Some Results on Formal Power Series
and Differentiable Functions

By
Masahiro SHIOTA

§ 1. Introduction

In [2] we see that any formal power series in two variables with coefficients in \mathbb{R} or \mathbb{C} (in this paper only the real case will be considered,) can be transformed to a polynomial by some automorphism change of the variables. In [3] Whitney shows an example which is a convergent series in three variables but which cannot be transformed to a polynomial. In this paper we give a formal power series example in three variables that is never transformed to be convergent (§ 2).

A formal power series is the Taylor expansion of some C^∞ function at the origin by E. Borel theorem. The followings refine it.

Theorem 1. Let f be a formal power series in the variables $x=(x_1, \ldots, x_n)$. Let K be a positive real. There exists a C^∞ function g defined on $|x|<K$ with the Taylor expansion at 0 $Tg=f$ and which is analytic except when $x=0$.

Theorem 2. There exists a homomorphism S from the \mathbb{R}-algebra F of formal power series in one variable x to the \mathbb{R}-algebra E of germs of C^∞ function in one variable x at 0 such that the composition $T\circ S$ is the identity homomorphism of F.

There is a question in Malgrange [1] whether any homomorphism between the \mathbb{R}-algebras of C^∞ function germs is a morphism (see § 4). Theorem 2 gives a counter-example to it (Corollary).

Received March 20, 1975.
§ 2. An Example

The example of Whitney is an analytic function f in three variables of the form $xy(y-x)(y-(3+x)x)(y-\nu(x)x)$ where ν is a transcendental function with $\nu(0)=4$. If we replace the transcendental function above by a non-convergent formal power series, then f cannot be transformed to a convergent one by any automorphism of the algebra of formal power series.

Proof. Suppose it is not so, then there exist formal power series in (X,Y,Z)-variables $x(X,Y,Z)$, $y(X,Y,Z)$, $z(X,Y,Z)$ such that $f(x(X,Y,Z), y(X,Y,Z), z(X,Y,Z))$ is analytic and that the determinant of Jacobian $D(x,y,z)/D(X,Y,Z)$ does not vanish at 0. Moreover we can assume $D(x,y,z)/D(X,Y,Z)$ at $(X,Y,Z) = (0,0,0)$. We know Zariski-Nagata Theorem and the fact that the formal power series ring and the convergent power series ring are unique factorization rings. Therefore there exist formal power series g_1, \cdots, g_5 in (X,Y,Z)-variables such that $g_i(0)=1$ for each i, $g_1\cdots g_5=1$, and g_1x, $g_2y, \cdots , g_5(y-\nu(x)x)$ are convergent. Let G_i $i=1,\cdots ,5$ be C^∞ functions in (X,Y,Z)-variables such that $TG_i=g_i$ and $G_1\cdots G_5=1$. We assume g_i, x, \cdots converge in a neighbourhood U of $(X,Y,Z) = (0,0,0)$. Let $\phi_i=g_i x/G_i$, \cdots, $\phi_5=g_5(y-\nu(x)x)/G_5$ in U. Clearly $T\phi_1=x, \cdots , T\phi_5=y-\nu(x)x$, and the Taylor expansions of $\phi_1-(\phi_2-\phi_1)$, $\phi_4-(\phi_3-(3+S)\phi_1)$ and $\phi_5-(\phi_2-R(S)\phi_1)$ are zeros at 0. Here S, R are C^∞ functions in (X,Y,Z)-variables respectively such that $TS=x$, $TR=\nu$. From the assumption, (g_1x, g_3y, Z) is an analytic local coordinates system around 0. Hence $\phi_1^{-1}(0) \cap \phi_2^{-1}(0)$ is an analytic curve. These imply that the functions $\phi_2-(\phi_2-\phi_1), \cdots$ are zero identically on the curve $\phi_i^{-1}(0) \cap \phi_j^{-1}(0)$. On the other hand (ϕ_1, ϕ_3, Z) also is a local coordinates system around 0. Thus, we find C^∞ functions ψ_{ij} $i=3,4,5$ $j=1,2$ flat at 0 such that

$$\phi_3-(\phi_2-\phi_1)=\psi_{31}\phi_1+\psi_{32}\phi_2;$$
$$\phi_4-(\phi_3-(3+S)\phi_1)=\psi_{41}\phi_1+\psi_{42}\phi_2;$$
$$\phi_5-(\phi_2-R(S)\phi_1)=\psi_{51}\phi_1+\psi_{52}\phi_2.$$

Hence the intersection of any two $\phi_i^{-1}(0)$ are the same one $\phi_i^{-1}(0)$.
\(\cap \phi_t^{-1}(0), \) and the intersection is described as \((X, Y, Z) = (X(Z), Y(Z), Z) \) where \(X(Z) \) and \(Y(Z) \) are analytic in \(Z \)-variable. We see easily that the Taylor expansions at 0 of the cross ratios of \((\phi_1^{-1}(0), \phi_2^{-1}(0), \phi_3^{-1}(0), \phi_4^{-1}(0)) \) and \((\phi_1^{-1}(0), \phi_2^{-1}(0), \phi_3^{-1}(0), \phi_4^{-1}(0)) \) are \(1/(3+\varepsilon(X(Z), Y(Z), Z)) \) and \(1/\nu(z(X(Z), Y(Z), Z)) \), respectively.

In the same way we find analytic functions \(\chi_t \) such that \(\chi_t(0) \neq 0 \) and

\[
G_t \phi_i = \chi_t G_i \phi_i - \chi_t G_2 \phi_2 \quad i = 3, 4, 5, \]

and we see that the cross ratios above are \(\chi_t \chi_4 / \chi_t \chi_2 \) and \(\chi_3 \chi_4 / \chi_3 \chi_2 \), respectively. Hence they are analytic, but both \(z(X(Z), Y(Z), Z) \) and \(\nu(z(X(Z), Y(Z), Z)) \) are not convergent by the assumption. That is a contradiction.

§ 3. Proof of Theorem 1

We prove only the case \(n = K = 1 \). In the general case there is nothing to prove moreover.

Let \(f \) be a formal power series \(\sum a_n x^n \) where \(a_n \) are reals. It is enough to find sufficiently large reals \(m_n \) such that \(\sum a_n (1 - \exp(-1/m_n x^n)) x^n \) converges on

(1) the real interval \([-1, 1]\) with its each derivatives; and

(2) any compact subset of the complex domain \(0 < |x| < 1 \).

Proof of (1). For \(n \geq 2 \) and \(k \leq n/3 \), we have

the \(k \)-th derivative of \((1 - \exp(-1/m x^k)) x^n \)

\[
= n \cdots (n-k+1) (1 - \exp(-1/m x^k)) x^{n-k} + P(x, m) \exp(-1/m x^k).
\]

Here \(P(x, m) \) is a polynomial in \(x \) and uniformly converges to 0 when \(m \to +\infty \). We can see that \((1 - \exp(-1/m x^k)) x^{n-k} \) and \(\exp(-1/m x^k) \) are monotonous in the intervals \([-1, 0]\) and \([0, 1]\). Hence these functions take the maximal values at \(x = -1 \) or 1. Now, it follows that the \(k \)-th derivative of \((1 - \exp(-1/m x^k)) x^n \) uniformly converges to 0 when \(m \to +\infty \) for \(n \geq 2 \) and \(k \leq n/3 \). This proves (1).

Proof of (2) is also easy.

§ 4. Homomorphism

Proof of Theorem 2. Let \(X \) be the ordered set consisting of the
pairs \((A, \phi)\). Here \(A\) is a subring of \(\mathcal{E}\) containing \(\mathbb{R}\) and \(\phi\) is a homomorphism from \(A\) to \(\mathcal{E}\) such that the composition \(T \circ \phi\) is the identity of \(A\). Order two elements \((A, \phi), (B, \psi)\) of \(X\) as follows

\[(A, \phi) \leq (B, \psi) \text{ if } A \subset B \text{ and } \psi|_A = \phi .\]

Apply Zorn's lemma, and \(X\) has a maximal element \((A, \phi)\).

Now, we prove that \(A\) of the maximal is itself \(\mathcal{E}\). Assume that \(A\) is a proper subset of \(\mathcal{E}\), and that \(\zeta\) is an element in \(\mathcal{E}\) but not in \(A\). There are two cases,

1. \(\zeta\) is algebraic over \(A\);
2. \(\zeta\) is not so.

The case (1). Let \(A[\zeta]\) and \(A[t]\) be the ring generated by \(\zeta\) over \(A\) and the polynomial ring in \(t\)-variable with coefficients in \(A\) respectively, and let \(\theta\) be the homomorphism from \(A[t]\) to \(A[\zeta]\) naturally defined by \(\theta(t) = \zeta\). Let \(P(t)\) be an element of \(\ker \theta\) whose degree as a \(t\)-polynomial takes the minimal in \(\ker \theta\). For any element \(Q\) of \(\ker \theta\), dividing \(Q\) by \(P\) we have \(QQ' = PP' + R\) with \(Q' \in A, P', R \in A[t]\). Since \(R \in \ker \theta\) and degree \(R \leq \text{degree } P\), we see \(R = 0\). Hence we have the equality \((a)\) \(QQ' = PP'\) for some \(Q' \in A - \{0\}\) and \(P' \in A[t]\). Let \(P(t) = a_1t^n + \cdots + a_{n+1}\). We may assume \(\zeta = x^s\) for an integer \(s\) through some change of the variable \(x\). Let \(\phi_* P(t)\) denote \(\phi(a_1)t^n + \cdots + \phi(a_{n+1})\). We shall define an extension homomorphism \(\phi\) of \(\phi\) from \(A[t]\) to \(\mathcal{E}\) such that \(T \circ \phi(t) = x^s\) and \(\phi(\ker \theta) = 0\). This follows from \((a)\) if we choose a germ \(g(x)\) flat at 0 such that \(\phi_* P(x^s + g) = 0\). Let \(y\) be a variable. Then \(\phi_* P(x^s + y)\) is a polynomial \(b_1y^n + \cdots + b_{n+1}\) in \(y\) with coefficients in \(\mathcal{E}\). We see that \(b_{n+1}\) is flat at 0 and that \(b_n = (\partial \phi_* P/\partial t)(x^s)\) is not flat. Because we have degree \(\partial P/\partial t\) at 0 and therefore \(\partial \phi_* P/\partial t \notin \ker \theta\). Put \(y = x^Nz\) for a sufficiently large \(N\) and a new variable \(z\). We can divide \(b_1y^n + \cdots + b_{n+1}\) by \(x^N b_n\). The quotient is \(c_1z^n + \cdots + c_{n+1}\), here \(c_i\) are in \(\mathcal{E}\) and \(c_{n+1}\) is flat at 0. Applying the implicit function theorem, we give a germ \(z(x)\) flat at 0 such that \(c_1z^n(x) + \cdots + z(x) + c_{n+1} = 0\). The germ \(g(x) = x^Nz(x)\) is what we want. Now we have defined a homomorphism \(\phi\). It is clear that \(\phi\) induces a homomorphism \(\rho\) from \(A[\zeta]\) to \(\mathcal{E}\) such that the composition \(T \circ \rho\) is the identity of \(A[\zeta]\). This contradicts the maximality of \((A, \phi)\). Hence \(A\) is \(\mathcal{E}\).
The proof of the case (2) is trivial from the proof of (1). Theorem 2 follows.

Remark. Even if we treat only the homomorphisms where the image of a convergent power series is naturally defined, there are infinitely many homomorphisms. We can prove this from the fact that any non-convergent formal power series is algebraically independent over the convergent series ring.

Definition [1]. An endomorphism \(u \) of \(E \) is called a *morphism* if there exists a germ \(\phi \) with \(\phi(0) = 0 \) such that for any \(f \in E \), we have \(u(f) = f \circ \phi \).

The following answers the question in [1].

Corollary. *The composed homomorphism \(S \circ T \) is not a morphism.* Here \(S \) is defined in Theorem 2.

Proof. Suppose it is a morphism induced by some \(\phi \). The first derivative of \(\phi \) takes a non-zero value at 0. Hence \(S \circ T \) is an automorphism, on the other hand we have \(S \circ T(f) = 0 \) for \(f \) flat at 0.

Remark. The general preparation theorem in [1] does not hold in the homomorphism case. That is, this \(S \circ T \) is quasifinite but not finite.

References

Added in proof: The author was informed that Theorem 2 and its corollary were also obtained independently by K. Reichard (Manuscripta Math. 15 (1975), 243-250) and M. van der Put (to appear in Compositio Math.).