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Stratifications on the moduli space of Higgs bundles
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Abstract. The moduli space of Higgs bundles has two stratifications. The Białynicki-Birula
stratification comes from the action of the non-zero complex numbers by multiplication
on the Higgs field, and the Shatz stratification arises from the Harder–Narasimhan type
of the vector bundle underlying a Higgs bundle. While these two stratifications coincide
in the case of rank two Higgs bundles, this is not the case in higher rank. In this paper
we analyze the relation between the two stratifications for the moduli space of rank three
Higgs bundles.
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1. Introduction

Higgs bundles and their moduli were first studied by Hitchin and Simpson and

have been around for almost 30 years. They continue to be the subject of intensive

investigations with links to diverse areas of mathematics such as non-abelian

Hodge theory, integrable systems, mirror symmetry, the Langlands programme,

among others.

In this paper we focus on the moduli space of Higgs bundles on a compact Rie-

mann surface X . The topology of this moduli space has been studied extensively.

Some early calculations of Betti numbers were carried out by Hitchin [19] for rank

2 and the first author [8] for rank 3. Further significant progress has been made by

a number authors, see, e.g., [17], [18], [21], [1], [22], [15], [5], [14], [13], [10], [11].

Recently Schi¤mann [25] has completely determined the additive cohomology in

the case of Higgs bundles with rank and degree co-prime.

On the other hand, the homotopy theory of the moduli space of Higgs bundles

has not been the subject of a lot of interest. Hausel [12] in his thesis studied the

case of rank 2 Higgs bundles, while in [4] some results were obtained for gen-

eral rank. The latter paper used the Białynicki-Birula stratification of the Higgs



bundle moduli space coming from the C�-action given by multiplying the Higgs

field by scalars. In rank 2 this stratification coincides with the Shatz stratification,

which is given by the Harder–Narasimhan type of the vector bundle underlying

a Higgs bundle. As already observed by Hitchin and exploited by Hausel and

Thaddeus [12], [17] this makes the case of rank 2 Higgs bundles akin to a finite

dimensional version of the infinite dimensional situation of Atiyah–Bott [2].

However, in general the Białynicki-Birula and Shatz stratifications do not

coincide, and it is therefore of interest to study their relationship. In this paper

we carry out such a study in the case of rank 3 Higgs bundles, where it turns out

that the situation is already fairly complicated. Indeed, our main result, Theorem

5.1, shows that each Shatz stratum is intersected by several di¤erent Białynicki-

Birula strata. Moreover, knowledge of the underlying vector bundle of a Higgs

bundle is not su‰cient to determine its Białynicki-Birula stratum, one also needs

knowledge of the Higgs field. However, for su‰ciently unstable underlying vector

bundles the situation is simpler and the Shatz strata coincide with Białynicki-

Birula strata: this is described in Theorem 5.6.

Our results should serve as a useful pointer to the general situation for higher

rank Higgs bundles. Moreover, in the aforementioned work [12], [17], Hausel and

Thaddeus consider the moduli space of k-Higgs bundles (where the Higgs field is

allowed to have a pole of order k at a fixed p a X ), and show that in the limit

k ! l this moduli space approximates the classifying space of the gauge group.

This is used by Hausel [12], Theorem 7.5.7 in the rank two case to calculate certain

homotopy groups of the moduli space of Higgs bundles, using implicitly that the

Białynicki-Birula and Shatz stratifications coincide. One might thus hope that an

extension of our results to Higgs bundles with poles could be useful in extending

Hausel’s results to higher rank.

This paper is organized as follows. In Section 2 we give some preliminaries

about Higgs bundles and their moduli spaces and we explain the Białynicki-Birula

and Shatz stratifications of the moduli space. Next, for completeness, in Section 3

we present the aforementioned result of Hausel on the equality of the two stratifi-

cations for rank 2 Higgs bundles. After that, in Section 4, we give some bounds

on the Harder–Narasimhan types which occur in the moduli space of rank 3

Higgs bundles. Finally, in Section 5, we give our main results on the relation of

the two stratifications.

This paper is partly based on the Ph.D. thesis [28] of the second author and an

announcement of some of our results has appeared in [27].

2. Preliminaries

2.1. Higgs bundles and their moduli. Let X be a closed Riemann surface of

genus g and let K ¼ KX ¼ T �X be the canonical line bundle of X .
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Definition 2.1. A Higgs bundle over X is a pair ðE;FÞ where the underlying vector

bundle E ! X is a holomorphic vector bundle and the Higgs field F : E ! EnK

is a holomorphic endomorphism of E twisted by K .

The slope of a vector bundle E is the quotient between its degree and its rank:

mðEÞ ¼ degðEÞ=rkðEÞ. Recall that a vector bundle E is semistable if mðFÞamðEÞ
for all non-zero subbundles F � E, stable if it is semistable and strict inequality

holds for all non-zero proper F , and polystable if it is the direct sum of stable

bundles, all of the same slope. Any semistable vector bundle has a Jordan–Hölder

filtration E0 � E1 � � � � � E such that the subquotients Ej=Ej�1 are stable. The

isomorphism class of the associated graded bundle 0Ej=Ej�1 is unique, and

semistable vector bundles are S-equivalent if their associated graded bundles are

isomorphic. Each S-equivalence class contains a unique polystable representative.

The corresponding notions for Higgs bundles are defined in exactly the same way,

except that only F-invariant subbundles F � E (satisfying FðF Þ � F nK) are

considered in the stability conditions.

The moduli space Mðr; dÞ of S-equivalence classes of semistable rank r and

degree d Higgs bundles was constructed by Nitsure [23]. The points of Mðr; dÞ
correspond to isomorphism classes of polystable Higgs bundles. When r and d

are co-prime any semistable Higgs bundle is automatically stable and Mðr; dÞ is

smooth.

There are no stable Higgs bundles when ga 1 and the theory has quite a dif-

ferent flavour (see, for example, the work of Franco–Garcı́a-Prada–Newstead [6],

[7] on Higgs bundles on elliptic curves), and so we shall also assume that gb 2.

We shall need to consider the moduli space from the complex analytic point of

view. For this, fix a complex Cl vector bundle E of rank r and degree d on X . A

holomorphic structure on E is given by a q-operator qE : A0ðEÞ ! A0;1ðEÞ and we

thus obtain a holomorphic vector bundle E ¼ ðE; qEÞ. From this point of view, a

Higgs bundle ðE;FÞ arises from a pair ðqE ;FÞ consisting of a q-operator and a

Higgs field F a A1;0
�
EndðEÞ

�
such that qEF ¼ 0. The natural symmetry group

of the situation is the complex gauge group GC ¼ fg : E ! E j g is a Cl bundle

isomorphismg; which acts on pairs ðqE ;FÞ in the standard way:

g � ðqE ;FÞ ¼ ðg � qE � g�1; g �F � g�1Þ:

The moduli space can then be viewed as the quotient1

Mðr; dÞ ¼ fðqE ;FÞ j qEF ¼ 0 and ðE;FÞ is polystableg=GC:

1Strictly speaking one should use appropriate Sobolev completions as in Atiyah and Bott [2], Section
14; see, for example, Hausel and Thaddeus [17], Section 8 for the case of Higgs bundles.
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2.2. Harder–Narasimhan filtrations and the Shatz stratification. The Harder–

Narasimhan filtration of a vector bundle was introduced in [9], Proposition 1.3.9

and studied systematically by Shatz [24], Section 3. It plays an important role in

the work of Atiyah and Bott [2], Section 7. We refer the reader to these references

for details on what follows.

Let E be a holomorphic vector bundle on X . A Harder-Narasimhan Filtration

of E, is a filtration of the form

HNFðEÞ : E ¼ Es � Es�1 � � � � � E1 � E0 ¼ 0 ð2:1Þ

which satisfies the following two properties:

(i) mðEjþ1=EjÞ < mðEj=Ej�1Þ for 1a ja s� 1:

(ii) Ej=Ej�1 is semistable for 1a ja s.

For brevity, when we have a filtration E ¼ Es � Es�1 � � � � � E1 � E0 ¼ 0 we

shall sometimes write Ej ¼ Ej=Ej�1 for the subquotients. The associated graded

vector bundle is

GrðEÞ ¼ 0
s

j¼1

Ej=Ej�1 ¼ 0
s

j¼1

Ej:

Any vector bundle E has a unique Harder–Narasimhan filtration. The sub-

bundle E1 � E is called the maximal destabilizing subbundle of E; its rank is max-

imal among subbundles of E of maximal slope. Consider the Harder–Narasimhan

polygon as the polygon in the ðr; dÞ-plane with vertices
�
rkðEjÞ; degðEjÞ

�
for j ¼

0; . . . ; s. The slope of the line joining
�
rkðEj�1Þ; degðEj�1Þ

�
and

�
rkðEjÞ; degðEjÞ

�
is mðEjÞ. Condition (i) above says that the Harder–Narasimhan polygon is

convex. Clearly this is equivalent to saying that mðEjÞ < mðEj�1Þ for j ¼ 2; . . . ; s.

The Harder–Narasimhan type of E is the following vector in Rr:

HNTðEÞ ¼ m ¼
�
mð �E1E1Þ; . . . ; mð �E1E1Þ; . . . ; mðEsÞ; . . . ; mðEsÞ

�
where r ¼ rkðEÞ, and the slope of each Ej is repeated rj ¼ rkðEjÞ times.

There is a finite decomposition of Mðr; dÞ by the Harder–Narasimhan type of

the underlying vector bundle E of a Higgs bundle ðE;FÞ:

Mðr; dÞ ¼
[
m

U 0
m ð2:2Þ

where U 0
m � Mðr; dÞ is the subspace of Higgs bundles ðE;FÞ whose underlying

vector bundle E has Harder–Narasimhan type m. When ðE;FÞ is strictly semi-

stable we take its Harder–Narasimhan type to be that of the polystable represen-
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tative of its S-equivalence class. As a consequence of Shatz [24], Propositions 10

and 11 the decomposition (2.2) has nice properties and for this reason it is known

as the Shatz stratification. Note that there is an open dense stratum U 0
ðd=r;...;d=rÞ

corresponding to Higgs bundles ðE;FÞ for which the underlying vector bundle

E is itself semistable (see Hitchin [20], Proposition 6.1 in the rank 2 case and [4],

Proposition 3.12 for general rank). Since F a H 0
�
EndðEÞnK

�
GH 1

�
EndðEÞ

��
(by Serre duality), such a Higgs bundle represents a point in the cotangent bundle

of the moduli space of stable bundles Nsðr; dÞ when E is stable. Thus, if

ðr; dÞ ¼ 1

U 0
ðd=r;...;d=rÞ ¼ T �Nðr; dÞ � Mðr; dÞ:

2.3. The C�-action and the Białynicki-Birula stratification. We review some

standard facts about the C�-action on Mðr; dÞ. For more details see, e.g.,

Simpson [26], Section 4, especially Lemma (4.1.).

The holomorphic action of the multiplicative group C� on Mðr; dÞ is defined
by the multiplication:

z � ðE;FÞ 7! ðE; z �FÞ:

The limit ðE0; j0Þ ¼ limz!0 z � ðE;FÞ exists for all ðE;FÞ a Mðr; dÞ. More-

over, this limit is fixed by the C�-action. A Higgs bundle ðE;FÞ is a fixed point

of the C�-action if and only if it is a Hodge bundle, i.e. there is a decomposition

E ¼ 0 p

j¼1
Ej with respect to which the Higgs field has weight one: F : Ej !

Ejþ1 nK . The type of the Hodge bundle ðE;FÞ is
�
rkðE1Þ; . . . ; rkðEpÞ

�
.

Let fFlg be the irreducible components of the fixed point locus of C� on

Mðr; dÞ. Let

Uþ
l :¼

�
ðE;FÞ a M j lim

z!0
z � ðE;FÞ a Fl

�
:

Then we have the Białynicki-Birula stratification (cf. [3], Theorem 4.1) of Mðr; dÞ:

M ¼
[
l

Uþ
l :

Note that there is a distinguished component

Fmin ¼ Nðr; dÞ

of the fixed locus corresponding to semistable Higgs bundles with zero Higgs field

and that we have a corresponding Białynicki-Birula stratum Uþ
min. Let ðE;FÞ be

a semistable Higgs bundle. When the underlying vector bundle E is itself semi-

stable, clearly limz!0 z � ðE;FÞ ¼ ðE; 0Þ. Conversely, if limz!0 z � ðE;FÞ ¼ ðE; 0Þ a
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Mðr; dÞ, then ðE; 0Þ is a semistable Higgs bundle and hence E is a semistable

vector bundle. Thus we have the following result, valid for any rank.

Proposition 2.2. Let ðE;FÞ a Mðr; dÞ. Then limz!0 z � ðE;FÞ ¼ ðE; 0Þ if and only

if E is semistable. r

In view of this result the following proposition is now immediate.

Proposition 2.3. The following subspaces of the moduli space Mðr; dÞ coincide:

U 0
ðd=r;...;d=rÞ ¼ Uþ

min: r

3. The rank 2 case

In this section we recall, for completeness, a theorem of Hausel, which says that in

rank 2 the Shatz and Białynicki-Birula stratifications coincide.

Let ðE;FÞ be a semistable rank 2 Higgs bundle corresponding to a fixed point

of the C�-action on Mð2; dÞ. In view of the results explained in Section 2.3, either

F ¼ 0 or ðE;FÞ is of the form

ðE;FÞ ¼ E1aE2;
0 0

j 0

� � !
: ð3:1Þ

Let d1 ¼ degðE1Þ, then degðE2Þ ¼ d � d1. Semistability of ðE;FÞ immediately

shows that d1 must satisfy the bounds

da 2d1a d þ 2g� 2:

If d < 2d1 then jA 0, and if d ¼ 2d1 then such a Higgs bundle is S-equivalent to

ðE; 0Þ. Thus, the components of the fixed locus are Fmin ¼ Nð2; dÞ and, for each
d1 with d < 2d1a d þ 2g� 2, a component Fd1 consisting of ðE;FÞ of the form

(3.1). (It is easy to see that Fd1 is indeed connected, cf. Hitchin [19], Sec. 7.)

The methods employed in the present paper readily give the following result

(cf. Remark 5.7).

Proposition 3.1. Let ðE;FÞ a Mð2; dÞ be a rank 2 Higgs bundle such that E is

an unstable vector bundle with maximal destabilizing line bundle E1 � E. Then the

limit ðE0;F0Þ ¼ limz!0ðE; z �FÞ is

ðE0;F0Þ ¼ E1aE=E1;
0 0

j21 0

� � !
;
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where j21 is induced from F. The associated graded vector bundle is GrðE0Þ ¼
GrðEÞ. r

Combining Proposition 3.1 with Proposition 2.2 immediately gives the follow-

ing corollary.

Corollary 3.2 (Hausel [12], Proposition 4.3.2). The Shatz stratification of Mð2; dÞ
coincides with the Białynicki-Birula stratification. More precisely, U 0

ðd=2;d=2Þ ¼
Uþ

min ¼ T �Nð2; dÞ (where the last identity holds for d odd ), and U 0
d1;d�d1

¼ Uþ
d1

for each d1 satisfying d < 2d1a d þ 2g� 2. r

4. Bounds on Harder–Narasimhan types in rank 3

Let ðE;FÞ be a rank 3 Higgs bundle. Let ðm1; m2; m3Þ be the Harder–Narasimhan

type of E, so that m1bm2bm3 and m1 þ m2 þ m3 ¼ 3m, where m ¼ mðEÞ. We can

write the Harder–Narasimhan filtration of the vector bundle E as follows:

HNFðEÞ : 0 ¼ E0 � E1 � E2 � E3 ¼ E;

where we have made the convention that Ei ¼ Ej if mi ¼ mj . Thus, for example, if

m1 ¼ m2 > m3 then the Harder–Narasimhan filtration is

HNFðEÞ : 0 ¼ E0 � E1 ¼ E2 � E3 ¼ E

and rkðE1Þ ¼ rkðE2Þ ¼ 2. Similarly, if m1 > m2 ¼ m3 then rkðE1Þ ¼ 1 and

rkðE2Þ ¼ 3.

We shall next introduce some notation which will be used throughout the

remainder of the paper.

Let j21 : E1 ! E=E1 nK be the map induced by F and let

I � E=E1 ð4:1Þ

be the subbundle defined by saturating the subsheaf j21ðE1ÞnK�1 � E=E1.

Similarly, let j32 : E2 ! E=E2 nK be the map induced by F and let

N ¼ kerðj32Þ � E2 ð4:2Þ

viewed as a subbundle.

Remark 4.1. Let ðE;FÞ be a stable Higgs bundle such that E is an unstable vec-

tor bundle of Harder–Narasimhan type ðm1; m2; m3Þ. Then E1 � E is destabilizing

and hence, by stability of ðE;FÞ, we have j21A 0. Similarly E2 � E is destabiliz-

ing and so j32A 0 (unless m2 ¼ m3 , E2 ¼ E).
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Proposition 4.2. Let ðE;FÞ be a semistable rank 3 Higgs bundle of Harder–

Narasimhan type ðm1; m2; m3Þ. Then

0am1 � m2a 2g� 2; ð4:3Þ
0am2 � m3a 2g� 2: ð4:4Þ

Proof. The fact that the di¤erences miþ1 � mi are non-negative is just the convexity

of the Harder–Narasimhan polygon.

If E is semistable the result is clear, so we may assume that this is not the case.

If m1 > m2 then rkðE1Þ ¼ 1, and I � E=E1 is a line bundle, since j21A 0 by

Remark 4.1. It follows that we have a non-zero map of line bundles E1 ! I nK

and so

mðIÞ þ 2g� 2bmðE1Þ ¼ m1:

Also, since E2=E1 � E=E1 is the maximal destabilizing subbundle, we have that

mðIÞamðE2=E1Þ ¼ m2

(note that this inequality also holds if m2 ¼ m3). Combining these two inequalities

proves (4.3).

If m2 > m3 then rkðE2Þ ¼ 2, and N � E2 is a line bundle, since j32A 0 by

Remark 4.1. It follows that we have a non-zero map of line bundles E2=N !
E=E2 nK and so

mðE=E2Þ þ 2g� 2bmðE2=NÞ
() m3 þ 2g� 2bdegðE2Þ � mðNÞ ¼ m1 þ m2 � mðNÞ:

Also, since E1 � E2 is maximal destabilizing, we have that

mðNÞamðE1Þ ¼ m1

(note that this inequality also holds if m1 ¼ m2). Combining these two inequalities

proves (4.4). r

Note that the proof of the preceding Proposition gives the following bounds on

the slopes of the bundles I and N.

Proposition 4.3. Let ðE;FÞ be a semistable rank 3 Higgs bundle of Harder–

Narasimhan type ðm1; m2; m3Þ and define I � E=E1 and N � E2 as above.

(1) If m1 > m2 then I � E=E1 is a line subbundle of a rank 2 bundle and

m1 � ð2g� 2ÞamðIÞam2.

(2) If m2 > m3 then N � E2 is a line subbundle of a rank 2 bundle and

m1 þ m2 � m3 � ð2g� 2ÞamðNÞam1. r
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5. Limits of the C�-action

The purpose of the present section is to analyse the limit as z ! 0 of z � ðE;FÞ as
a function of the Harder–Narasimhan type of E. Note that the case of trivial

Harder–Narasimhan filtration, corresponding to ðE;FÞ with semistable underly-

ing vector bundle E, is covered by Proposition 2.2.

5.1. Non-trivial Harder–Narasimhan filtrations. Again we limit ourselves to

considering rank 3 stable Higgs bundles ðE;FÞ. We shall use the notation intro-

duced in Section 4.

Theorem 5.1. Let ðE;FÞ a Mð3; dÞ be such that E is an unstable vector bundle of

slope m and with Harder–Narasimhan type ðm1; m2; m3Þ. Then the limit ðE0;F0Þ ¼
limz!0ðE; z �FÞ is given as follows.

(1) Assume that m2 < m. Then m1 > m2bm3, the subbundle I � E=E1 defined in

(4.1) is a line bundle, and one of the following alternatives holds.

(1.1) The slope of I satisfies m1 � ð2g� 2ÞamðIÞ < � 1
3 m1 þ 2

3 m2 þ 2
3 m3. Then

ðE0;F0Þ is the following Hodge bundle of type ð1; 2Þ:

ðE0;F0Þ ¼ E1aE=E1;
0 0

j21 0

� � !
;

where j21 is induced from F. The associated graded vector bundle is

GrðE0Þ ¼ GrðEÞ.
(1.2) The slope of I satisfies mðIÞ ¼ � 1

3 m1 þ 2
3 m2 þ 2

3 m3. Then ðE0;F0Þ is the

following strictly polystable Hodge bundle:

ðE0;F0Þ ¼ E1a I ;
0 0

j21 0

� � !
a
�
ðE=E1Þ=I ; 0

�
;

where j21 is induced from F. The associated graded vector bundle is

E0 ¼ GrðE0Þ ¼ E1a ðE=E1Þ=I a I and its Harder–Narasimhan type is

HNTðE0Þ ¼
�
m1; m;� 1

3 m1 þ 2
3 m2 þ 2

3 m3
�
.

(1.3) The slope of I satisfies � 1
3 m1 þ 2

3 m2 þ 2
3 m3 < mðIÞam3. Then ðE0;F0Þ is

the following Hodge bundle of type ð1; 1; 1Þ:

ðE0;F0Þ ¼ E1a I a ðE=E1Þ=I ;
0 0 0

j21 0 0

0 j32 0

0
@

1
A

0
B@

1
CA:

Here j21 and j32 are induced from F. The associated graded vector

bundle is E0 ¼ GrðE0Þ ¼ E1a ðE=E1Þ=I a I and its Harder–Narasimhan

type is HNTðE0Þ ¼
�
m1; m2 þ m3 � mðIÞ; mðIÞ

�
.
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(1.4) The slope of I satisfies mðIÞ ¼ m2. Then the strict inequality m3 < m2 holds,

the line bundle I ¼ E2=E1, and ðE0;F0Þ is the following Hodge bundle of

type ð1; 1; 1Þ:

ðE0;F0Þ ¼ E1aE2=E1aE=E2;

0 0 0

j21 0 0

0 j32 0

0
@

1
A

0
B@

1
CA;

where j32 is induced from F. The associated graded vector bundle is

E0 ¼ GrðE0Þ ¼ GrðEÞ.
(2) Suppose that m2 > m. Then m1bm2 > m3, the subbundle N � E2 defined in (4.2)

is a line bundle, and one of the following alternatives holds.

(2.1) The slope of N satisfies m1 þ m2 � m3 � ð2g� 2ÞamðNÞ < m. Then

ðE0;F0Þ is the following Hodge bundle of type ð2; 1Þ:

ðE0;F0Þ ¼ E2aE=E2;
0 0

j32 0

� � !
:

The associated graded vector bundle is GrðE0Þ ¼ GrðEÞ.
(2.2) The slope of N satisfies m ¼ mðNÞ. Then ðE0;F0Þ is the following strictly

polystable Hodge bundle:

ðE0;F0Þ ¼ ðN; 0Þa E2=NaE=E2;
0 0

j32 0

� � !

where j32 is induced from F. The associated graded vector bundle is

E0 ¼ GrðE0Þ ¼ E2=NaNaE=E2 and its Harder–Narasimhan type is

HNTðE0Þ ¼
�
2
3 m1 þ 2

3 m2 � 1
3 m3; m; m3

�
.

(2.3) The slope of N satisfies m < mðNÞam2. Then ðE0;F0Þ is the following

Hodge bundle of type ð1; 1; 1Þ:

ðE0;F0Þ ¼ NaE2=NaE=E2;

0 0 0

j21 0 0

0 j32 0

0
@

1
A

0
B@

1
CA

where j21 and j32 are induced from F. The associated graded vector

bundle is E0 ¼ GrðE0Þ ¼ E2=NaNaE=E2 and its Harder–Narasimhan

type is HNTðE0Þ ¼
�
m1 þ m2 � mðNÞ; mðNÞ; m3

�
.

(2.4) The slope of N satisfies mðNÞ ¼ m1. Then the strict inequality m1 > m2
holds, the line bundle N ¼ E1 and ðE0;F0Þ is the following Hodge bundle

of type ð1; 1; 1Þ:
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ðE0;F0Þ ¼ E1aE2=E1aE=E2;

0 0 0

j21 0 0

0 j32 0

0
@

1
A

0
B@

1
CA;

where j21 and j32 are induced from F. The associated graded vector

bundle is E0 ¼ GrðE0Þ ¼ GrðEÞ.
(3) Suppose that m2 ¼ m. Then m1 > m2 > m3, the subbundles I � E=E1 and N � E2

defined in (4.1) and (4.2) are line bundles, and one of the following alternatives

holds.

(3.1) The equivalent conditions N ¼ E1 and I ¼ E2=E1 hold. Then ðE0;F0Þ is
the following Hodge bundle of type ð1; 1; 1Þ:

ðE0;F0Þ ¼ E1aE2=E1aE=E2;

0 0 0

j21 0 0

0 j32 0

0
@

1
A

0
B@

1
CA;

where j21 and j32 are induced from F. The associated graded vector

bundle is E0 ¼ GrðE0Þ ¼ GrðEÞ.
(3.2) Otherwise ðE0;F0Þ is the following strictly polystable Hodge bundle:

ðE0;F0Þ ¼ E1aE=E2;
0 0

j31 0

� � !
a ðE2=E1; 0Þ;

where j31 is induced from F. The associated graded vector bundle is

GrðE0Þ ¼ GrðEÞ.

Remark 5.2. The Cases (1.2), (2.2) and (3) cannot happen when the rank and

degree are co-prime, i.e., ð3; dÞ ¼ 1.

Remark 5.3. The condition m2 < m is equivalent to m3 > � 1
3 m1 þ 2

3 m2 þ 2
3 m3. In

particular the range for mðIÞ in Case (1.2) is non-empty.

Before proceeding with the proof of Theorem 5.1 we deduce a couple of

interesting consequences. The theorem shows that, in general, knowledge of the

Harder–Narasimhan type of E does not su‰ce to determine the underlying bundle

E0 of the limit ðE0;F0Þ ¼ limz!0ðE; z �FÞ. However, there are some Harder–

Narasimhan types ðm1; m2; m3Þ for which E0 is determined by E. We note that, by

Proposition 4.2, one has 0am1 � m3a 4g� 4.

Corollary 5.4. Let ðE;FÞ a Mð3; dÞ be such that E is an unstable vector bundle of

slope m and Harder–Narasimhan type ðm1; m2; m3Þ. Assume that m1 � m3 > 2g� 2.
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Then the limit ðE0;F0Þ ¼ limz!0ðE; z �FÞ is given by (1.4) of Theorem 5.1 if

m2 < m, by (2.4) of Theorem 5.1 if m2 > m, and by (3.1) of Theorem 5.1 if m2 ¼ m.

In particular E0 ¼ GrðE0Þ ¼ GrðEÞ.

Proof. We only have to show that in all the other cases of Theorem 5.1 we have

m1 � m3a 2g� 2.

In Cases (1.1), (1.2) and (1.3) we have mðIÞam3 (cf. Remark 5.3). More-

over, by (1) of Proposition 4.3, we have m1 � ð2g� 2ÞamðIÞ. It follows that

m1 � ð2g� 2Þam3 as desired.

Similarly, in Cases (2.1), (2.2) and (2.3) we have mðNÞa m2 and, by (2) of Prop-

osition 4.3, m1 þ m2 � m3 � ð2g� 2ÞamðNÞ. Hence m1 þ m2 � m3 � ð2g� 2Þam2
which gives the conclusion.

Finally, in Case (3.2) we have j31A 0 (since otherwise E would be semistable)

and hence m1 � m3a 2g� 2. r

In a similar vein, we shall next see that certain types of Hodge bundles can

only be the limit of a Higgs bundle whose underlying vector bundle has the same

Harder–Narasimhan type as that of the Hodge bundle.

Before stating the result we recall (see, e.g., [8] or Hausel–Thaddeus [16]) that

fixed points of type ð1; 1; 1Þ of the form

ðE0;F0Þ ¼ L1aL2aL3;

0 0 0

j21 0 0

0 j32 0

0
@

1
A

0
B@

1
CA

are usually parametrised by the numerical invariants

m1 ¼ degðL2Þ � degðL1Þ þ 2g� 2;

m2 ¼ degðL3Þ � degðL2Þ þ 2g� 2;

subject to the conditions

mi b 0; i ¼ 1; 2;

2m1 þm2 < 6g� 6;

m1 þ 2m2 < 6g� 6;

m1 þ 2m2C 0 ðmod 3Þ:

For our purposes it is more natural to translate to the invariants ðl1; l2; l3Þ with

li ¼ mðLiÞ ¼ degðLiÞ (subject to the condition l1 þ l2 þ l3 ¼ 3m). We then have

corresponding components Fðl1; l2; l3Þ of the fixed locus and the invariants ðl1; l2; l3Þ
are subject to the constraints
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liþ1 � li þ 2g� 2b 0; i ¼ 1; 2;

1

3
l1 þ

1

3
l2 �

2

3
l3 > 0;

2

3
l1 �

1

3
l2 �

1

3
l3 > 0:

Corollary 5.5. Let ðE0;F0Þ ¼
 
L1aL2aL3;

0 0 0
j21 0 0
0 j32 0

� �!
be a Hodge bundle of

type ð1; 1; 1Þ with mðL1Þ � mðL3Þ > 2g� 2. Then mðL1Þ > mðL2Þ > mðL3Þ and any

ðE;FÞ such that limz!0ðE; z �FÞ ¼ ðE0;F0Þ satisfies E0 ¼ GrðE0Þ ¼ GrðEÞ.

Proof. It is easy to see that polystability of ðE0;F0Þ and the condition mðL1Þ�
mðL3Þ > 2g� 2 together imply that j21 and j32 non-zero.

Inspecting the various cases of Theorem 5.1 we see that only in cases (1.4),

(2.4) and (3.1) the limit is a Hodge bundle of type ð1; 1; 1Þ with mðL1Þ � mðL3Þ >
2g� 2. The conclusion follows since in these cases E0 ¼ GrðE0Þ ¼ GrðEÞ. r

The two previous corollaries lead to an identification between Shatz and

Białynicki–Birula strata in some cases. Recall that Uþ
ðl1; l2; l3Þ denotes the Białynicki-

Birula stratum of Higgs bundles whose limits lie in Fðl1; l2; l3Þ and that U 0
ðl1; l2; l3Þ

denotes the Shatz stratum of Higgs bundles whose Harder–Narasimhan type is

ðl1; l2; l3Þ.

Theorem 5.6. Let ðl1; l2; l3Þ be such that l1 � l3 > 2g� 2. Then the corresponding

Shatz and Białynicki-Birula strata in Mð3; dÞ coincide:

U 0
ðl1; l2; l3Þ ¼ Uþ

ðl1; l2; l3Þ: r

5.2. Proof of Theorem 5.1. For the proof, we adopt the complex analytic point

of view as explained in Section 2.1. Let E be the Cl bundle underlying E and

consider the pair ðqE ;FÞ representing ðE;FÞ in the configuration space of all

Higgs bundles. Our strategy of proof is to find a family of gauge transforma-

tions gðzÞ a GC, parametrised by z a C�, such that the limit in the configuration

space

ðqE0
;F0Þ ¼ lim

z!0

�
gðzÞ � ðqE ; z �FÞ

�

gives a stable Higgs bundle ðE0;F0Þ. It will then follow that ðE0;F0Þ represents
the limit in the moduli space.

We now need to consider several cases.
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5.2.1. Proof of Theorem 5.1 – Case (1). Suppose that m2 < m. Then, since

m1 > m, we must have m1 > m2bm3. It follows from (1) of Proposition 4.3 that

I � E=E1 is a line bundle and that m1 � ð2g� 2ÞamðIÞam2.

We consider two separate cases.

Case A: m1C (2gC 2)J m(I )HC1
3
m1B

2
3
m2B

2
3
m3.

We have a short exact sequence 0 ! E1 ! E ! E=E1 ! 0: Let E, E1 and E2

be the Cl vector bundles underlying E, E1 and E=E1, respectively. Then

EGE1aE2 ð5:1Þ

and the holomorphic structure on E is given by the q-operator:

qE ¼ q1 b

0 q2

� �
;

where q1 and q2 are q-operators defining the holomorphic structures on E1 and E2,

respectively, and b a A0;1
�
HomðE2;E1Þ

�
. With respect to the smooth decomposi-

tion (5.1), the Higgs field F a A1;0
�
EndðEÞ

�
takes the form:

F ¼ j11 j12
j21 j22

� �
:

Consider, for each z a C�, the constant gauge transformation gðzÞ a GC

defined by

gðzÞ :¼ 1 0

0 z � I

� �
;

with respect to the decomposition (5.1). Then:

gðzÞ � ðz �FÞ ¼ gðzÞ�1ðz �FÞgðzÞ

¼ z � j11 z2 � j12
j21 z � j22

� �
! 0 0

j21 0

� �
when z ! 0

and, moreover,

gðzÞ � qE ¼ gðzÞ�1 � qE � gðzÞ ¼ q1 z � b
0 q2

� �
! q1 0

0 q2

� �
when z ! 0:
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Note that this simple formula for the gauge transformed q-operator is valid be-

cause the gauge transformation is constant on X . Thus, in the configuration space

of all Higgs bundles the limit limz!0 z � ðE;FÞ is gauge equivalent to

ðE0;F0Þ ¼ E1aE=E1;
0 0

j21 0

� � !
:

This Higgs bundle will represent the limit in the moduli space Mð3; dÞ provided
that it is stable.

To show stability, we note that there are three kinds of F0-invariant sub-

bundles of E0, namely E1a I , E=E1, and an arbitrary line bundle L � E=E1.

We deal with each case in turn:

(1) The subbundle E1a I � E1aE=E1. By hypothesis mðIÞ < � 1
3 m1 þ 2

3 m2 þ 2
3 m3

which is equivalent to mðE1a IÞ < mðEÞ ¼ mðE0Þ as required.
(2) The subbundle E=E1 � E1aE=E1. It is immediate from the properties of the

Harder–Narasimhan filtration that mðE=E1Þ < mðEÞ ¼ mðE0Þ.
(3) A line subbundle L � E=E1. From the properties of the Harder–Narasimhan

filtration we have that either E2=E1 � E=E1 is maximal destabilizing (if

m2 < m3) or E=E1 is semistable (if m2 ¼ m3). Either way we have that

mðLÞam2. Since m2 < m ¼ mðEÞ by hypothesis, it follows that mðLÞ < mðEÞ ¼
mðE0Þ.

Finally note that, clearly, GrðE0Þ ¼ E1aE2=E1aE=E2 ¼ GrðEÞ. Altogether

we have seen that, under the given conditions on the slope of I , the limiting bundle

ðE0;F0Þ is as stated in Case (1.1) of the theorem.

Case B: C1
3
m1 B

2
3
m2 B

2
3
m3 J m(I )J m2.

Define Q ¼ ðE=E1Þ=I so that we have a short exact sequence 0 ! I !
E=E1 ! Q ! 0: Let E1, I and Q be the Cl bundles underlying E1, I and Q,

respectively, so that we have a Cl-decomposition

E ¼ E1aIaQ: ð5:2Þ

Recalling that I comes from FðE1ÞnK�1, we may write the Higgs field F as:

F ¼
j11 j12 j13
j21 j22 j23
0 j32 j33

0
@

1
A
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with respect to the decomposition (5.2). Moreover, the holomorphic structure on

E is of the form

qE ¼
q1 b12 b13
0 q2 b23
0 0 q3

0
B@

1
CA:

Now, for each z a C� take the following constant gauge transformation:

gðzÞ :¼
1 0 0

0 z 0

0 0 z2

0
@

1
A

of E with respect to the decomposition (5.2). Then

gðzÞ � ðz �FÞ ¼ gðzÞ�1ðz �FÞgðzÞ

¼
z � j11 z2 � j12 z3 � j13
j21 z � j22 z2 � j23
0 j32 z � j33

0
B@

1
CA!

0 0 0

j21 0 0

0 j32 0

0
@

1
A when z ! 0

and

gðzÞ � qE ¼ gðzÞ�1 � qE � gðzÞ

¼
q1 z � b12 z2 � b13
0 q2 z � b23
0 0 q3

0
B@

1
CA!

q1 0 0

0 q2 0

0 0 q3

0
B@

1
CA when z ! 0:

Hence, in the configuration space, limz!0 z � ðE;FÞ is gauge equivalent to

ðE0;F0Þ ¼ E1a I a ðE=E1Þ=I ;
0 0 0

j21 0 0

0 j32 0

0
@

1
A

0
B@

1
CA:

Now we prove that ðE0;F0Þ is a semistable Higgs bundle. The F0-invariant

subbundles of E0 are the following:

(1) The subbundle I a ðE=E1Þ=I � E0. We have that m
�
I a ðE=E1Þ=I

�
< mðEÞ ,

mðE1Þ > mðEÞ, which holds by properties of the Harder–Narasimhan filtration.

(2) The subbundle ðE=E1Þ=I � E0. The condition m
�
ðE=E1Þ=I

�
a mðEÞ is equiva-

lent to � 1
3 m1 þ 2

3 m2 þ 2
3 m3amðIÞ which holds by assumption.
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Consider the situation when � 1
3 m1 þ 2

3 m2 þ 2
3 m3 ¼ mðIÞ; this is the only case

in which ðE0;F0Þ is strictly semistable. Then Q ¼ ðE=E1Þ=I is a F-invariant

subbundle with mðQÞ ¼ m, and it follows that the polystable representative of the

S-equivalence class of ðE0;F0Þ is obtained by setting j32 ¼ 0 in F0. This leads to

the description given in Case (1.2).

It remains to analyze the Harder–Narasimhan type of E0 when � 1
3 m1 þ 2

3 m2 þ
2
3 m3AmðIÞ. There are two situations to consider.

The first situation is when mðIÞamðQÞ. Then the Harder–Narasimhan type

of E0 is HNTðE0Þ ¼
�
mðE1Þ; mðQÞ; mðIÞ

�
. Hence, using Shatz’s theorem [24],

Theorem 3 that the Harder–Narasimhan polygon rises under specialization, we

conclude that mðIÞamðE=E2Þ. This leads to the description given in Case (1.3).

The second situation is when mðIÞ > mðQÞ. Then the Harder–Narasimhan type

of E0 is HNTðE0Þ ¼
�
mðE1Þ; mðIÞ; mðQÞ

�
. Hence, from Shatz’s theorem we de-

duce that mðIÞbmðE2=E1Þ. But I � E=E1 so, from the properties of the Harder–

Narasimhan filtration, we conclude that in fact mðIÞ ¼ m2. If m3 ¼ m2 it follows

that mðIÞ ¼ mðQÞ, contradicting mðIÞ > mðQÞ. Hence m3 < m2 and I � E=E1 is

the unique maximal destabilizing subbundle, i.e., I ¼ E2=E1 and so Case (1.4)

occurs.

This completes the proof of Case (1).

Remark 5.7. The arguments given for Case A above apply word for word to

prove Proposition 3.1, except that the argument to show that ðE0;F0Þ is a semi-

stable Higgs bundle is simpler: indeed, in the rank 2 case, the only F-invariant

subbundle of E0 is E=E1. This satisfies mðE=E1Þ < mðEÞ ¼ mðE0Þ because the sub-
bundle E1 is destabilizing, i.e., mðE1Þ > mðEÞ.

5.2.2. Proof of Theorem 5.1 – Case (2). Suppose that m2 > m. Then, since

m3 < m, we must have m1bm2 > m3. It follows from (2) of Proposition 4.3 that

N � E2 is a line bundle and that m1 þ m2 � m3 � ð2g� 2ÞamðNÞam1.

We consider two separate cases.

Case C: m1B m2 C m3 C (2gC 2)J m(N )H m.
We have a short exact sequence 0 ! E2 ! E ! E=E2 ! 0: Let E, E2 and

E3 be the Cl vector bundles underlying E, E2 and E=E2, respectively. Then

EGE2aE3 and the holomorphic structure on E is given by a q-operator of

the form qE ¼ q2 b

0 q3

� �
, while the Higgs field F a A1;0

�
EndðEÞ

�
takes the form:

F ¼ j22 j23
j32 j33

� �
. The same calculation as in Case A shows that in the configuration

space of all Higgs bundles, limz!0 z � ðE;FÞ is gauge equivalent to

ðE0;F0Þ ¼ E2aE=E2;
0 0

j32 0

� � !
:
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This Higgs bundle will represent the limit in the moduli space Mð3; dÞ if it is

stable. There are three kinds of F0-invariant subbundles to check:

(1) The subbundle N � E2aE=E2. By hypothesis mðNÞ < m ¼ mðEÞ ¼ mðE0Þ.
(2) The subbundle E=E2 � E2aE=E2. It is immediate from the properties of the

Harder–Narasimhan filtration that mðE=E2Þ < mðEÞ ¼ mðE0Þ.
(3) Subbundles LaE=E2 � E2aE=E2 for L � E2 a line subbundle. From the

properties of the Harder–Narasimhan filtration we have that either E1 � E2

is maximal destabilizing (if m1 > m2) or E2 is semistable (if m1 ¼ m2). Either

way we have that mðLÞa m1. It follows that

2mðLaE=E2Þ ¼ mðLÞ þ 3m� m1 � m2

a 3m� m2

< 2m;

where we have used the hypothesis m2 > m in the last step. Hence

mðLaE=E2Þ < m ¼ mðEÞ ¼ mðE0Þ as desired.

Finally note that, clearly, GrðE0Þ ¼ E1aE2=E1aE=E2 ¼ GrðEÞ. Altogether

we have seen that, under the given conditions on the slope of I , the limiting bundle

ðE0;F0Þ is as stated in Case (2.1) of the theorem.

Case D: mJ m(N )J m1.
Define R ¼ E2=N so that we have a short exact sequence 0 ! N ! E2 !

R ! 0: Let N, R and E3 be the Cl bundles underlying N, R and E=E2, respec-

tively, so that we have a decomposition of Cl-bundles

E ¼ NaRaE3: ð5:3Þ

Recalling that N comes from kerðj21Þ, we may write the Higgs field F as:

F ¼
j11 j12 j13
j21 j22 j23
0 j32 j33

0
@

1
A

with respect to the decomposition (5.3). Moreover, the holomorphic structure on

E is of the form

qE ¼
q1 b12 b13
0 q2 b23
0 0 q3

0
B@

1
CA:
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Now take the constant gauge transformation gðzÞ ¼
1 0 0
0 z 0
0 0 z2

� �
of E with respect to

the decomposition (5.3). The same calculation as in Case B shows that in the

configuration space limz!0 z � ðE;FÞ is gauge equivalent to

ðE0;F0Þ ¼ NaE2=NaE=E2;

0 0 0

j21 0 0

0 j32 0

0
@

1
A

0
B@

1
CA:

We now prove that ðE0;F0Þ is a semistable Higgs bundle. The F0-invariant sub-

bundles of E0 are the following:

(1) The subbundle E=E2 � E0. From the properties of the Harder–Narasimhan

filtration we have mðE=E2Þ < mðEÞ ¼ mðE0Þ.
(2) The subbundle E2=NaE=E2 � E0. The hypothesis mðNÞbm is equivalent to

mðE2=NaE=E2Þam ¼ mðEÞ ¼ mðE0Þ.

Consider the situation when mðNÞ ¼ m; this is the only case in which ðE0;F0Þ is
strictly semistable. Then E2=NaE=E2 � E0 is a F-invariant subbundle of slope

mðE2=NaE=E2 � E0Þ ¼ m, and it follows that the polystable representative of the

S-equivalence class of ðE0;F0Þ is obtained by setting j21 ¼ 0 in F0. This leads to

the description given in Case (2.2).

It remains to analyze the Harder–Narasimhan type of E0 when mðNÞAm. For

brevity we write R ¼ E2=N. There are two situations to consider.

The first situation is when mðNÞamðRÞ. Then the Harder–Narasimhan type

of E0 is HNTðE0Þ ¼
�
mðRÞ; mðNÞ; m3

�
. Hence, once again using Shatz’s theorem,

we conclude that mðNÞam2. This leads to the description given in Case (2.3).

The second situation is when mðNÞ > mðRÞ. Then the Harder–Narasimhan

type of E0 is HNTðE0Þ ¼
�
mðNÞ; mðRÞ; m3

�
. Hence, from Shatz’s theorem we

deduce that mðNÞb m1. But N � E2 so, from the properties of the Harder–

Narasimhan filtration, we conclude that in fact mðNÞ ¼ m1. If m2 ¼ m1 it fol-

lows that mðNÞ ¼ mðRÞ, contradicting mðNÞ > mðRÞ. Hence m2 < m1 and so

N � E2 is the unique maximal destabilizing subbundle, i.e., N ¼ E1 and Case

(2.4) occurs.

5.2.3. Proof of Theorem 5.1 – Case (3). Suppose that m2 ¼ m. Then, since E

is unstable, we must have m1 > m2 > m3. It follows from Proposition 4.3 that the

subbundles I � E=E1 and N � E2 are line bundles.

Consider the line bundle N � E2. If NAE1 we have a non-zero map

N ! E2=E1:
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It follows that mðNÞamðE2=E1Þ ¼ m2 ¼ m. Arguing as in Case C above, we see

that in the configuration space of all Higgs bundles, limz!0 z � ðE;FÞ is gauge

equivalent to

ðE0;F0Þ ¼ E2aE=E2;
0 0

j32 0

� � !

and that this is strictly semistable. Moreover, the subbundle E1aE=E2 is F-

invariant and has slope mðE1aE=E2Þ ¼ m2 ¼ m. Hence the polystable represen-

tative of the S-equivalence class of ðE0;F0Þ is as stated in Case (3.2).

Now suppose that N ¼ E1. In this case we can argue as in Case D above and

see that the limit is as stated in Case (3.1).

In an analogous manner, we see that if I AE2=E1 the polystable representative

of the S-equivalence class of ðE0;F0Þ is as stated in Case (3.2), while if I ¼ E2=E1

the limit is as stated in Case (3.1).

Since the Cases (3.1) and (3.2) are mutually exclusive, we see that in fact the

conditions N ¼ E1 and I ¼ E2=E1 are equivalent. This completes the proof of

Case (3) and thus the proof of Theorem 5.1.
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