On the Cohomology of the Classifying Spaces of $PSU(4n+2)$ and $PO(4n+2)$

By

Akira Kono* and Mamoru Mimura**

§0. Introduction

The quotients of $SU(m)$ and $SO(2m)$ by their centers $\Gamma_m = \left\{ e^{2\pi i J/m} \begin{pmatrix} 1 & \cdots & 0 \\ 0 & \ddots & 0 \\ \vdots & \cdots & 1 \end{pmatrix}; \ 0 \leq j < m \right\}$ and $\Gamma_2 = \left\{ \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ are denoted by $PU(m)$ and $PO(2m)$ respectively.

The purpose of this paper is to determine the module structure of the cohomology mod 2 of the classifying spaces $BPU(4n+2)$ and $BPO(4n+2)$.

The method is first to determine the E_2-term of the Eilenberg-Moore spectral sequence by constructing an injective resolution for $H^*(G; \mathbb{Z}_2)$, $(G = SU(4n+2)/\Gamma_2, PO(4n+2))$. Then by making use of naturality of the Eilenberg-Moore spectral sequence we show that the spectral sequence with \mathbb{Z}_2-coefficient collapses for these G.

Our results are

Theorem. As a module

$$H^*(BPU(4n+2); \mathbb{Z}_2) \cong \mathbb{Z}_2[a_2, a_3, x_{8i+8}, y(I)]/R,$$

where $1 \leq i \leq 2n$ and R is an ideal generated by $a_3y(I), y(I)^2 + \sum_{j=1}^s x_{8i_1+8} \cdots a_3^2a_{4j+2} \cdots x_{8i_r+8}$ and $y(I)y(J) + \Sigma f(I)$.

Theorem. As a module

$$H^*(BPO(4n+2); \mathbb{Z}_2) \cong \mathbb{Z}_2[a_2, x_{4l+4}, y'(I)]/R,$$

* Department of Mathematics, Kyoto University, Kyoto.

** Mathematical Institute, Yoshida College, Kyoto University, Kyoto.
where \(1 \leq l \leq 2n\) and \(R\) is an ideal generated by \(a_2y'(I), y'(I)^2 + \Sigma x_{4l+4}\).

In the above theorems \(I\) runs over all sequences of integers \((i_1, \ldots, i_r)\) satisfying \(1 \leq r \leq 2n\) and \(1 \leq i_1 < \cdots < i_r \leq 2n\). (For details see §5.)

The paper is organized as follows:

In the first section we show that there exists a sort of "stability" in \(H^*(BG; \mathbb{Z}_2)\). §2 is used to calculate \(H^*(U(n)/\Gamma_p; \mathbb{Z}_p)\). In §3 we determine the \(E_2\)-term of the Eilenberg-Moore spectral sequence, Cotor \(H^*(G; \mathbb{Z}_2)(\mathbb{Z}_2, \mathbb{Z}_2)\), for \(G = PO(4n+2), PU(4n+2)\). In the next section, §4, we show that the Eilenberg-Moore spectral sequence (with \(\mathbb{Z}_2\)-coefficient) collapses for these \(G\). §5 is devoted to showing that the elements \(a_i\)'s in the above theorems, namely Theorems 4.9 and 4.12, are in the transgression image. In the last section, the generators \(x_{8l+8}\) and \(x_{4l+4}\) in Theorems 4.9 and 4.12 are shown to be represented by certain exterior power representations.

Throughout the paper the map \(BH \to BG\) induced from a homomorphism \(H \to G\) of groups is denoted by the same symbol.

The authors would like to thank N. Shimada for his kind advices.

§1. Quotients of \(SU(n)\) and \(SO(n)\)

Notation. \(I_n = \begin{pmatrix} 1 & \cdots & 0 \\ 0 & \ddots & 0 \\ \vdots & \ddots & 1 \end{pmatrix} \in U(n)\) the identity matrix,

\[C(n) = \{xI_n; |x| = 1\} \quad \text{and} \quad x \in \mathbb{C},\]

\[\Gamma_m = \{wI_n; w^m = 1\} \quad \text{and} \quad w \in \mathbb{C} \subset C(n).\]

Then \(C(n)\) (resp. \(\Gamma_m\)) is the center of the unitary group \(U(n)\) (resp. \(SU(n)\)). In particular we have the inclusions

\[\Gamma_2 = \left\{ \pm \begin{pmatrix} 1 & \cdots & 0 \\ 0 & \ddots & 0 \\ \vdots & \ddots & 1 \end{pmatrix} \right\} \subset SO(2n) \subset SU(2n).\]

Hereafter we use the following

Notation.
\[G_i(m) = SU(m)/\Gamma_i \] for a subgroup \(\Gamma_i \) of the center \(\Gamma_m \),

\[G_m(m) = PU(m) = PSU(m) \cong U(m)/C(m) , \]

\[G(2n) = G_2(2n) = SU(2n)/\Gamma_2 , \]

\[PO(2n) = SO(2n)/\Gamma_2 . \]

Denote by \(\pi \) the natural projections \(SU(m) \to G_i(m) \) and \(SO(2n) \to PO(2n) \)

Consider the \(k \)-fold diagonal map:

\[\Delta_k : SU(n) \to (SU(n))^k \to SU(nk) , \]

\[\Delta_k : SO(n) \to (SO(n))^k \to SO(nk) , \]

where \(\Delta_k \) is the diagonal embedding:

\[\Delta_k(A) = \begin{pmatrix} A & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & A \end{pmatrix} . \]

For the identity matrix \(I_n \) then we have

\[\Delta_k(I_n) = I_{nk} \text{ and } \Delta_k(-I_n) = -I_{nk} . \]

So for even \(n \) there exist maps \(G(n) \to G(nk) \) and \(PO(n) \to PO(nk) \) such that the following diagrams commute:

\[
\begin{array}{ccc}
SU(n) & \xrightarrow{\Delta_k} & SU(nk) \\
\downarrow{\pi} & & \downarrow{\pi} \\
G(n) & \xrightarrow{\pi} & G(nk)
\end{array}
\quad \quad
\begin{array}{ccc}
SO(n) & \xrightarrow{\pi} & SO(nk) \\
\downarrow{\pi} & & \downarrow{\pi} \\
PO(n) & \xrightarrow{\pi} & PO(nk)
\end{array}
\]

We denote them by the same symbol:

\[\Delta_k : G(n) \to G(nk), \quad \Delta_k : PO(n) \to PO(nk). \]

Notation.

\[C(n, k) = SU(nk)/\Delta_k SU(n) , \]

\[R(n, k) = SO(nk)/\Delta_k SO(n) . \]
So we have fiberings:

(1.1) \[SU(n) \xrightarrow{\Delta_k} SU(nk) \xrightarrow{p} C(n, k) \, . \]
(1.2) \[SO(n) \xrightarrow{\Delta_k} SO(nk) \xrightarrow{p} R(n, k) \, . \]

Remark 1.3.

(1) \(C(n, k) \) is homeomorphic to \(G(nk)/\Delta_k G(n) \) for \(l|n \).

(2) \(R(2n, k) \) is homeomorphic to \(PO(2nk)/\Delta_k PO(2n) \).

Now recall from [4] and [5] the following

Proposition 1.4.

(1) \[H^*(SU(n); \mathbb{Z}) \cong \Lambda(u_1, \ldots, u_{2n-1}) \, , \]
\[H^*(U(n); \mathbb{Z}) \cong \Lambda(u_1, u_3, \ldots, u_{2n-1}) \, , \]
where \(\deg u_{2i-1} = 2i - 1 \) and \(u_{2i-1} \) is universally transgressive with \(\tau(u_{2i-1}) = c_i \) the \(i \)-th universal Chern class.

(2) \[H^*(SO(n); \mathbb{Z}_2) \cong \Delta(v_1, \ldots, v_{n-1}) \, , \]
where \(\deg v_{i-1} = i - 1 \) and \(v_{i-1} \) is universally transgressive with \(\tau(v_{i-1}) = w_i \) the \(i \)-th universal Stiefel-Whitney class.

Then

Proposition 1.5. (1) For any integer \(k > 0 \) and any prime \(p \) with \((k, p) = 1 \), we have
\[H^*(C(n, k); \mathbb{Z}_p) \cong \Lambda(\bar{x}_{2n+1}, \ldots, \bar{x}_{2nk-1}) \]
where \(\deg \bar{x}_{2i+1} = 2i + 1 \) and \(\rho^* \bar{x}_{2i+1} = u_{2i+1} \).

(2) For any odd integer \(k > 0 \) we have
\[H^*(R(n, k); \mathbb{Z}_2) \cong \Delta(\bar{z}_n, \ldots, \bar{z}_{mk-1}) \]
where \(\deg \bar{z}_i = i \) and \(\rho^* \bar{z}_i = v_i \).
Proof. (1) The map $\Delta_k: SU(n)\to SU(nk)$ induces a map $\Delta_k: BSU(n)\to BSU(nk)$ which gives the k-fold Whitney sum of complex vector bundles. Thus

$$
\Delta_k^* (c_i) = \sum_{i_1+ \cdots + i_k = i} c_{i_1} \cdots c_{i_k} = kc_i + \text{(decomposables)}.
$$

For the Serre cohomology spectral sequence with \mathbb{Z}_p-coefficient $\{E_{s,t}^*\}$ of the fibering

$$SU(nk) \to C(n, k) \to BSU(n),$$

we have

$$E_2^{s,t} = \mathbb{Z}_p[c_2, \ldots, c_n] \otimes \Lambda(u_2, \ldots, u_{2nk-1})$$

and

$$E_{\infty}^{s,t} \simeq \mathcal{G}(H^*(C(n, k); \mathbb{Z}_p)).$$

Then it follows from Proposition 1.4 and (1.6) that

$$d_2(1 \otimes u_{2i-1}) = kc_i \otimes 1 \quad \text{for} \quad 2 \leq i \leq n$$

and all other differentials are trivial. So we get

$$\mathcal{G}(H^*(C(n, k); \mathbb{Z}_p)) \simeq E_{\infty}^{*,*} \simeq E_{2n+1}^{*,*} \simeq \Lambda(u_{2n+1}, \ldots, u_{2nk-1}).$$

Since $(k, p) = 1$, (1.6) implies that $\Delta_k^*: H^*(SU(nk); \mathbb{Z}_p) \to H^*(SU(n); \mathbb{Z}_p)$ is epimorphic, and hence $SU(n)$ is totally non-homologous to zero in the fibering (1.1). Thus $\rho^*: H^*(C(n, k); \mathbb{Z}_p) \to H^*(SU(nk); \mathbb{Z}_p)$ is monomorphic.

(2) is proved quite similarly. Q.E.D.

Theorem 1.7. (1) Let p be a prime, k an integer with $(k, p) = 1$ and $l|n$. Then $\Delta_k^*: H^i(BG_l(nk); \mathbb{Z}_p) \to H^i(BG_l(n); \mathbb{Z}_p)$ is isomorphic for $i \leq 2n$ and monomorphic for $i \leq 2n + 1$.

(2) Let k be an odd integer. Then $\Delta_k^*: H^i(BPO(2kn); \mathbb{Z}_2) \to H^i(BPO(2n); \mathbb{Z}_2)$ is isomorphic for $i \leq n - 1$ and monomorphic for $i \leq n$.

Proof. Proposition 1.5 applied with the Serre exact sequence (Proposition 5 of [12]) for the fiberings

$$C(n, k) \to BG_l(n) \to BG_l(nk)$$
\[R(2n, k) \longrightarrow BPO(2n) \longrightarrow BPO(2nk) \]
gives the results. Q.E.D.

Notation. For each rational number \(k \), define \(v_p(k) \) to be the exponent of \(p \) when \(k \) is expressed as a product of powers of distinct primes.

Corollary 1.8. (1) If \(v_p(n) = v_p(m) \), then as algebras there hold
\[
H^*(BG(n); \mathbb{Z}_p) \cong H^*(BG(m); \mathbb{Z}_p) \quad \text{for} \quad * \leq 2\min(m, n).
\]
(2) If \(v_2(m) = v_2(n) \), then as algebras there hold
\[
H^*(BPO(2n); \mathbb{Z}_2) \cong H^*(BPO(2m); \mathbb{Z}_2) \quad \text{for} \quad * \leq \min(m, n).
\]

In the below we denote by \(\phi \) the diagonal map in \(H^*(G; \mathbb{Z}_p) \) induced from the multiplication on a group \(G \). Put \(\bar{\phi} = (\eta \otimes \eta) \circ \phi \), where \(\eta: H^*(G; \mathbb{Z}_p) \rightarrow \sum_{i \geq 0} H^i(G; \mathbb{Z}_p) \) is the natural projection.

Now we recall from [3] and [5] the following facts:

Proposition 1.9. Let \(n = p^rn' \) with \((p, n') = 1 \) and \(l | n \). Then
\[
H^*(G(n); \mathbb{Z}_p) \cong \mathbb{Z}_p[y]/(y^{p^l}) \otimes A(x_1, \ldots, x_{2p^r-1}, \ldots, x_{2n-1}),
\]
where \(\deg y = 2 \) and \(\deg x_{2i-1} = 2i-1 \).

Proposition 1.9'. There exist generators \(y \in H^1(G(4n+2); \mathbb{Z}_2) \) and \(x_{2i+1} \in H^{2i+1}(G(4n+2); \mathbb{Z}_2) \), \(2 \leq i \leq 4n+1 \), such that

(1) \[
H^*(G(4n+2); \mathbb{Z}_2) \cong A(y, y^2, x_5, \ldots, x_{8n+3}),
\]
(2) \[
\bar{\phi}(y) = 0, \quad \bar{\phi}(x_{4j+1}) = 0 \quad \text{for} \quad 1 \leq j \leq 2n,
\]
(3) \[
\bar{\phi}(x_{4j+3}) = x_{4j+1} \otimes y^2 \quad \text{for} \quad 1 \leq j \leq 2n,
\]
(4) \[
Sq^{2k}x_{2i-1} = (k, i-k-1)x_{2l+2k-1}.
\]

Remark 1.9''. \(\bar{\phi}(x_{4j+3} + \text{decomp.}) \neq 0 \).

Proposition 1.10. There exist generators \(y \in H^1(PO(4n+2); \mathbb{Z}_2) \) and
\[z_i \in H^i(PO(4n+2); \mathbb{Z}_2), \ 2 \leq i \leq 4n+1, \text{ such that} \]

1. \[H^*(PO(4n+2); \mathbb{Z}_2) \cong \Delta(y, z_2, \ldots, z_{4n+1}), \]

2. \[\bar{\phi}(y) = 0, \quad \bar{\phi}(z_{2k}) = 0 \quad \text{for} \quad 1 \leq k \leq 2n, \]
 \[\bar{\phi}(z_{2k+1}) = z_{2k} \otimes y \quad \text{for} \quad 1 \leq k \leq 2n, \]

3. \[Sq^iz_k = (k-j)z_{j+k}. \]

Notation. \(PS(X; p) \) = the Poincaré series of \(X \) over \(\mathbb{Z}_p \), i.e.,
\[PS(X; p) = \sum_{i=0}^{\infty} (\text{rank } H^i(X; \mathbb{Z}_p)) t^i. \]

Using this expression we obtain from Propositions 1.5, 1.9 and 1.10:
\[PS(G_l(n); p) \cdot PS(C(n, k); p) = PS(G_l(nk); p) \quad \text{for} \quad (k, p) = 1, \]
\[PS(PO(2n); 2) \cdot PS(R(n, k); 2) = PS(PO(2nk); 2). \]

Thus we have

Proposition 1.11. (1) The cohomology Serre spectral sequence with \(\mathbb{Z}_p \)-coefficient for the fibering \(G_l(n) \to G_l(nk) \to C(l, k) \) collapses if \((k, p) = 1 \).

(2) The cohomology Serre spectral sequence with \(\mathbb{Z}_2 \)-coefficient for the fibering \(PO(2n) \to PO(2nk) \to R(2n, k) \) collapses.

Now we choose generators in \(H^*(G(4n+2); \mathbb{Z}_2) \) and \(H^*(PO(4n+2); \mathbb{Z}_2) \) appropriately.

Lemma 1.12. In Proposition 1.9' we may choose generators \(y, x_{2i+1}, 2 \leq i \leq 4n+1, \) of \(H^*(G(4n+2); \mathbb{Z}_2) \) by using the correspondent generators in \(H^*(G(4n-2); \mathbb{Z}_2) \) and in \(H^*(C(4n-2, 2n+1); \mathbb{Z}_2) \) as follows:
\[y = A_{2n-1}^* \circ A_{2n+1}^*-1(y), \]
\[x_{2i+1} = A_{2n-1}^* \circ A_{2n+1}^*-1(x_{2i+1}), \ 2 \leq i \leq 4n-3, \]
\[x_{2i+1} = A_{2n-1}^* \circ p^*(x_{2i+1}), \ 4n-2 \leq i \leq 4n+1. \]
Proof. This is clear from Proposition 1.11. Q.E.D.

Similarly

Lemma 1.13. In Proposition 1.10 we may choose generators y, z_i, $2 \leq i \leq 4n+1$, of $H^*(PO(4n+2); \mathbb{Z}_2)$ by using the correspondent generators in $H^*(PO(4n-2); \mathbb{Z}_2)$ and in $H^*(R(4n-2, 2n+1); \mathbb{Z}_2)$ as follows:

$$y = \Delta_{2n-1}^* \circ \Delta_{2n+1}^{-1}(y),$$

$$z_i = \Delta_{2n-1}^* \circ \Delta_{2n+1}^{-1}(z_i), \quad 2 \leq i \leq 4n-3,$$

$$z_i = \Delta_{2n-1}^* \circ p^*(z_i), \quad 4n-2 \leq i \leq 4n+1.$$

Proposition 1.14. (1) In $H^*(C(4n-2, 2n+1); \mathbb{Z}_2) \cong \Lambda(\bar{x}_{8n-3}, \bar{x}_{8n-1}, \bar{x}_{8n+1}, \bar{x}_{8n+3}, \ldots)$ there hold $Sq^2 \bar{x}_{8n-3} = \bar{x}_{8n+1}$ and $Sq^2 \bar{x}_{8n-1} = \bar{x}_{8n+3}$.

(2) In $H^*(R(4n-2, 2n+1); \mathbb{Z}_2) \cong \Lambda(\bar{z}_{4n-2}, \bar{z}_{4n-1}, \bar{z}_{4n}, \bar{z}_{4n+1}, \ldots)$ there hold $Sq^2 \bar{z}_{4n-2} = \bar{z}_{4n}$ and $Sq^2 \bar{z}_{4n-1} = \bar{z}_{4n+1}$.

Proof. (1) and (2) follow from (3) of Proposition 1.9' and (3) of Proposition 1.10 respectively. Q.E.D.

Remark. See [9] for the results of the symplectic case.

§2. Quotients of $U(n)$

In this section let p be a prime and n an integer such that $(n, p) = 1$. Then obviously

(2.1) $H^*(BP\mu(n); \mathbb{Z}_p) \cong H^*(BU(n); \mathbb{Z}_p)$.

The following are easily obtained:

(2.2) $H^*(BC(n); \mathbb{Z}_p) \cong \mathbb{Z}_p[\alpha]$ with $\deg \alpha = 2$.

(2.3) $H^*(B\Gamma_p; \mathbb{Z}_p) \cong \begin{cases} \mathbb{Z}_2[t] & \text{with } \deg t = 1 \text{ for } p = 2 \\ \mathbb{Z}_p[\mu] \otimes \Lambda(\lambda) & \text{with } \deg \mu = 2, \deg \lambda = 1, \delta \lambda = \mu \text{ for } p: \text{odd}, \end{cases}$
where \(\delta \) is the Bockstein operator.

Consider the cohomology Serre spectral sequence with \(\mathbb{Z}_p \)-coefficient associated with the fibering:

\[
BC(n) \rightarrowtail BU(n) \rightarrow BPU(n),
\]

where \(i' \) is induced from the natural inclusion \(C(n) \subset U(n) \). The map \(i'^* \) is epimorphic since the spectral sequence collapses by (2.2) and by the fact that \(H^3(BPU(n); \mathbb{Z}_p) = H^3(BSU(n); \mathbb{Z}_p) = 0 \). Let \(j: \Gamma_p \subset C(n) \) be the inclusion. Then

\[
\text{Im} j^* \cong \begin{cases}
\mathbb{Z}_p[\mu] & \text{for } p \text{: odd} \\
\mathbb{Z}_2[t^2] & \text{for } p = 2.
\end{cases}
\]

Putting \(i = i'oj \) and choosing \(\mu \) (or \(t \)) suitably we get

\[
i^*(c_1) = \begin{cases}
\mu & \text{for } p \text{: odd} \\
t^2 & \text{for } p = 2.
\end{cases}
\]

Let \(\{E_r^{*,*}\} \) be the cohomology Serre spectral sequence with \(\mathbb{Z}_p \)-coefficient associated with the fibering \(U(n) \rightarrowtail U(n)/\Gamma_p \rightarrow B\Gamma_p \). Since the generators in \(H^*(U(n); \mathbb{Z}_p) \cong \Lambda(u_1, u_3, \ldots, u_{2n-1}) \) are universally transgressive, they are transgressive with respect to this fibering. In particular we have

\[
\tau(u_1) = i^*(c_1)
\]

where \(\tau \) is the transgression.

Therefore \(E_2^{a,b} = 0 \) if \(a \geq 2 \), and hence

\[
E_3 \cong E_\infty \cong \begin{cases}
\Lambda(\lambda) \otimes \Lambda(u_3, u_5, \ldots, u_{2n-1}) & \text{for } p \text{: odd} \\
\Lambda(t) \otimes \Lambda(u_3, u_5, \ldots, u_{2n-1}) & \text{for } p = 2.
\end{cases}
\]

Proposition 2.8. \(H^*(U(n)/\Gamma_p; \mathbb{Z}) \) is \(p \)-torsion free and hence it is torsion free.

Proof is left to the reader.

It follows from this proposition
Theorem 2.9. Let \((n, p) = 1\). Then

\[H^*(U(n)/\Gamma_p; \mathbb{Z}_p) \cong \Lambda(\lambda, u_3', \ldots, u_{2n-1}') \]

such that

(1) \(\lambda\) and \(u_{2i-1}'\) are universally transgressive (and hence they are primitive),

(2) \(\deg \lambda = 1\) and \(\deg u_{2i-1}' = 2i - 1\),

(3) \(\pi^*(u_{2i-1}') = u_{2i-1}'\) for the projection \(\pi: U(n) \to U(n)/\Gamma_p\).

Proof. (1) and (2) follow from (2.7) and the Borel's theorem (Theorem 13.1 of [4]). (3) is clear, since \(\pi^*(u_{2i-1}') \neq 0\) by (2.7) and since \(\pi^*(u_{2i-1}')\) are universally transgressive. Q. E. D.

§3. The \(E_2\)-term of the Eilenberg-Moore Spectral Sequence

Put \(A = H^*(G(4n + 2); \mathbb{Z}_2)\) for simplicity and regard \(A\) as a coalgebra over \(\mathbb{Z}_2\), where the coalgebra structure \(\bar{\phi}\) is given by Proposition 1.9'.

Let \(L\) be a \(\mathbb{Z}_2\)-submodule of \(A^+ = \bigoplus_{i>0} H^i(G(4n+2); \mathbb{Z}_2)\) generated by \(\{y, y^2, x_{4i+1}, x_{4i+3}\}, 1 \leq i, j \leq 2n\). Let \(s: L \to sL\) be the suspension. We express the corresponding elements as \(sL = \{a_2, a_3, a_{4j+2}, b_{4i+4}\}, 1 \leq i, j \leq 2n\). Let \(\iota: L \to A\) be the inclusion and \(\theta: A \to L\) the projection

\[
\begin{array}{ccc}
L & \rightarrow & A \\
\downarrow \iota & & \downarrow \theta \\
S & \rightarrow & L
\end{array}
\]

such that \(\theta \circ \iota = 1_L\). Define \(\bar{\theta}: A \to sL\) by \(\bar{\theta} = \iota \circ \theta\) and \(\gamma: sL \to A\) by \(\bar{\gamma} = \iota \circ S^{-1}\). Consider the tensor algebra \(T(sL)\). Denote by \(I\) the ideal of \(T(sL)\) generated by \(\text{Im}(\{\bar{\theta} \otimes \bar{\gamma}\} \circ \overline{\phi}) \circ \text{Ker} \bar{\theta}\). Put \(\overline{X} = T(sL)/I\). Then \(\overline{X} \cong \mathbb{Z}_2[a_2, a_3, a_{4j+2}, b_{4i+4}], 1 \leq i, j \leq 2n\).

The map \(\overline{d} = (\bar{\theta} \otimes \bar{\gamma}) \circ \overline{\phi} \circ \overline{\gamma}\) on \(sL\) can be extended over \(\overline{X}\), since \(\overline{d}(I) \subset I\). Further, \(\overline{d}\) satisfies \(\overline{d} \circ \overline{d} = 0\) on \(\overline{X}\). So \(\overline{X}\) is a differential algebra.

Now we construct the twisted tensor product \(X = A \otimes \overline{X}\) with respect to \(\theta\) following Brown (cf. [7], [8] or [13]). Then \(X = A \otimes \overline{X}\) is a dif-
ferential A-comodule with the differential operator $d = 1 \otimes \bar{d} + (1 \otimes \psi) \circ (1 \otimes \theta \otimes 1) \circ \phi \otimes 1$, where ϕ is the diagonal structure in A and ψ is the multiplication in \bar{X}. More concretely,

\[
dy = a_2, \quad dy^2 = a_3, \\
dx_{4j+1} = a_{4j+2}, \quad 1 \leq j \leq 2n, \\
dx_{4i+3} = b_{4i+4} + x_{4i+1}a_3, \quad 1 \leq i \leq n.
\]

Now we define weight in X as follows:

\[
A: \quad y \quad y^2 \quad x_{4j+1} \quad x_{4i+3} \\
\phi \quad \\
\bar{X}: \quad a_2 \quad a_3 \quad a_{4j+2} \quad b_{4i+4} \\
weight \quad 0 \quad 0 \quad 0 \quad 1
\]

The weight of a monomial is a sum of the weight of each element. Put $F_i = \{x \mid \text{weight } x \leq i\}$. Then

\[
E_0X = \sum_i F_i/F_{i-1} \\
\cong A(y, y^2, x_{4j+1}, x_{4i+3}) \otimes \mathbb{Z}_2[a_2, a_3, a_{4j+2}, b_{4i+4}],
\]

where the induced differential operator d_0 is given by

\[
d_0y = a_2, \quad d_0y^2 = a_3, \quad d_0x_{4j+1} = a_{4j+2}, \quad d_0x_{4i+3} = b_{4i+4}.
\]

Thus E_0X is acyclic and hence X is acyclic. Namely $X = A \otimes \bar{X}$ is an injective resolution for A over \mathbb{Z}_2. Therefore by definition

\[
H^\ast(\bar{X}; \bar{d}) = \text{Cotor}^A(\mathbb{Z}_2, \mathbb{Z}_2).
\]

As described above the differential operator \bar{d} in $\bar{X} = \mathbb{Z}_2[a_2, a_3, a_{4j+2}, b_{4i+4}]$ is given by

\[
\bar{d}a_i = 0 \quad \text{for } i = 2, 3, 4j+2 \quad (1 \leq j \leq 2n), \\
\bar{d}b_{4i+4} = a_{4i+2}a_3 \quad (1 \leq i \leq 2n).
\]

For simplicity we put $P = \mathbb{Z}_2[a_{4j+2}; 1 \leq j \leq 2n]$ and $Q = \mathbb{Z}_2[b_{4i+4}; 1 \leq i \leq 2n]$.
Let C be a submodule of \mathcal{X} generated by \{b_{51} \ldots b_{5n+4}^i = 0 \text{ or } 1\}. Then as a module

\[\mathcal{X} \cong \mathbb{Z}_2[a_2] \otimes Q \otimes \mathbb{Z}_2[a_3] \otimes P \otimes C. \]

We remark that as a chain complex, \mathcal{X} may be thought of as a tensor product of $(\mathbb{Z}_2[a_2] \otimes Q)$ with a trivial differential operator d_0 and $(\mathbb{Z}_2[a_3] \otimes P \otimes C)$ with a differential operator d_1 such that $d_1(a_3) = d_1(a_{4j+2}) = 0$ and $d_1(b_{4i+4}) = a_3 a_{4i+2}$. Therefore

\[H(\mathcal{X}; d) \cong H(\mathbb{Z}_2[a_2] \otimes Q; d_0) \otimes H(\mathbb{Z}_2[a_3] \otimes P \otimes C; d_1). \]

For $f \in P \otimes C$ there hold $d_1(f) = a_3 f$ for some $\tilde{f} \in P \otimes C$. Then we define $\tilde{d}_1 : P \otimes C \rightarrow P \otimes C$ by $\tilde{d}_1(f) = \frac{d_1(f)}{a_3}$.

\textbf{Lemma 3.1.} The chain complex $(P \otimes C; \tilde{d}_1)$ is acyclic.

\textbf{Proof.} Consider the Koszul resolution of the exterior algebra $\Lambda(b_{4i+4}; 1 \leq i \leq 2n)$. Q.E.D.

\textbf{Proposition 3.2.} Let $f \in \mathbb{Z}_2[a_3] \otimes P \otimes C$. Then $d_1 f = 0 \text{ iff }$ there exists an element $g \in \mathbb{Z}_2[a_3] \otimes P \otimes C$ such that $d_1(g) = a_3 f$, or else $f = 1 \otimes 1 \otimes 1$.

\textbf{Proof.} Sufficiency is clear, since \mathcal{X} is a polynomial algebra.

(Necessity) It suffices to prove necessity for an element $f \in \mathbb{Z}_2 \otimes P \otimes C \cong P \otimes C$. Suppose $d_1(f) = 0$. Then $a_3 \tilde{f} = 0$, and hence $\tilde{f} = 0$. So by definition $\tilde{d}_1(f) = 0$, from which we deduce that $f = 1 \otimes 1 \otimes 1$ or else by Lemma 3.1 that there is an element $g \in P \otimes C$ such that $\tilde{d}_1(g) = f$. Thus $a_3 f = d_1(g)$. Q.E.D.

Let $I = (i_1, \ldots, i_r)$ be a sequence of integers satisfying

\[1 \leq r \leq 2n \text{ and } 1 \leq i_1 < \cdots < i_r \leq 2n. \]

We put $y(I) = \frac{1}{a_3} \tilde{d}(b_{4i_1+4} \cdots b_{4i_r+4})$.

It follows from Proposition 3.2 that a system of generators of
Ker d over $\mathbb{Z}_2[a_2, a_3, a_{4j+2}, b_{2i+4}]$ is $\{1, y(I)\}$, where I runs over all sequences satisfying (3.3).

Theorem 3.4. For $A = H^*(G(4n+2); \mathbb{Z}_2)$

$$\text{Cotor}^4(\mathbb{Z}_2, \mathbb{Z}_2) \cong \mathbb{Z}_2[a_2, a_3, x_{8i+8}, y(I)]/R,$$

where $x_{8i+8} = \{b_{2i+4}\}$ for $1 \leq i \leq 2n$ and I runs over all sequences satisfying (3.3). Further R is the ideal generated by $a_3y(I), y(I)^2 + \sum_{j=1}^5 x_{8i+8}$ $a_{4j+2} \cdots x_{8i+8}$ and $y(I)y(J) + \sum_i f_i y(I_i)$, where f is a polynomial of a_2, a_3, x_{8i+8}'s.

Remark 3.5. $y\{i\} = a_{4i+2}$. For $I = (i_1, \ldots, i_r)$, $(r \geq 2)$, $y(I)$ can be defined inductively. Put $I' = (i_1, \ldots, i_{r-1})$. Suppose that $y(I') = \{\frac{1}{a_3}d(b_{4i_1+4} \cdots b_{4i_{r-1}+4})\}$ is defined. Then $y(I) = y(I') = (b_{4i_1+4} \cdots b_{4i_{r-1}+4}a_{4i_r+2} + y(I')b_{4i_r+4} = \langle y(I'), a_3, a_{4i_r+2} \rangle$, the Massey product.

Remark 3.6. The relation $y(I)y(J) + \Sigma f_i y(I_i)$ can be obtained by calculation on the cochains, since $\{1, y(I)\}$ is a system of generators over $\mathbb{Z}_2[a_2, a_3, x_{8i+8}]$.

Now we consider the case $A = H^*(PO(4n+2); \mathbb{Z}_2)$. By a similar argument to the before we have $X = \mathbb{Z}_2[a_2, a_{2j+1}, b_{2i+2}]/R, 1 \leq i, j \leq 2n$, where R is the ideal generated by $[a_{2k+1}, b_{2k+2}] + a_{4k+1}a_2, 1 \leq k \leq n$ and $[r, s]$ for other pairs of generators (r, s) ($[x, y] = xy + yx$). We define weight in $X = A \otimes X$, the twisted tensor product with respect to θ:

<table>
<thead>
<tr>
<th>A</th>
<th>y</th>
<th>z_{2j}</th>
<th>z_{2i+1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ</td>
<td>a_2</td>
<td>a_{2j+1}</td>
<td>b_{2i+2}</td>
</tr>
</tbody>
</table>

weight 0 0 1

Put $F_i = \{x | \text{weight } x \leq i\}$ as before. Then

$$E_0 X = \Sigma F_i / F_{i-1}$$

$$\cong A(y) \otimes A(z_{2j}, z_{2i+1}) \otimes \mathbb{Z}_2[a_2, a_{2j+1}, b_{2i+2}].$$
where the induced differential operator is given by $d_0y = a_2$, $d_0z_{2j} = a_{2j+1}$ and $d_0z_{2i+1} = b_{2i+2}$. It shows that E_0X and hence X is acyclic.

The differential operator δ in X is given by $\delta a_j = 0$ for any j and $\delta b_{2i+2} = a_{2i+1} a_2$. By a similar, although a little bit complicated, calculation to the before, we obtain the following.

For a sequence of integers $I = (i_1, \ldots, i_r)$ satisfying (3.3) we put $y'(I) = \frac{1}{a_2} \delta(b_{2i_1+2} \cdots b_{2i_r+2})$.

Theorem 3.7. For $A = H^*(PO(4n+2); \mathbb{Z}_2)$

\[
\operatorname{Cotor}^4(\mathbb{Z}_2, \mathbb{Z}_2) \cong \mathbb{Z}_2[a_2, x_{4l+4}, y'(I)]/R,
\]

where $x_{4l+4} = b_{2l+2} + a_2 b_{4l+2}$ for $1 \leq l \leq n$ and $b_{2l+2} = a_{2n+1}$ for $n+1 \leq l \leq 2n$ and I runs over all sequences satisfying (3.3). Further R is the ideal generated by $a_2 y'(I)$, $y'(I)^2 + \sum_{j=1}^{l} x_{4l+4} \cdots a_{2l+1} \cdots x_{4l+4}$ and $y'(I)y'(J) + \sum_{I} f_I y'(I)$.

Remark 3.8. $y'(\{i\}) = a_{2i+1}$, For $I = (i_1, \ldots, i_r)$, $y'(I)$ can also be defined inductively, i.e.,

\[
y'(I) = \langle y'(I'), a_2, a_{2i_r+1} \rangle, \quad \text{where } I = (I', i_r).
\]

The following results can easily be obtained.

Proposition 3.9.

1. $\operatorname{Cotor}^\ast(U(2n+1); \mathbb{Z}_2)(\mathbb{Z}_2, \mathbb{Z}_2) \cong \mathbb{Z}_2[\tilde{c}_1, \ldots, \tilde{c}_{2n+1}],$

with $\deg \tilde{c}_i = 2i$.

2. $\operatorname{Cotor}^\ast(U(2n+1)/F_2; \mathbb{Z}_2)(\mathbb{Z}_2, \mathbb{Z}_2) \cong \mathbb{Z}_2[a_2', \tilde{c}_2', \ldots, \tilde{c}_{2n+1}'],$

with $\deg a_2' = 2$ and $\deg \tilde{c}_i' = 2i$.

3. $\operatorname{Cotor}^\ast(SO(4n+2); \mathbb{Z}_2)(\mathbb{Z}_2, \mathbb{Z}_2) \cong \mathbb{Z}_2[\tilde{w}_2, \tilde{w}_3, \ldots, \tilde{w}_{4n+2}]$, with $\deg \tilde{w}_i = i$.

4. $\operatorname{Cotor}^\ast(Sp(2n+1); \mathbb{Z}_2)(\mathbb{Z}_2, \mathbb{Z}_2) \cong \mathbb{Z}_2[\tilde{q}_1, \ldots, \tilde{q}_{2n+1}]$, with $\deg \tilde{q}_i = 4i$.
(5) \(\text{Cotor} H^{*}(PSp(2n+1); \mathbb{Z}/2) \otimes (\mathbb{Z}/2, \mathbb{Z}/2) \cong \mathbb{Z}[2a_1', a_2', a_3', \ldots, \tilde{q}_{2n+1}'], \)
with \(\text{deg} a_i' = i \) and \(\text{deg} \tilde{q}_i' = 4i. \)

(6) \(\text{Cotor} H^{*}(SU(4n+2); \mathbb{Z}/2) \otimes (\mathbb{Z}/2, \mathbb{Z}/2) \cong \mathbb{Z}_2[\bar{c}_2', \ldots, \bar{c}_{2n+1}'], \)
with \(\text{deg} \bar{c}_i' = 2i. \)

§ 4. Collapsing of the Eilenberg-Moore Spectral Sequence

Let \(G \) be a topological group. In 1959 Eilenberg-Moore constructed a new type of spectral sequence \(\{E_r(G), d_r\} \) such that

(1) \(E_2(G) \cong \text{Cotor} H^{*}(G, \mathbb{Z}/p)(\mathbb{Z}/p, \mathbb{Z}/p), \)

(2) \(E_n(G) \cong \varnothing_r H^{*}(BG; \mathbb{Z}/p). \)

Furthermore, this spectral sequence satisfies naturality for a homomorphism \(f: G \to G' \). We denote by \(f^*: E_r(G') \to E_r(G) \) the induced homomorphism.

In this section we will show that the Eilenberg-Moore spectral sequence collapses for various \((G, p)\). In particular, we will show that for \(G = G(4n + 2) \) and \(PO(4n + 2) \) the Eilenberg-Moore spectral sequence with \(\mathbb{Z}_2 \)-coefficient collapses.

The following directly follows from Theorem 2.9:

Proposition 4.1. Let \((n, p) = 1\). Then the Eilenberg-Moore spectral sequence collapses for \((G, p) = (U(n)/\Gamma_p, p)\).

By Kono [9] \(H^{*}(PSp(2n + 1); \mathbb{Z}/2) \) is transgressively generated and hence we have

Proposition 4.2. The Eilenberg-Moore spectral sequence collapses for \((G, p) = (PSp(2n + 1), 2)\).

The following result will be used below. The proof is easy and left to the reader.

Proposition 4.3. (1) The Eilenberg-Moore spectral sequence col-
lapses for \(G = U(2n + 1)/\Gamma_2, SO(4n + 2), U(2n + 1), PSp(2n + 1), SU(4n + 2) \) and \(Sp(2n + 1) \).

(2) The elements \(\tilde{c}_i \) and \(\tilde{w}_i \) in Proposition 3.9 represent \(c_i \) and \(w_i \) respectively. The elements \(\tilde{q}_i \) and \(\tilde{c}_i \) do \(q_i \) and \(c_i \) in \(H^*(BG; \mathbb{Z}_2) \) such that \(\pi^*(c_i) = c_i + (\text{decomp.}) \) and \(\pi^*(q_i) = q_i + (\text{decomp.}) \), where \(\pi \) is the covering homomorphism.

For simplicity we use the following

Notation.

\[
A_1 = H^*(U(2n + 1); \mathbb{Z}_2),
\]

\[
A_2 = H^*(U(2n + 1)/\Gamma_2; \mathbb{Z}_2),
\]

\[
A_3 = H^*(SO(4n + 2); \mathbb{Z}_2),
\]

\[
A_4 = H^*(PO(4n + 2); \mathbb{Z}_2),
\]

\[
B_1 = H^*(Sp(2n + 1); \mathbb{Z}_2),
\]

\[
B_2 = H^*(PSp(2n + 1); \mathbb{Z}_2),
\]

\[
B_3 = H^*(SU(4n + 2); \mathbb{Z}_2),
\]

\[
B_4 = H^*(G(4n + 2); \mathbb{Z}_2).
\]

Case I. \(H^*(PO(4n + 2); \mathbb{Z}_2) \).

Consider the commutative diagram

\[
\begin{array}{ccc}
U(2n + 1) & \overset{i}{\longrightarrow} & SO(4n + 2) \\
\downarrow\pi & & \downarrow\pi \\
U(2n + 1)/\Gamma_2 & \overset{i}{\longrightarrow} & PO(4n + 2)
\end{array}
\]

where \(\pi \) is the projection and \(i \)'s are the standard maps (cf. §6).

Lemma 4.4. The elements \(a_2' \in \text{Cotor}^{A_4}(\mathbb{Z}_2, \mathbb{Z}_2) \) and \(a_2 \in \text{Cotor}^{A_4} (\mathbb{Z}_2, \mathbb{Z}_2) \) are permanent cycles and \(i^*(a_2) = a_2' \).

Proof. Recall \(H^*(B\mathbb{Z}_2; \mathbb{Z}_2) \cong \mathbb{Z}_2[t] \). In the commutative diagram
COHOMOLOGY OF THE CLASSIFYING SPACES

\[\xymatrix{ BZ_2 \ar[dr] & \ar[d] \ar[r] & BSO(4n+2) \ar[d]^p \ar[l] \ar[r] & BPO(4n+2) \ar[l] \ar[d]^p \ar[r] & BSU(2n+1) \ar[dl] \ar[l] } \]

the elements \(a_2 \) and \(a'_2 \) represent the translation images of \(t \), and hence they are permanent cycles. For dimensional reason we have \(i^*(a_2) = a'_2 \).

Q.E.D.

The following relations among the elements in Theorem 3.7 and Proposition 3.9 are easily checked to be true:

(4.5.1) \(\pi^*(x_{4i}) = \bar{w}_{2i} + W_i \), where \(W_i \) is a sum of monomials containing elements of lower degree,

(4.5.2) \(i^*(\bar{w}_{2i}) = \bar{c}_i + \text{(decomp.)} \), (see § 6),

(4.5.3) \(\pi^*(\bar{c}_i) = \bar{c}_i + \text{(decomp.)} \),

(4.5.4) \(\pi^*(a_2) = \pi^*(a'_2) = 0 \).

Therefore

(4.6) \(i^*(x_{4i}) = \bar{c}_i^2 + \gamma_i \), where \(\gamma_i \) is a sum of monomials containing elements of lower degree.

Let \(E_r(1) \) be the Eilenberg-Moore spectral sequence with \(Z_2 \)-coefficient for \(PO(4n+2) \) and \(\{ E_r(2), d_r \} \) be the cartesian product of the Eilenberg-Moore spectral sequences of \(U(2n+1)/\Gamma_2 \) and \(SO(4n+2) \), i.e.,

\[E_r(2) = \text{Cotor}^A(Z_2, Z_2) \times \text{Cotor}^A(Z_2, Z_2) \] and \(d_r = 0 \)

for all \(r \geq 2 \). Then the map \(i^* \times \pi^* \) induces a homomorphism between the spectral sequences:

\[E_r(1) \longrightarrow E_r(2) \quad \text{for} \quad r \geq 2. \]

Lemma 4.7. \(i^* \times \pi^* : E_2(1) \rightarrow E_2(2) \) is injective.
Proof. Let \(f_1 \) be a sum of monomials containing \(a_2 \) and \(f_2 \) a sum of those not containing \(a_2 \). Suppose \((i^* \times \pi^*)(f_1 + f_2) = 0\) from which \(\pi^*(f_1 + f_2) = \pi^*(f_2) = 0 \) and hence \(f_2 = 0 \) by (4.5.1). Meanwhile \((i^* \times \pi^*) (f_1 + f_2) = 0\) implies \(i^*(f_1 + f_2) = 0 \), which implies \(i^*(f_1) = 0 \), and hence \(f_1 = 0 \) by (4.6). Thus \(i^* \times \pi^* \) is injective.

Q.E.D.

Thus we have shown

Theorem 4.8. The Eilenberg-Moore spectral sequence with \(\mathbb{Z}_2 \)-coefficient collapses for \(G = PO(4n+2) \).

In fact, Lemma 4.7 indicates that all differentials in \(E_r(1) \) are trivial. An immediate corollary is

Theorem 4.9. As a module

\[
H^*(BPO(4n+2); \mathbb{Z}_2) \cong \mathbb{Z}_2[a_2, \ x_{4l+4}, \ y'(I)]/R,
\]

where \(1 \leq l \leq 2n, I \) runs over all sequences satisfying (3.3) and \(R \) is the ideal generated by \(a_2 y'(I), y'(I)^2 + \sum_{j=1}^r x_{4l+4} \ldots a_{2l+1} \ldots x_{4l+4} \) and \(y'(I)y'(J) + \sum I f_I y'(I)I \).

Case II. \(H^*(G(4n+2); \mathbb{Z}_2) \).

Consider the commutative diagram

\[
\begin{array}{ccc}
Sp(2n+1) & \xrightarrow{i} & SU(4n+2) \\
\downarrow{\pi} & & \downarrow{\pi} \\
PSp(2n+1) & \xrightarrow{i} & G(4n+2)
\end{array}
\]

where \(\pi \) is the projection and \(i \)'s are the standard maps.

Lemma 4.4'. The elements \(a_i \in \text{Cotor}^*_{B^*} (\mathbb{Z}_2, \mathbb{Z}_2) \) and \(a_i' \in \text{Cotor}^{B^*} (\mathbb{Z}_2, \mathbb{Z}_2) \) are permanent cycles and \(i^*(a_i) = a_i' \) for \(i = 2, 3 \).

Proof is similar to that of Lemma 4.4.

The following relations among the elements in Theorem 3.4 and Proposition 3.9 are easily checked to be true:
(4.10.1) \[\pi^*(x^8_{i+8}) = \tilde{e}_{i+2}^2 + v_i, \]

(4.10.2) \[\pi^*(\tilde{q}_i) = \tilde{q}_i + (\text{decomp.}), \]

where \(v_i \) is a sum of monomials containing elements of lower degree,

(4.10.3) \[\pi^*(a_i) = \pi^*(a_i) = 0 \quad \text{for} \quad i = 2, 3, \]

(4.11) \[i^*(\tilde{e}_2) = \tilde{q}_i + (\text{decomp.}). \]

Lemma 4.7'. Let \(f \in \text{Cotor}^B_*(\mathbb{Z}_2, \mathbb{Z}_2) \) such that \(\deg f \) is odd. Then \(i^*(f) = 0 \) iff \(f = 0 \).

Proof. \[i^*(x^8_{i+8}) = \tilde{q}_{i+1}^2 + Q_i, \]

where \(Q_i \) is a sum of monomials containing elements of lower degree. So the elements \(i^*(x^8_{i+8}), 1 \leq l \leq 2n, i^*a_3 \) and \(i^*a_2 \) are algebraically independent. Q.E.D.

Theorem 4.10. The Eilenberg-Moore spectral sequence with \(\mathbb{Z}_2 \)-coefficient collapses for \(G = G(4n + 2) \).

Proof. Recall that \(a_2 \) and \(a_3 \) are permanent cycles. All generators of \(\text{Cotor}^B_*(\mathbb{Z}_2, \mathbb{Z}_2) \) except \(a_3 \) are of even degree. So \(d_*(\alpha) \) is of odd degree for \(\alpha \in \{ y(I), x^8_{i+8} \} \). By naturality \(i^*d_*(\alpha) = d_1i^*(\alpha) = 0 \). Hence by Lemma 4.7' \(d_*(\alpha) = 0 \). Thus all generators survive into \(E_{\infty} \). Q.E.D.

Immediate corollaries are

Theorem 4.11. As a module

\[H^*(BG(4n + 2); \mathbb{Z}_2) \cong \mathbb{Z}_2[a_2, a_3, x^8_{i+8}, y(I)]/R, \]

where \(x^8_{i+8} = \{ b^2_{i+4} \} \) for \(1 \leq l \leq 2n \) and \(I \) runs over all sequences satisfying (3.3) and \(R \) is the ideal generated by \(a_3y(I), y(I)^2 + \sum x^8_{i+8} \ldots a^2_{i+2} \ldots x^8_{i+8} \) and \(y(I)y(J) + \sum f_iy(I_i) \).

Theorem 4.12. As a module

\[H^*(BPU(4n + 2); \mathbb{Z}_2) \cong \mathbb{Z}_2[a_2, a_3, x^8_{i+8}, y(I)]/R \]
§5. Some Generators in $H^*(BG(4n+2); \mathbb{Z}_2)$ and $H^*(BPO(4n+2); \mathbb{Z}_2)$

Let G be a compact, connected Lie group and H its closed subgroup. Let EG and EH be the total spaces of the universal G- and H-bundles respectively. Then the following diagram is commutative:

$$
\begin{array}{ccc}
H & \longrightarrow & EH \\
\downarrow & & \downarrow \\
G & \longrightarrow & EG
\end{array}
\quad
\begin{array}{ccc}
& \longrightarrow & BH \\
\downarrow & & \downarrow \\
& \longrightarrow & BG
\end{array}
$$

Then naturality of the transgression implies

Lemma 5.1. Let k be a commutative field.

1. If $x \in H^*(G/H; k)$ is transgressive with respect to the bottom fiber-
ing, then $p^*(x) \in H^*(G; k)$ is universally transgressive.

2. If $x \in H^*(G; k)$ is universally transgressive, so is $j^*(x) \in H^*(H; k)$.

3. Suppose $H^i(G/H; k) = 0$ for $i < n$. Let $x \in H^i(G; k)$ and $i < n - 1$. If $j^*(x)$ is universally transgressive, so is x.

Recall the following:

(5.2) $G(2) = SO(3)$,

(5.3) $H^*(SO(3); \mathbb{Z}_2) = \mathbb{Z}_2[a]/(a^4)$ where a is universally transgressive.

Now we prove

Proposition 5.4. The elements a and x_{4j+1} of $H^*(G(4n+2); \mathbb{Z}_2)$, $1 \leq j \leq 2n$, are all universally transgressive.

Proof. Proof is induction on n. The case $n=0$ is clear from (5.2) and (5.3). Suppose as the inductive hypothesis that the elements a and $x_{4j+1}, 1 \leq j \leq 2n-1$, are universally transgressive in $H^*(G(4n-2);$
COHOMOLOGY OF THE CLASSIFYING SPACES

It follows from Proposition 1.5 and (2), (3) of Lemma 5.1 that the elements \(a \) and \(x_{4j+1}, 1 \leq j \leq 2n-1 \), are universally transgressive. Clearly the element \(\bar{x}_{8n-3} \) is transgressive with respect to the fibering \(C(4n-2, 2n+1) \to BG(4n-2) \to BG((4n-2)(2n+1)) \), and hence so is \(\bar{x}_{8n+1} \), since \(\bar{x}_{8n+1} = Sq^4 x_{8n-3} \) by Proposition 1.14. Thus by (1) of Lemma 5.1 the elements \(x_{8n-3} \) and \(x_{8n+1} \) are universally transgressive. Q.E.D.

It follows from (2.2) and (2.3) that \(H^*(BG(2); Z_2) \cong H^*(BSO(3); Z_2) \cong \mathbb{Z}[a_2, a_3] \), where \(a_2 = \tau(a) \) and \(a_3 = \tau(a^2) \) with \(\deg a_i = i \). As \(\Delta_{2n+1}^* : H^i(BG(4n+2); Z_2) \to H^i(BG(2); Z_2) \) is isomorphic for \(i \leq 4 \) by (1) of Theorem 1.7, we denote by \(a_2 = \tau(a) \) and \(a_3 = \tau(a^2) \) the generators of \(H^i(BG(4n+2); Z_2) \cong \mathbb{Z}_2 \) for \(i = 2, 3 \).

Lemma 5.5. \(Sq^1 a_3 = 0 \) and \(Sq^2 a_3 = a_2 a_3 \) in \(H^*(BG(4n+2); Z_2) \).

Proof. We obtain the above formula by virtue of the Wu formula, since \(a_i \) is the inverse image of \(\Delta_{2n+1}^* \) of the \(i \)-th Stiefel-Whitney class. Q.E.D.

Proposition 5.6. There exist elements \(a_{4j+2}, 1 \leq j \leq 2n, \) in \(H^*(BG(4n+2); Z_2) \) such that

1. \(\deg a_{4j+2} = 4j + 2 \),
2. \(a_{4j+2} = \tau(x_{4j+1}) \mod (\text{decomp.}) \),
3. \(a_3 a_{4j+2} = 0 \).

Proof. Proof is induction on \(n \). The case \(n = 0 \) is clear from (2.2) and (2.3). Suppose that the assertion is true for \(BG(4n-2) \). By Theorem 1.7 the homomorphism \(\Delta_{2n+1}^* \) is injective for \(\deg \leq 8n-4e+1 \) with \(e = \pm 1 \). Put \(a_i = \Delta_{2n-1}^* \circ \Delta_{2n-1}^* (a_i) \) for \(1 \leq 8n-6 \). Then \(a_i \) satisfies the properties (1), (2), (3) by the inductive hypothesis. For the transgression \(\tau \) of the fibering

\[
C(4n-2, 2n+1) \longrightarrow BG(4n-2) \longrightarrow BG((4n-2)(2n+1))
\]

we put \(a_{8n-2} = \Delta_{8n-3}^* (\bar{x}_{8n-3}) \). The element \(x_{8n-3} \in H^*(G(4n+2); Z_2) \) is not universally transgressive, since it is not primitive by Proposition
1.9'. So the corresponding element \tilde{x}_{8n-1} of $H^*(C(4n-2, 2n+1); \mathbb{Z}_2)$ is not transgressive in the fibering (5.7). That is, in the cohomology Serre spectral sequence $\{E_r^{*,*}, d_r\}$ with \mathbb{Z}_2-coefficient of (5.7) we have $d_3(1 \otimes \tilde{x}_{8n-1}) = a_3 \otimes \tilde{x}_{8n-3}$, from which we get $a_3 \tau(\tilde{x}_{8n-3}) = 0$. Applying Δ_{2n-1}^* we obtain $a_3 a_{8n-2} = 0$. Thus the element a_{8n-2} satisfies (1), (2), (3). Next, we put

$$a_{8n+2} = \Delta_{2n-1}^* \tau(\tilde{x}_{8n+1}) + a_2 Sq^2 a_{8n-2} + a_3 Sq^1 a_{8n-2}.$$

Then

$$a_3 a_{8n+2} = a_3 (Sq^* a_{8n-2} + a_2 Sq^2 a_{8n-2} + a_3 Sq^1 a_{8n-2})$$

$$= Sq^4 (a_3 a_{8n-2})$$

$$= 0.$$

So the element a_{8n+2} satisfies (1), (2), (3). Q.E.D.

Quite similarly one can prove

Proposition 5.8. There exist elements $a_2, a_{2j+1}, 1 \leq j \leq 2n$, in $H^*(BPO(4n+2); \mathbb{Z}_2)$ such that

(1) \hspace{1cm} \text{deg } a_2 = 2, \quad \text{deg } a_{2j+1} = 2j+1,

(2) \hspace{1cm} a_2 = \tau(y), \quad a_{2j+1} = \tau(z_{2j}), \quad 1 \leq j \leq 2n,

(3) \hspace{1cm} a_2 a_{2j+1} = 0.

Remark 5.9. The elements a_i in Theorems 4.9, 4.11 and 4.12 are thus the transgression images of some generators in $H^*(G(4n+2); \mathbb{Z}_2)$, $H^*(PU(4n+2); \mathbb{Z}_2)$ or $H^*(PO(4n+2); \mathbb{Z}_2)$. The relations among them are given in Propositions 5.6 and 5.8.

§ 6. Exterior Power Representations

To begin with we recall the definition of the exterior power representation (p. 90 of [14]).

Let G be a group and k a commutative field. Denote by $GL(n, k)$ the general linear group. Let $A=(a_{ij}): G \rightarrow GL(n, k)$ be a matrix rep-
representation. For a pair of sequences of \(r \) integers \(I = (i_1, \ldots, i_r) \) and \(J = (j_1, \ldots, j_r) \) such that

\[
(*) \quad 1 \leq i_1 < \cdots < i_r \leq n,
\]

\[
1 \leq j_1 < \cdots < j_r \leq n,
\]

we define

\[
a_{IJ}(x) = \det \begin{pmatrix}
 a_{i_1j_1}(x) & \cdots & a_{i_rj_1}(x) \\
 \vdots & \ddots & \vdots \\
 a_{i_1j_r}(x) & \cdots & a_{i_rj_r}(x)
\end{pmatrix}
\text{ for } x \in G.
\]

Definition 6.1. Let \(1 \leq r \leq n \). We define a representation \(A^{(r)}(x) : G \to GL((p), k) \) by

\[
A^{(r)}(x) = \begin{pmatrix}
 & & & & \\
 & & & & \\
 & & & & J \\
 & & & & \\
 \vdots & \ddots & \vdots & \ddots & \vdots \\
 & & & & \\
 a_{i_1j_r}(x) & \cdots & a_{i_rj_r}(x) & &
\end{pmatrix}
\]

where \(I \) and \(J \) run over all sequences satisfying \((*)\). We call \(A^{(r)} \) the exterior power representation of degree \(r \) of \(G \).

If \(G \) is a topological group and \(k = \mathbb{R} \) or \(\mathbb{C} \) and if \(A : G \to GL(n, k) \) is continuous, so is \(A^{(r)} \), namely, \(A^{(r)} \) is a representation of \(G \).

When \(G \) is a compact group and \(k = \mathbb{C} \) (resp. \(\mathbb{R} \)), we may suppose

\[
A^{(r)} : G \to U((p)) \quad \text{(resp. } A^{(r)} : G \to O((p))\text{)}
\]

by making use of the \(G \)-invariant Hermitian (resp. Riemannian) metric (see [2]).

Proposition 6.2. Let \(G \) be a subgroup of \(GL(n, k) \). Let \(A : G \to GL(n, k) \) be an inclusion. For \(G \ni x = \left(\begin{smallmatrix} -1 & \cdots & 0 \\ 0 & \ddots & -1 \\ \vdots & \ddots & 0 \\ 0 & \cdots & -1 \end{smallmatrix} \right) \), we have \(A^{(r)}(x) = \left(\begin{smallmatrix} 1 & \cdots & 0 \\ 0 & \ddots & 1 \end{smallmatrix} \right) \in GL((p), k) \) if \(r \) is even.

Proof. By definition

\[
a_{IJ}(x) = \begin{cases}
 (-1)^r & \text{if } I = J \\
 0 & \text{if } I \neq J.
\end{cases}
\]

Q.E.D.
In the below we regard the identity map \(\lambda: G = U(n) \to U(n) \) (or the inclusion \(\lambda: SU(n) \to U(n) \)) as an \(n \)-dimensional complex representation.

Corollary 6.3. Let \(n \) be even. Then there exists a map \(\lambda^{(2)} \) such that the right diagram commutes:

\[
\begin{array}{c}
SU(n) \xrightarrow{\lambda^{(2)}} U(\tfrac{n}{2}) \\
\pi \downarrow \quad \downarrow \lambda^{(2)} \\
G(n) \quad
\end{array}
\]

Let \(t_k \) be a generator of \(H^2(BT^n; \mathbb{Z}) \) corresponding to the torus

\[
T^1 = \left\{ \begin{pmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{pmatrix} : 0 \leq \theta < 2\pi \right\} \subset T_n \subset U(n).
\]

Then according to Borel-Hirzebruch (p. 492 of [6]) the total Chern class \(c(\lambda^{(2)}) \) of the second exterior power representation \(\lambda^{(2)} \) is given by

\[
(6.4) \quad c(\lambda^{(2)}) = \prod_{1 \leq i < j \leq n} (1 + t_i + t_j) \in H^*(BU(n); \mathbb{Z}).
\]

Remark 6.5. \(t_1 + \cdots + t_n = 0 \) if \(G = SU(n) \).

Let \(\alpha_i, 1 \leq i \leq n, \) be indeterminates with \(\deg \alpha_i = 1 \). Express

\[
\prod_{1 \leq i < j \leq n} (1 + \alpha_i + \alpha_j) = \beta_1 + \cdots + \beta_n + \text{(higher terms)},
\]

where \(\beta_k \) is a homogeneous term of degree \(k \). Denoting by \(\sigma_k \) the \(k \)-th elementary symmetric function, we have \(\beta_k = a_k \sigma_k(\alpha_1, \ldots, \alpha_n) + \text{(decomp.)} \) for some integer \(a_k \).

Lemma 6.6. If \(n \) is odd, \(a_i \) is odd for \(2 \leq i \leq n \).

(A proof will be given at the end of the section.)

Let \(i: Sp(n) \to SU(2n) \) be the usual inclusion map defined by

\[
q_{ij} = \alpha_{ij} + j\beta_{ij} \mapsto c_{ij} = \begin{pmatrix} \alpha_{ij} & -\tilde{\beta}_{ij} \\ \beta_{ij} & \tilde{\alpha}_{ij} \end{pmatrix},
\]
where $\alpha_{i,j}, \beta_{i,j} \in \mathbb{C}$.

Let s_i be a generator of $H^2(BT^n; \mathbb{Z})$ corresponding to the torus

$$T^1 = \left\{ \begin{pmatrix} 1 & \ldots & e^{i\theta} & 0 \\ \ldots & e^{i\theta} & \ldots \\ 0 & \ldots & 1 \end{pmatrix} \in Sp(n) \right\} \subset T^n \subset Sp(n).$$

Then

$$i^*(t_{2i-1}) = s_i \quad \text{and} \quad i^*(t_{2i}) = -s_i. \quad (6.7)$$

Consider the composite of the maps

$$BSp(n) \xrightarrow{i} BSU(2n) \xrightarrow{j^{(2)}} BU((\frac{1}{2} n)).$$

Proposition 6.8. The mod 2 reduction of $i^*c(\lambda^{(2)})$ is given by

$$i^*c(\lambda^{(2)}) = \prod_{1 \leq i < j \leq n} (1 + s_i^4 + s_j^4) \in H^*(BSp(n); \mathbb{Z}_2).$$

Proof.

$$i^*c(\lambda^{(2)}) = i^*\left(\prod_{1 \leq i < j \leq n} (1 + t_i + t_j) \right) \quad \text{by (6.4)}$$

$$= \prod_{1 \leq i < j \leq n} (1 + s_i + s_j)^4 \quad \text{by (6.7)}$$

$$= \prod_{1 \leq i < j \leq n} (1 + s_i^4 + s_j^4). \quad \text{Q.E.D.}$$

Next we consider the commutative diagram:

$$\begin{array}{ccc}
BSp(2n+1) & \xrightarrow{i} & BSU(4n+2) \xrightarrow{j^{(2)}} BU((\frac{4n+2}{2})) \\
\downarrow{\pi} & & \downarrow{\pi} \\
BPSp(2n+1) & \xrightarrow{i} & BG(4n+2) \xrightarrow{\lambda^{(2)}} \\
\end{array} \quad (6.9)$$

For the mod 2 reduction of the Chern class $c_{4i} \in H^{8i}(BU((\frac{4n+2}{2})); \mathbb{Z}_2)$ we put

$$x_{8i} = \lambda^{(2)*}(c_{4i}) \in H^{8i}(BG(4n+2); \mathbb{Z}_2), \quad 2 \leq i \leq 2n+1.$$

Then by the commutativity of the diagram (6.9)

$$i^*\pi^*\Sigma x_{8i} = i^*\pi^*\lambda^{(2)*}(\Sigma c_{4i}).$$
Apply Lemma 6.6 and we obtain

\[i^*\pi^* x_{8i} = \sigma_i(s_1^4, \ldots, s_{2n+1}^4) + (\text{decomp.}). \]

Denoting by \(q_i \) the mod 2 reduction of the \(i \)-th symplectic Pontrjagin class, we have

\[i^*\pi^* x_{8i} = q_i^2 + P, \]

where \(P \) is a sum of monomials containing \(q_j \) (\(j < i \)).

On the other hand, since \(i^* : H^m(BSU(4n + 2); \mathbb{Z}_2) \rightarrow H^m(BSp(2n + 1); \mathbb{Z}_2) \) is trivial for \(m \equiv 0 \pmod{4} \), we have

\[i^*\pi^*(a_2) = i^*\pi^*(a_3) = i^*\pi^*(a_{4j+2}) = 0, \quad \text{and hence} \]

\[i^*\pi^*(y(I)) = 0. \]

Thus we have shown

Theorem 6.10. There exist non-decomposable elements \(x_{8i+8} \in H^{8i+8}(BG(4n + 2); \mathbb{Z}_2), 1 \leq i \leq 2n, \) such that \(i^*\pi^*(x_{8i+8}) = q_{i+1}^2 + P, \) where \(P \) is a sum of monomials containing \(q_j \) (\(j < i+1 \)).

Now we turn to the orthogonal case.

Let \(\lambda : SO(n) \rightarrow O(n) \) be the natural inclusion and regard it as a real representation. As before we consider its exterior power representation \(\lambda^{(2)} : SO(n) \rightarrow O(n). \) The total Stiefel-Whitney class is then given as

\[w(\lambda^{(2)}) = \prod_{1 \leq i < j \leq 2n} (1 + t_i + t_j), \]

where \(t_i \) is a generator of \(H^1(B\mathbb{Z}_2^n; \mathbb{Z}_2) \) corresponding to

\[\mathbb{Z}_2 = \begin{bmatrix} 1 & \cdots & \cdot \\ \cdot & \cdot & 1 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & 1 & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & 1 \end{bmatrix}; \quad e = \pm 1 \subset (\mathbb{Z}_2)^n \subset O(n). \]
Remark. \(t_1 + \cdots + t_n = 0. \)

Let \(i: U(n) \to SO(2n) \) be the inclusion defined by the correspondence \(b + c \sqrt{-1} \mapsto \left(\begin{array}{c} b \\ c \\ -b \end{array} \right) \). Let \(s_i \) be a generator of \(H^1(B(Z_2^n); Z_2) \) corresponding to

\[
Z_2 = \left\{ \left(\begin{array}{cccc}
1 & & & \\
& \ddots & & \\
& & 1 & \\
& & & 1
\end{array} \right); \; \varepsilon = \pm 1 \right\} \subset (Z_2)^n \subset U(n).
\]

Then

\[(6.11) \quad i^*(t_{2i-1}) = i^*(t_{2i}) = s_i. \]

Let \(w_i \) be the Stiefel-Whitney class. Then

\[i^*(w_{2i-1}) = 0, \]

\[i^*(w_{2i}) = c_i, \] the mod 2 reduction of the \(i \)-th Chern class.

Consider the following commutative diagram

\[
\begin{array}{ccc}
BU(2n+1) & \xrightarrow{i} & BSO(4n+2) \\
\downarrow{\pi} & & \downarrow{\pi} \\
B(U(2n+1)/\Gamma_2) & \xrightarrow{i} & BPO(4n+2)
\end{array}
\]

where \(\pi \) is the natural projection and \(\bar{\lambda}^{(2)} \) the one induced from \(\lambda^{(2)} \). Then

\[i^* \pi^* \bar{\lambda}^{(2)*} \left(\sum_{i=0}^{l} w_i \right) = i^* \left(w\left(\lambda^{(2)} \right) \right) \quad \text{with} \quad l = (4n+2), \]

where \(w\left(\lambda^{(2)} \right) = \prod_{1 \leq i < j \leq 4n+2} (1 + t_i + t_j). \)

So by Lemma 4.6 we have

\[i^* \pi^* \bar{\lambda}^{(2)*} \left(\sum_{i=0}^{l} w_i \right) = \prod_{1 \leq i < j \leq 2n+1} (1 + s_i^* + s_j^*). \]
Thus by a similar argument to the unitary case we have

Theorem 6.12. There exist non-decomposable elements \(x_{4j+4} \in H^4 j+4(BPO(4n+2); Z_2) \), \(1 \leq j \leq 2n \), such that \(i^* \pi^* x_{4j+4} = c_{j+1}^2 + P \), where \(P \) is a sum of monomials containing \(c_k \) \((k < j + 1)\).

First we consider the case \(G = G(4n+2) \). The projection \(\pi: SU(4n + 2) \to G(4n + 2) \) induces \(\pi^*: \operatorname{Cotor}^{B_4}(Z_2, Z_2) \to \operatorname{Cotor}^{B_4}(Z_2, Z_2) \) on the \(E_2 \)-level of the Eilenberg-Moore spectral sequence. By naturality we have

\[
\pi^* x_{8i+8} = \pi^* b_{4i+4}^2 = \pi^* b_{4i+4}^2 \quad \text{for} \quad 1 \leq i \leq 2n,
\]

which survives in the \(E_\infty(SU(4n+2))-\)term, since \(E_2(SU(4n+2)) \cong E_\infty(SU(4n+2)) \cong \mathcal{O} H^*(BSU(4n+2); Z_2) \) by Proposition 4.3. On the other hand, since \(q_{i+1} = i^* c_{2i+2} \), it follows from Theorem 6.10 that for \(\pi^*: H^*(BG(4n+2); Z_2) \to H^*(BSU(4n+2); Z_2) \) we have

\[
\pi^* x_{8i+8} = c_{2i+2}^2 + P'. \quad 1 \leq i \leq 2n,
\]

where \(P' \) is a sum of monomials containing \(c_j \) \((j < i + 1)\).

Thus we obtain

Theorem 6.13. The element \(x_{8i+8} \in \operatorname{Cotor}^{B_4}(Z_2, Z_2) \) survives in the \(E_\infty(G(4n+2))-\)term and represents \(x_{8i+8} \in H^*(BG(4n+2); Z_2) \).

Similarly,

Theorem 6.13'. The element \(x_{4j+4} \in \operatorname{Cotor}^{A_4}(Z_2, Z_2) \) survives in the \(E_\infty(PO(4n+2))-\)term and represents \(x_{4j+4} \in H^*(BPO(4n+2); Z_2) \).

Proof of Lemma 6.6. Let \(m \) be an odd integer. We regard the identity map \(\lambda: U(m) \to U(m) \) as an \(m \)-dimensional complex representation as before. Let \(t_k \) be a generator of \(H^2(BT^m; Z) \) corresponding to the torus

\[
T^1 = \begin{pmatrix}
1 & \cdots & 1 \\
\vdots & \ddots & \vdots \\
\cdots & \cdots & 1 \\
1 & \cdots & 1
\end{pmatrix}
\quad 0 \leq \theta < 2\pi \subset T^m \subset U(m).
\]
Then by (6.4) the total Chern class of the exterior representation of degree 2 of λ is given by

$$c(\lambda^{(2)}) = \prod_{1 \leq i < j \leq m} (1 + t_i + t_j) \in H^*(BU(m); \mathbb{Z}).$$

We will show that the integer a_k is odd by taking $\alpha = t_i$ and $\beta_i = c_i(\lambda^{(2)})$, the i-th Chern class of $\lambda^{(2)}$.

Let Φ^k be the Adams operation on representations and ch_q the Chern character. Denote by λ^2 the tensor product $\lambda \otimes \lambda$.

Lemma 6.14.

1. $ch_q \Phi^2(\lambda) = 2^q ch_q(\lambda)$.
2. $\Phi^2(\lambda) = \lambda^2 - 2\lambda^{(2)}$.
3. $ch_q(\lambda^2) = 2mch_q(\lambda) + (\text{decomp.})$.
4. Let $m \geq 3$. For $\eta = \lambda$ or $\lambda^{(2)}$

$$ch_q(\eta) = \frac{(-1)^q}{(q-1)!} c_q(\eta) + (\text{decomp.}).$$

Proof. (1), (2), (3) follow directly from the definition (also see [1]). (4) follows from the Newton formula. Q.E.D.

By this lemma we have

$$ch_i(\lambda^{(2)}) = \frac{1}{2} \{ ch_i(\lambda^2) - ch_i(\Phi^2(\lambda)) \}$$

$$= \frac{1}{2} \{ 2(n - 2^{i-1})ch_i(\lambda) \} + (\text{decomp.})$$

$$= (n - 2^{i-1})ch_i(\lambda) + (\text{decomp.}).$$

Now by (4) we obtain

$$c_i(\lambda^{(2)}) = (n - 2^{i-1})c_i(\lambda) + (\text{decomp.})$$

$$= (n - 2^{i-1})\sigma_i(t_1, \ldots, t_n) + (\text{decomp.}),$$

where $(n - 2^{i-1})$ is odd if $i \geq 2$. Q.E.D.
References