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A note on the global regularity of steady flows
of generalized Newtonian fluids
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Abstract. We establish regularity results for solutions of a generalized Newtonian model in
a cubic domain. We prove regularity results in the L2-space for the second derivatives of
the velocity and the first derivatives of the pressure. Further, we show that the gradient of
weak solutions is integrable up to the boundary with any finite exponent.
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1. Introduction

In this article we are concerned with the following boundary value problem

�n0Du� n1‘ � ½ðmþ jDujÞp�2Du� þ ðu � ‘Þuþ ‘p ¼ f ; in W;

‘ � u ¼ 0; in W;

�
ð1:1Þ

where

Du ¼ 1

2
ð‘uþ ‘uTÞ;

ðu � ‘Þu ¼ ukqku, n0, n1 and m are positive constants and p a ð1; 2Þ. Below we show

L2-regularity, up to the boundary, for the second derivatives of the velocity field

and for the first derivatives of the pressure field. The assumption n0 > 0 is crucial

in our proof. However we observe that even if such a case is easier to handle from

a mathematical point of view, it is physically interesting and more realistic.

The up to the boundary regularity problem has been studied by few authors.

In the case p < 2, considered here, the most significant result has been obtained

in [4], in the more di‰cult case n0 ¼ 0 and with a non-flat boundary. For results



with n0 ¼ 0 and a flat boundary see the articles [7], [2] and [9]. Further, cylindrical

domains were considered by the author in the previous articles [12], [13].

Just for completeness, we recall that for p > 2 (the so-called shear thickening

case) regularity results up to the boundary were obtained in the half-space case Rn
þ

in [1], in the ‘‘cubic domain’’-case (see below) in [6], [5], and in suitable smooth

domains in [3].

The general outline of our proof follows the one introduced in the pioneering

article [1]. Actually, here we work in the simplified framework introduced in [6],

namely, a three-dimensional cubic domain W ¼ ð�0; 1½Þ3 instead of the half space

Rn
þ.
In [4] it is proved that

u a W 1;qðWÞBW 2; lðWÞ; ‘p a LlðWÞ;

where

q ¼ 4p� 2; l ¼ q

pþ 1
:

Hence, if p < 2 and n0 ¼ 0, the integrability exponent l remains strictly less than 2.

In the sequel we show that u a W 2;2ðWÞ provided that n0 > 0.

The second question which arises is the following one: is it possible to prove the

W 1;q-regularity, up to the boundary, of solutions for any finite power q? This, in

particular, implies that the solution belongs to C0;aðWÞ, for any a < 1. This result,

under the assumption n0 > 0, was proved in [8] for a very large class of problems.

In particular, in this last reference, the boundary condition is non-homogeneous,

there are no convexity assumptions and the power p ¼ pðxÞ < 2 may depend on x.

We have shown the same result (independently from [8]) in the simpler case (1.1).

Since our proof is very short, we present it to the reader. We observe that, for the

time being, we were not able to prove that the full gradient belongs to LlðWÞ; see
[8] for some considerations on this point. However, even for n0 ¼ 0 it seems pos-

sible to show better results, namely that u a C1;aðWÞ for su‰ciently small forces.

2. Notations and statement of the main results

Throughout the article W denotes a three dimensional cube W ¼ ð�0; 1½Þ3. We de-

note by G two opposite faces in the x3 direction of W, i.e.,

G ¼ fx : jx1j < 1; jx2j < 1; x3 ¼ 0gA fx : jx1j < 1; jx2j < 1; x3 ¼ 1g:

We set x 0 ¼ ðx1; x2Þ and say that a function is x 0-periodic if it is periodic in both

directions x1 and x2. We impose Dirichlet boundary conditions on G and period-
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icity in the other two directions. Therefore, we can write the boundary conditions

as

ujG ¼ 0; u is x 0-periodic: ð2:1Þ

By LpðWÞ, p a ½1;þl�, we denote the usual Lebesgue space with norm k � kp.

Further, we set k � k ¼ k � k2. By Wm;pðWÞ, m a non-negative integer and

p a ð1;þlÞ, we denote the usual Sobolev space with norm k � km;p. We denote

by W
1;p
0 ðWÞ the closure in W 1;pðWÞ of Cl

0 ðWÞ and by W�1;p 0 ðWÞ, p 0 ¼ p=ðp� 1Þ,
the strong dual of W 1;p

0 ðWÞ with norm k � k�1;p 0 . In notation concerning duality

pairings, norms and functional spaces, we will not distinguish between scalar and

vector fields.

We set

V ¼ fv a Cl
0 ðWÞ : ‘ � v ¼ 0g

and

Vq ¼ fv a W 1;qðWÞ : ‘ � v ¼ 0; vjG ¼ 0; v is x 0-periodicg:

By V 0
q we denote the dual space of Vq. Recall that, by appealing to inequalities of

Korn type, one gets the following result (see [17] Proposition 1.1).

Lemma 2.1. There exists a constant c such that

kvkq þ k‘vkqa ckDvkq for each v a Vq:

This result implies that the two sides of the above inequality give equivalent

norms in Vq.

We denote by D2u the set of all the second partial derivatives of u. The symbol

D2
�u may denote any second-order partial derivative q2ikuj (with the obvious mean-

ing q2ikuj ¼
q2uj

qxiqxk
) except for the derivatives q233uj, j ¼ 1; 2. Moreover we set

jD2
�uj

2 :¼ jq233u3j
2 þ

X3

i; j;k¼1
ði;kÞAð3;3Þ

jq2ikujj
2:

By the symbol ‘�p we denote the second and the third components of the gradient

of p.

We denote by c positive constants that may have di¤erent values even in the

same equation.

Definition 2.2. Assume that f a V 0
2. We say that u is a weak solution of problem

(1.1)–(2.1) if u a V2 and satisfies
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n0

ð
W

‘u � ‘j dxþ n1

ð
W

ðmþ jDujÞp�2Du �Dj dx�
ð
W

ðu � ‘Þj � u dx ¼
ð
W

f � j dx
ð2:2Þ

for all j a V2.

The existence of a weak solution can be obtained using arguments of the

theory of monotone operators, following J.-L. Lions [16]. For a proof of the exis-

tence result we refer to [15].

Note that we can replace j by u in (2.2). Then, using Lemma 2.1, it is easy to

get the estimates

k‘uka ck f k�1;2;

kDukpa cðk f k1=ðp�1Þ
�1;p 0 þ 1Þ:

ð2:3Þ

By restriction of (2.2) to divergence-free test functions with compact support and

by de Rham’s Theorem, one can associate the pressure field p, determined up to a

constant.

Our aim is to prove the following regularity theorems.

Theorem 2.3. Let be p a 3
2 ; 2
� �

, f a L2ðWÞ, u a weak solution of problem (1.1)–

(2.1), and p the corresponding pressure field. Then u a W 2;2ðWÞ, ‘p a L2ðWÞ and

kD2uk þ k‘pka ck f kð1þ k f k2Þ: ð2:4Þ

Theorem 2.4. Let p a 3
2 ; 2
� �

, f a L3ðWÞ, and u, p as in Theorem 2.3. Then,
besides the regularity stated in Theorem 2.3, there holds

u a W 1;qðWÞ for all q a ð1;þlÞ:

The above assumption on f may be replaced by the condition

f a W�1;qðWÞ for all q < þl:

In the remaining part of this section we recall some preliminary results. The

first one is a well known regularity result of solutions of the Stokes system, due

to Cattabriga [11]. Let us consider the following Stokes problem:

DW ¼ ‘Pþ G in W;

‘ �W ¼ 0 in W;

WjG ¼ 0; W x 0-periodic:

9>>>=
>>>;

ð2:5Þ

A field W is called a q-weak solution of (2.5) if W a Vq for some q a ð1;þlÞ, and
W satisfies the identity
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ð
W

‘W � ‘j dx ¼
ð
W

G � j dx ð2:6Þ

for all j a Vq 0 .

Lemma 2.5. For every G a W�1;qðWÞ, 1 < q < þl, there exists one and only one

q-weak solution W of the Stokes problem (2.5). Moreover, the solution satisfies the

estimate

kWk1;q þ kPkqaCqkGk�1;q;

where Cq is a positive constant and P is the pressure field associated to W by de

Rham’s Theorem.

For the proof of the above result we refer to [11], [14].

Lemma 2.6. If ‘g ¼ ‘ � G for some G a LqðWÞ, then g a LqðWÞ and

kg� gkqa ckGkq;

where g is the mean value of g in W:

For the proof we refer, for instance, to [10].

3. Proof of Theorem 2.3

As in previous articles (see, for instance, [6], [7], [12]), we replace the use of the

di¤erential quotients method in the tangential directions by formal di¤erentiation

in the same directions.

Let us define the second order tensor S as

S ¼ ðmþ jDjÞp�2
D;

where D is an arbitrary second order tensor. It is easy to verify that

qSij

qDkl

CijCkl b ðp� 1Þðmþ jDjÞp�2jCj2 ð3:1Þ

for any tensors C. Moreover,

qSij

qDkl

����
����a ð3� pÞðmþ jDjÞp�2: ð3:2Þ
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Define, for s ¼ 1; 2,

JsðuÞ ¼
ð
W

‘ � ½ðmþ jDujÞp�2Du� � qssu dx

and

IsðuÞ ¼
ð
W

ðmþ jDujÞp�2jqsDuj2 dx: ð3:3Þ

By integrating twice by parts and taking into account (3.1) it is easily seen that (see

[7] for details)

JsðuÞb ðp� 1ÞIsðuÞ: ð3:4Þ

Let us consider the following generalized Stokes system:

�n0Du� n1‘ � ½ðmþ jDujÞp�2Du� þ ‘p ¼ f in W;

‘ � u ¼ 0 in W;

�
ð3:5Þ

with the boundary conditions (2.1). For such a system we prove the following

result

Proposition 3.1. Let p a 3
2 ; 2
� �

, f a L2ðWÞ, and ðu; pÞ be a weak solution of prob-

lem (3.5)–(2.1). Then u a W 2;2ðWÞ, ‘p a L2ðWÞ and

kD2uk þ k‘pka ck f k: ð3:6Þ

The proof of this result is split into three fundamental steps: the first step con-

sists of estimating the tangential derivatives of the velocity and pressure fields; the

second step consists of estimating the normal derivatives of the velocity field; the

last step, which is a direct consequence of the previous ones, consists of estimating

the normal derivative of the pressure field. In order to make the reading easier, we

prefer to present each step in a separate lemma.

Lemma 3.2. Let p a ð1; 2Þ, f a L2ðWÞ, and let ðu; pÞ be a weak solution of problem

(3.5)–(2.1). Then D2
�u;‘�p a Ł2ðWÞ and, for s ¼ 1; 2,

kD2
�uk

2 þ IsðuÞ þ k‘�pk2a ck f k2: ð3:7Þ

Proof. Multiplying equation (3.5)1 by q2ssu, s ¼ 1; 2, integrating twice by parts

and, finally, using (3.4) one has
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n0

ð
W

j‘�‘uj2 dxþ n1ðp� 1Þ
ð
W

ðmþ jDujÞp�2jqsDuj2 dx ¼ �
ð
W

f � q2ssu dx: ð3:8Þ

By applying the Hölder and Cauchy–Schwarz inequalities, one obtains that

k‘�‘uka ck f k

and

IsðuÞa ck f k2:

As far as the pressure term is concerned, let us di¤erentiate the first equation (3.5)1
with respect to xs, s ¼ 1; 2:

‘qsp ¼ n0‘ � qs‘uþ n1‘ � qs½ðmþ jDujÞp�2Du� þ qs f :

From Lemma 2.6, we only have to estimate the term qs½ðmþ jDujÞp�2Du�. Since

qs½ðmþ jDujÞp�2Du�

¼ ðmþ jDujÞp�2qsDuþ ðp� 2Þðmþ jDujÞp�3jDuj�1ðDu � qsDuÞDu; ð3:9Þ

we have

jqs½ðmþ jDujÞp�2Du�ja ð3� pÞðmþ jDujÞp�2jqsDuj

almost everywhere in W. Hence qs½ðmþ jDujÞp�2Du� belongs to L2ðWÞ and
ð
W

jqs½ðmþ jDujÞp�2Du�j2 dxa cmp�2IsðuÞ:

By applying Lemma 2.6 we have

kqspk2a cmp�2IsðuÞ þ kqs‘uk2 þ ck f k2; s ¼ 1; 2;

from which, by the above estimates on j‘�‘uj and IsðuÞ, one obtains (3.7). r

Lemma 3.3. Let p a 3
2 ; 2
� �

, f a L2ðWÞ, and let ðu; pÞ be a weak solution of problem

(3.5)–(2.1). Then

X2

l¼1

kq233ulka ck f k: ð3:10Þ
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Proof. By using (3.9), the j-th equation (3.5)1, j ¼ 1; 2, takes the form

2n0q
2
33uj þ n1ðmþ jDujÞp�2

q233uj

þ 2n1ðp� 2Þðmþ jDujÞp�3jDuj�1Dj3

X2

l¼1

Dl3q
2
33ul ¼ Fj � 2fj þ 2qjp; ð3:11Þ

where

FjðxÞ ¼ �½2n0 þ n1ðmþ jDujÞp�2�
X2

k¼1

q2kkuj

� 2n1ðp� 2Þðmþ jDujÞp�3jDuj�1
h
q233u3D33Dj3 þ

X3

l;m;k¼1
ðk;mÞAð3;3Þ

q2kmulDjkDlm

i
:

Equations (3.11), j ¼ 1; 2, can be treated as a 2� 2 linear system in the unknowns

q233uj, j ¼ 1; 2. We denote the elements of the matrix A ¼ AðxÞ associated with

such a system as ajl , where j; l ¼ 1; 2. Then we can rewrite the system as

X2

l¼1

ajlq
2
33ul ¼ Gj; ð3:12Þ

where the elements of the matrix of the system are given by

ajl ¼ ½2n0 þ n1ðmþ jDujÞp�2�djl þ 2n1ðp� 2Þðmþ jDujÞp�3jDuj�1Dj3Dl3

and

Gj ¼ Fj � 2fj þ 2qjp:

Note that ajl ¼ alj ; moreover, if x ¼ ðx1; x2; 0Þ then

X2

j; l¼1

ajlxjxl ¼ ½2n0 þ n1ðmþ jDujÞp�2�jxj2

þ 2n1ðp� 2Þðmþ jDujÞp�3jDuj�1½ðDuÞx�23 ;

where ðDuÞx ¼ ðDuÞijxj; hence

X2

j; l¼1

ajlxjxl b 2n0 þ 2n1 p� 3

2

� �
ðmþ jDujÞp�2

� �
jxj2: ð3:13Þ
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This means that, in the hypothesis pb 3
2 , the matrix A ¼ ðajlÞ is definite positive

a.e. in x a W. From (3.12) and (3.13) with xj ¼ q233uj, j ¼ 1; 2, we get

2n0 þ 2n1 p� 3

2

� �
ðmþ jDujÞp�2

� �X2

l¼1

jq233ul ja
hX2

l¼1

jGl j2
i1=2

a:e: in x a W:

ð3:14Þ

Straightforward calculations show that, for j ¼ 1; 2,

jGjja c
�
2n0 þ 2n1 p� 3

2

	 �
ðmþ jDujÞp�2
jD2

�uj þ 2jqjpj þ 2j fjj

almost everywhere in W. By using the above estimate in (3.14) and dividing both

sides by
�
2n0 þ 2n1 p� 3

2

	 �
ðmþ jDujÞp�2
 we get

X2

l¼1

jq233ul ja cjD2
�uj þ

c

2n0
ðj‘�pj þ j f jÞ; ð3:15Þ

almost everywhere in W. From the hypothesis and the previous lemma, all the

terms on the right-hand side belong to L2ðWÞ. The lemma is proven. r

From the above two lemmas we have obtained D2u a L2ðWÞ and

kD2uka ck f k:

Lemma 3.4. Let p a 3
2 ; 2
� �

, f a L2ðWÞ, and let ðu; pÞ be a weak solution of
problem (3.5)–(2.1). Then

kq3pka ck f k: ð3:16Þ

Proof. From the third of the three equations (3.5)1, one can estimate q3p in terms

of quantities already estimated. Since

jq3pja c½n0 þ 2n1ðp� 2Þðmþ jDujÞp�2�jD2uj þ j f3j;

almost everywhere in W, straightforward calculations together with Lemmas 3.2–

3.3 lead to (3.16). r

Therefore, we have also obtained

k‘pka ck f k

and the proof of Proposition 3.1 is complete.
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Proof of Theorem 2.3. For the proof we follow the usual way of treating the con-

vective term ðu � ‘Þu as a right-hand side and deriving a priori estimates. First of

all we observe that the validity of the identity

ð
W

ðu � ‘Þu � u dx ¼ 0

implies that estimates (2.3) still hold for weak solutions of the complete system

(1.1). Hence the solution belongs to W 1;2ðWÞ and

kuk1;2a ck f k:

Set

F ¼ f � ðu � ‘Þu:

By Proposition 3.1 it follows that F a L2ðWÞ implies

kuk2;2a ckFk:

Let us estimate the L2-norm of F . By applying Hölder’s inequality, then Sobolev’s

inequality and Gagliardo–Nirenberg’s inequality, there holds

kðu � ‘Þuka kuk6k‘uk3a ck‘uk3=2kD2uk1=2 þ ck‘uk2:

Then by using the Cauchy–Schwarz inequality, we get

kðu � ‘Þuka ck‘uk2 þ ck‘uk3 þ ckD2uk:

Therefore

kFka k f k þ kðu � ‘Þuka k f k þ ck f k3 þ ckD2uk:

This enables us to obtain the desired estimate on the W 2;2-norm of u. r

4. Proof of Theorem 2.4

For simplicity, from now on, we assume that the force field f is in divergence

form. Indeed it is well known that for any f a L3ðWÞ, there exists a tensor field

F a W 1;3ðWÞ such that f ¼ ‘ � F .
Let ðu; pÞ be a weak solution of problem (1.1)–(2.1) and let us consider the fol-

lowing Stokes problem:
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�n0Dv ¼ �‘sþ n1‘ � SðDuÞ þ ‘ � F � ðu � ‘Þu in W;

‘ � v ¼ 0 in W;

vjG ¼ 0; v x 0-periodic;

9>>>=
>>>;

ð4:1Þ

with SðDuÞ ¼ ðmþ jDujÞp�2Du. We set

GðxÞ ¼ n1‘ � SðDuÞ þ ‘ � F � ðu � ‘Þu: ð4:2Þ

Lemma 4.1. Let be u a W 1; rðWÞ for some r a ½6;þlÞ. Then the correspond-
ing Stokes problem (4.1) admits a unique weak solution v. Further, the solution
v belongs to W 1; r=ðp�1ÞðWÞ and the associated pressure field s belongs to
Lr=ðp�1ÞðWÞ.

Proof. By the embedding of W 1;3ðWÞ in LqðWÞ, for any q a ð1;þlÞ, we have

F a LqðWÞ; thus ‘ � F a W�1;qðWÞ for any q a ð1;þlÞ. Further, let us note

that u a W 1; rðWÞ implies SðDuÞ a Lr=ðp�1ÞðWÞ; thus, as before, ‘ � SðDuÞ a
W�1; r=ðp�1ÞðWÞ. Finally ðu � ‘Þu belongs to W�1; r=ðp�1ÞðWÞ, too. Indeed, for any

j a W
1; r=ðr�pþ1Þ
0 ðWÞ, where r

r�pþ1 is the dual exponent of
r

p�1 , we have

���
ð
W

ðu � ‘Þu � j dx
��� ¼ ���

ð
W

ðu � ‘Þj � u dx
���a k‘jkr=ðr�pþ1Þku2kr=ðp�1Þ < þl;

since u a W 1; rðWÞ implies that u a LqðWÞ for any q. Hence GðxÞ a
W�1; r=ðp�1ÞðWÞ, where GðxÞ is defined by (4.2). These arguments allow us to apply

Lemma 2.5, which leads to the desired result. r

Lemma 4.2. Let u be a weak solution of (1.1)–(2.1) and let v be the corresponding

weak solution of (4.1). Then u ¼ v.

Proof. Let us take the di¤erence u� v. By Definition 2.2 and the definition (2.6)

of weak solution for the Stokes problem and Lemma 2.5 we have that u and v be-

long to V2 and

n0

ð
W

‘ðu� vÞ � ‘j ¼ 0 for any j a VðWÞ:

By standard arguments this implies that ‘ðu� vÞ ¼ 0 a.e. and therefore, employ-

ing the boundary conditions, we get u ¼ v. r

Proof of Theorem 2.4. Set

q0 ¼ 6; qnþ1 ¼
qn

p� 1
ð4:3Þ

221Global regularity of generalized Newtonian fluids



for each non-negative integer n. By Theorem 2.3 we know that f a L3ðWÞ implies

(at least) that the velocity field u belongs to W 2;2ðWÞ, hence to W 1;q0ðWÞ, q0 ¼ 6,

by standard embedding. Assume that u a W 1;qnðWÞ for some qnb 6. By Lemma

4.1 the solution v of system (4.1) belongs to W 1;qnþ1ðWÞ, with qnþ1 given by (4.3).

Furthermore, by Lemma 4.2, this implies that u a W 1;qnþ1ðWÞ. Observing that the

above sequence monotonically increases and diverges to infinity as n goes to þl,

we obtain that u a W 1;qðWÞ for any q < þl. r
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