ and $\bar{T}_u[g] = g^*u$, respectively, are natural transformations of functors and the correspondences

$$u \mapsto T_u \quad \text{and} \quad u \mapsto \bar{T}_u$$

give rise to bijections of sets.
\[\tilde{h}(Y) \approx \text{Nat Trans}(\text{[}, Y]\mathcal{g}, h) \approx \text{Nat Trans}(\text{[}, Y]\mathcal{g}, \tilde{h}), \]

where \([\text{[} ,]\mathcal{g}\) stands for the set of weak \(G\)-homotopy classes of \(G\)-maps, [3], Lemma 3.3, and [1], Lemma 4.1.

By the earlier remarks and the above lemma we can apply the arguments of [1], § 3, to the present case. In particular, the functor \(\tilde{h}\) on \(\mathcal{C}\mathcal{W}_k\) satisfies the Wedge axiom, the isomorphism with inverse limits and the Mayer-Vietoris axiom in the weak sense, [1], Lemma 3.3, Lemma 3.4 and Proposition 3.5, without any countability assumption on \(\mathcal{G}\).

Now we can do the same arguments and constructions as [1], Lemma 4.2 and Proposition 4.4, by utilizing only elements of \(\mathcal{K}_k\) as attaching data, and we obtain representations of \(h\), that is,

Proposition 3.2. Let \(h\) be a group-valued Brown's homotopy functor defined on \(\mathcal{C}\mathcal{D}_k\). There exists a representing couple \((Y, u)\) of \(h\), where \(Y\) lies in \(\mathcal{C}\mathcal{W}_k\) and \(u \in \tilde{h}(Y)\), i.e.,

\[T_u : [X, Y]\mathcal{g} \approx h(X), \]

a natural isomorphism of sets for \(X\) in \(\mathcal{C}\mathcal{D}_k\). \(Y\) is unique up to \(G\)-homotopy equivalence.

We can also prove an analogue of [1], Theorem 1.9, and introduce a certain Hopf-space-structure to \(Y\) to make \(T_u\) an isomorphism of groups. But we don't need it to represent \(G\)-cohomology theories.

Now we shall discuss representations of \(G\)-cohomology theories. Let \(\tilde{h}_k^\alpha = \{\tilde{h}^\alpha; \alpha \in \text{RO}(G)\}\) be a reduced \(G\)-cohomology theory defined on \(\mathcal{W}_k^\mathcal{g}\) or \(\mathcal{D}_k^\mathcal{g}\). Since discussions of both cases are quite parallel and since the first case is a bit simpler, we shall discuss only the second case, i.e., we suppose \(\tilde{h}_k^\alpha\) is defined on \(\mathcal{D}_k^\mathcal{g}\).

By Proposition 3.2 we have a representing complex \(Y'\) of \(\tilde{h}_k^\alpha|\mathcal{C}\mathcal{D}_k^\mathcal{g}\) for each \(\alpha \in \text{RO}(G)\), i.e., we have a natural isomorphism

\[[X, Y']_\mathcal{g} \approx \tilde{h}_k^\alpha(X), \quad X \in \mathcal{C}\mathcal{D}_k^\mathcal{g}, \]

for each \(\alpha \in \text{RO}(G)\).
By ΣY and ΩY we denote the suspension and the loop space of a pointed G-space Y with trivial G-actions on parameters. Put

$$Y_\alpha = \Omega Y'_{\alpha+1},$$

where 1 denotes the real 1-dimensional trivial G-module. Y_α is a Hopf-space (H-space) with the multiplication defined by usual loop compositions. Moreover, this multiplication in Y_α commutes with every g-action, $g \in G$. In this sense we call Y_α a $Hopf$-G-$space$. By Corollary 2.6 Y_α belongs to \mathcal{W}_G^G; hence we may assume that Y_α is a $Hopf$-G-$complex$ (replacing by a G-homotopy equivalent one if necessary). Then Y_α^G is a Hopf-subcomplex of Y_α for any subgroup H of G.

ΣX belongs to $\mathcal{G} \mathcal{W}_G^G$ for any G-complex X. Thus we have isomorphisms

$$\tilde{h}_\alpha(X) \cong \tilde{h}_{\alpha+1}(\Sigma X) \cong [\Sigma X, Y'_{\alpha+1}]^G \cong [X, Y_\alpha]^G$$

for each X in $\mathcal{G} \mathcal{W}_G^G$ and $\alpha \in RO(G)$, where σ is the suspension isomorphism. Moreover, the above isomorphisms are group isomorphisms by a usual argument, endowing $[X, Y_\alpha]^G$ a group structure induced by the Hopf-G-structure of Y_α. Thus Y_α represents \tilde{h}_α on $\mathcal{G} \mathcal{W}_G^G$ as a group-valued functor.

Let \tilde{H}_α be the associated functor to \tilde{h}_α, i.e.,

$$\tilde{H}_\alpha(X) = \lim_{\leftarrow \tau} \tilde{H}_\alpha(X_\tau)$$

for X in $\mathcal{G} \mathcal{W}_G^G$, where X_τ runs over all finite G-subcomplexes of X. Since $[X, Y_\alpha]^G = \lim_{\leftarrow \tau} [X_\tau, Y_\alpha]^G$ as is easily seen, we have a natural isomorphism

$$[X, Y_\alpha]^G \cong \tilde{H}_\alpha(X)$$

of groups for each X in $\mathcal{G} \mathcal{W}_G^G$, i.e., Y_α represents \tilde{h}_α.

Let V be a finite-dimensional G-module. Passing to the inverse limit of suspension isomorphisms $\sigma^V: \tilde{h}_\alpha(X_\tau) \approx \tilde{h}_{\alpha+V}(\Sigma^V X_\tau)$, we obtain a natural isomorphism

$$\sigma^V: \tilde{h}_\alpha(X) \approx \tilde{h}_{\alpha+V}(\Sigma^V X), \quad X \in \mathcal{G} \mathcal{W}_G^G.$$

Again, passing to the inverse limit of the canonical natural isomorphism $[\Sigma^V X_\tau, Y_{\alpha-V}]^G \cong [X_\tau, \mathcal{G} \mathcal{W}_G^G]$, we have a natural isomorphism
Combining the above three natural isomorphisms, we obtain a natural isomorphism

$$[X, Y] \cong [X, \mathcal{Q}^v Y_{a+r}]$$

of groups, where $\mathcal{Q}^v Y_{a+r}$ is a Hopf-G-space with structures induced from those of Y_{a+r}, and the group structure of the right hand side of the above isomorphism is induced from Hopf-G-structures of Y_{a+r}.

By Corollary 2.6 $\mathcal{Q}^v Y_{a+r}$ belongs to \mathcal{Q}^v_Y. And we may suppose that $\mathcal{Q}^v Y_{a+r}$ itself is a Hopf-G-complex. Putting $X = Y_a$ in the above isomorphism, we obtain a G-map

$$f(a, v) : Y_a \rightarrow \mathcal{Q}^v Y_{a+r}$$

such that $[f(a, v)]$ corresponds to the class of the identity map of Y_a. Next, putting $X = \mathcal{Q}^v Y_{a+r}$ in the same isomorphism, we obtain a G-map

$$g(a, v) : \mathcal{Q}^v Y_{a+r} \rightarrow Y_a$$

which corresponds to the class of the identity map of $\mathcal{Q}^v Y_{a+r}$. By the above choices we see easily that $(f(a, v))^{-1} = (g(a, v))^{-1}$ which is the same as the above natural isomorphism.

This shows, on one hand, that $g(a, v) f(a, v)$ and $f(a, v) g(a, v)$ are weakly homotopic to the identity maps; and, on the other hand, the fact that $f(a, v)$ and $g(a, v)$ induce group isomorphisms implies that $f(a, v)$ and $g(a, v)$ are weak morphisms of Hopf-G-complexes (i.e., they commute with Hopf-structure maps up to weak homotopy).

Then, for each subgroup H of G, we see easily that $(f(a, v))^H$ is a weak morphism of Hopf-complexes, and

$$(g(a, v))^H (f(a, v))^H \simeq a 1 \quad \text{and} \quad (f(a, v))^H (g(a, v))^H \simeq a 1,$$

where \simeq denotes "weak homotopy", which implies isomorphisms

$$(f(a, v))^H \tilde{\pi}_n(Y_a^H) \cong \tilde{\pi}_n((\mathcal{Q}^v Y_{a+r})^H)$$

for all $n \geq 0$. Hence, $(f(a, v))^H$ is a weak morphism of Hopf-complexes, induces one-one correspondence of path-components, and gives a weak homotopy equivalence of ϵ-components. Thus $(f(a, v))^H$ is a weak homotopy equivalence by a classically well-used argument. Finally, J.H.C. Whitehead's theorem for G-complexes concludes that $f(a, v)$ is a G-homotopy equivalence.
Summarizing the above arguments we obtain

Theorem 3.3. Let \(\overline{h}^a = \{ \overline{h}^a; \alpha \in \text{RO}(G) \} \) be a reduced G-cohomology theory defined on \(\mathcal{W}_0^a \) or \(\mathcal{Q}_0^a \). There exists, for each \(\alpha \in \text{RO}(G) \), a G-complex \(Y_\alpha \) in \(\& \mathcal{W}_\alpha^0 \) which is a Hopf-G-complex and represents \(\overline{h}^a \) as a group-valued functor. Furthermore, for each finite-dimensional G-module \(V \), there exists a G-homotopy equivalence

\[
\int_\alpha Y_\alpha \cong \alpha \mathcal{Q} Y_\alpha.
\]

which is a morphism or weak morphism of Hopf-G-spaces (depending on the categories) and induces the suspension isomorphism \(\sigma^\nu \) for each \(\alpha \in \text{RO}(G) \).

Let \(\omega \) be a G-module containing exactly one copy of each irreducible G-module (including a trivial one) as a direct summand. A **G-spectrum** \(E^\omega \) consists of a G-space \(E_n \) in \(\mathcal{W}_\omega^a \) and a G-map \(\varepsilon_n; \Sigma^n E_n \to E_{n+1} \) for each \(n \in \mathbb{Z} \). Let \(\varepsilon'_n; E_n \to \mathcal{Q}^\omega E_n \) be the adjoint G-map of \(\varepsilon_n \) for each \(n \in \mathbb{Z} \). \(E \) is called an \(\mathcal{Q}\text{-G-spectrum} \) if \(\varepsilon'_n \) is a G-homotopy equivalence for every \(n \in \mathbb{Z} \). Since \(\omega \) contains a 1-dimensional trivial representation as a direct factor, \(\mathcal{Q}^\omega Y \) is a Hopf-G-space for any G-space \(Y \) by compositions along the parameter on which \(G \) acts trivially. Thus, if \(E \) is an \(\mathcal{Q}\text{-G-spectrum}, \) each term of it can be regarded as a Hopf-G-space.

In Theorem 3.3, putting

\[
E_n = Y_{n\alpha},
\]

and

\[
\varepsilon'_n = f_{n\alpha}; E_n \cong \mathcal{Q}^\omega E_n;
\]

for each \(n \in \mathbb{Z} \), we obtain an \(\mathcal{Q}\text{-G-spectrum} \) \(E = \{ E_n; \varepsilon_n; n \in \mathbb{Z} \} \). And we obtain

Theorem 3.4. Every reduced G-cohomology theory \(\overline{h}^a = \{ \overline{h}^a; \alpha \in \text{RO}(G) \} \) can be represented by an \(\mathcal{Q}\text{-G-spectrum} \) \(E = \{ E_n; n \in \mathbb{Z} \} \), i.e., we have a natural isomorphism

\[
\overline{h}^a(X) \cong [X, \mathcal{Q}^\omega E_n]_G
\]

\[\text{\footnote{The referee remarked the authors that this notion was defined in somewhat wide sense by C. Kosniowski, \textit{Math. Ann.}, 210 (1974), 83–104.}}\]
for each $\alpha \in RO(G)$, where V is a finite G-module such that $\alpha + V = \emptyset$.

Remark 1. A similar representation theory was discussed by Matumoto [6], Theorem 6.1, for certain equivariant cohomology theories defined on the category of his G-CW-complexes, where he obtained representations of his cohomology theories by weak Ω-spectra.

Remark 2. As observed by Segal [9], stable G-cohomotopy π^G_\ast is universal for G-cohomology theories, or equivalently, we can say that every reduced G-cohomology theory is an π^G_\ast-module. Then a result of Segal [9], Corollary to Proposition 1, suggests that every h^a should be treated as an $A(G)$-module-valued functor and the suspension σ^a as an $A(G)$-module isomorphism, where $A(G)$ denotes the Burnside ring of G. Such an $A(G)$-module structure would be important if we want to discuss further structures of G-cohomologies such as multiplicative structures, in which units of $A(G)$ might play an important role in sign conventions. Even though it seems to be difficult to discuss the general case, we will discuss the case of $G = \mathbb{Z}/2\mathbb{Z}$, i.e., spaces-with-involutions, in a subsequent paper in details.

References