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1 Introduction

It is well known that the set A = {m + nq : m, n ∈ Z} is a dense set in R if q is irrational.
Here we provide a proof using the Engel expansion. Let p, q ∈ R+ \ {1} be fixed. In [1],
the authors proved that a set of the form {±pmqn : m, n ∈ Z} is a dense subset of R iff ln p

ln q
is an irrational number. Here we give a different proof. The authors in [1] also proved that,
if ln p

ln q is an irrational number and f is a continuous function on R \ {0}, then
∫ px
x f (t)dt

and
∫ qx
x f (t)dt are constant functions of x if and only if f (t) = c

t , where c is a real
number. We extend this result to the class of integrable functions. In this paper we also
obtain an equivalent characterization of irrational numbers. Using this characterization we

.

Friedrich Engel hat 1913 vorgeschlagen, eine reelle Zahl q > 0 durch eine unendliche
Reihe der Form

q =
∞∑

n=1

1

p1 p2 · · · pn

darzustellen, wobei pn eine nicht fallende Folge natürlicher Zahlen ist. Diese Engel-
Entwicklung ist eindeutig und stellt genau dann eine rationale Zahl q dar, wenn die
Folge der pn ab einem bestimmten Index konstant ist. (Das entsprechende geometri-
sche Endstück der Reihe lässt sich dann auch als Stammbruch schreiben und man erhält
eine Ägyptische Darstellung von q .) Da zum Beispiel die Eulersche Zahl die Engel-
Entwicklung e = ∑∞

k=0
1
k! besitzt, kann man daraus sofort auf die Irrationalität von e

schliessen. In der vorliegenden Arbeit wird diese Methode in Verbindung gebracht mit
der Dichtheit gewisser Mengen in R und einem Problem der Masstheorie.
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show for certain types of numbers that they are irrational: For example we show that e and
q1/n (q is a prime number and 2 ≤ n ∈ N) are irrational numbers. See [4, 5, 6] for similar
results.

2 Series representation of irrational numbers and density properties
For the sake of completeness we give below a proof of the Engel expansion.

Theorem 2.1. For any irrational number 0 < q < 1, there exist natural numbers pi ≥
2, i = 1, 2, . . . with pi ≤ pi+1 such that

q =
∞∑
i=1

1

p1 p2 · · · pi
. (2.1)

Proof. Since 0 < q < 1, there exists a natural number p1 ≥ 2 such that (p1 − 1)q < 1 <
p1q < 2. Now set α0 = q, p0 = 2 and define α1 = p1q − 1, hence 0 < α1 < 1. Choose
an integer p2 such that

(p2 − 1)α1 < 1 < p2α1 < 2.

Define α2 = p2α1 − 1. The above inequality (p1 − 1)q < 1 < p1q implies p1q − 1 <
p1q−(p1−1)q which yields α1 < α0. Moreover the above inequalities give (p1−1)α0 <
p2α1. This implies p1 −1 < p2, since α1 < α0. Hence p1 ≤ p2 as p1 and p2 are integers.

By induction, we construct pn ∈ N and αn satisfying the properties

(pn+1 − 1)αn < 1 < pn+1αn < 2,

αn = pnαn−1 − 1 and

pn ≤ pn+1.

(2.2)

To see (2.2), let us assume we are given pi , 1 ≤ i ≤ k + 1 and αi , 1 ≤ i ≤ k, satisfying

(pi+1 − 1)αi < 1 < pi+1αi < 2

αi = piαi−1 − 1 and pi ≥ pi−1.

Then we construct pk+2 and αk+1 as follows: Take αk+1 = pk+1αk − 1. Choose pk+2
such that (pk+2 − 1)αk+1 < 1 < pk+2αk+1 < 2. As for the previous analysis, the above
inequalities give αk+1 < αk and pk+1 − 1 < pk+2. This implies pk+1 ≤ pk+2, which
proves the statement (2.2).

Equation (2.2) yields:

1

pn
< αn−1 <

2

pn

=⇒
∣∣∣αn−1 − 1

pn

∣∣∣ <
1

pn

=⇒
∣∣∣pn−1αn−2 − 1 − 1

pn

∣∣∣ <
1

pn

=⇒
∣∣∣αn−2 − 1

pn−1
− 1

pn−1 pn

∣∣∣ <
1

pn−1 pn
.

(2.3)
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Continuing in this way by induction we get:

∣∣∣q −
n∑

i=1

1

p1 p2 · · · pi

∣∣∣ <
1

p1 p2 · · · pn
.

Passing to the limit as n tends to infinity in equation (2.3), we get the expression (2.1). �

The Engel Expansion in Theorem 2.1 is unique. In fact, the expansion of q is an ascending
variant of continued fractions. q can be written in the following way:

q =
1 +

1 + 1 + · · ·
p3

p2

p1
.

For example the canonical values pi , i = 1, 2, . . ., for q = √
2 − 1 are

(p1, p2, p3, . . .) = (3, 5, 5, 16, 18, 78, 102, 120, 144, . . .)

and the canonical values for q =
√

5−1
2 are

(p1, p2, p3, . . .) = (5, 6, 13, 16, 16, 38, 48, 58, 104, . . .).

Theorem 2.2. Define A = {m + nq : m, n ∈ Z}, q ∈ R. Then the following statements
are equivalent.

1. q is an irrational number.

2. There exist zn ∈ A, n ∈ N such that zn tends to zero as n tends to infinity.

3. A is dense in R.

Proof. 1 =⇒ 2: Let q be an irrational number. Without loss of generality we can assume
0 < q < 1. Then by the above theorem,

q =
∞∑
i=1

1

p1 p2 · · · pi

=⇒
∣∣∣q −

n∑
i=1

1

p1 p2 · · · pi

∣∣∣ <
2

p1 p2 · · · pn+1

=⇒
∣∣∣∣p1 p2 · · · pn

(
q −

n∑
i=1

1

p1 p2 · · · pi

)∣∣∣∣ <
2

pn+1
.

(2.4)

Also note that pi < pi+1 holds infinitely often, since otherwise q would be rational. So

pn+1 tends to infinity as n tends to infinity. Let sn = −
( n∑

i=1

1

p1 p2 · · · pi

)
p1 p2 · · · pn ,
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rn = p1 p2 · · · pn . Then rn and sn are integers. Moreover we have that zn = rn + qsn ∈ A

tends to zero as n → ∞.

2 =⇒ 3: Without loss of generality, we assume that all zn are positive. Let a, b ∈ R and
a < b. Since 1

zn
(b − a) tends to infinity, there exists N0 such that 1

zN0
a < t < 1

zN0
b, for

some integer t . This implies a < tzN0 < b. Since tzN0 ∈ A, A is dense in R.
3 =⇒ 1: Let A be dense in R. We have to show that q is irrational. Assume the opposite,
i.e., that q is a rational number of the form q = m0

n0
, m0, n0 ∈ Z and n0 
= 0 . Clearly

n0A ⊂ Z, so the distance between two elements of A is at least 1
n0

. Hence A is not
dense. �

Corollary 2.3. Suppose p, q ∈ R+\{1}. Then B = {±pmqn : m, n ∈ Z} is a dense subset
of R iff ln p

ln q is an irrational number.

Proof. Consider the set B̄ = {m ln p + n ln q : m, n ∈ Z}:

{m ln p + n ln q : m, n ∈ Z} = ln q

{
m

ln p

ln q
+ n : m, n ∈ Z

}
.

By Theorem 2.2, {m ln p
ln q + n : m, n ∈ Z} is a dense subset of R iff ln p

ln q is an irrational

number. Hence B̄ is a dense subset of R.

Now we will show that B̄ is dense in R iff B is dense in R. Let y > 0. There exists a
sequence mt ln p + nt ln q which converges to ln y as t tends to ∞. Now by the mean
value theorem

|pmt qnt −y| = | exp(mt ln p+nt ln q)−exp(ln y)| = exp(c(t))|[(mt ln p+nt ln q)−ln y]|,
where c(t) is a point lying between (mt ln p + nt ln q) and ln y. Since c(t) is bounded,
pmt qnt converges to y. So {pmqn : m, n ∈ Z} is a dense subset of [0,∞). HenceB is dense
in R. Similarly one can show the converse. This completes the proof of Corollary 2.3. �

3 Applications
Example 3.1. If q is a prime number, then for any natural number n ≥ 2, q1/n is an
irrational number.

Proof. Choose m ∈ N such that m < q1/n < m + 1 and hence 0 < q1/n − m < 1. Now
consider the set

A =
{n−1∑

i=0

ci q
i/n : ci ∈ Z

}
.

For any k ∈ N, zk = (q1/n − m)
k ∈ A and tends to zero as k tends to infinity. So

for a, b ∈ R, there exist t ∈ Z and n0 ∈ N such that a
zn0

< t < b
zn0

. This implies

a < tzn0 < b. As tzn0 ∈ A, A is dense in R.

If q1/n would be rational, then q = r
s . Clearly sn

A ⊂ Z. So the distance between any two
numbers of A would be at least 1

sn , which is a contradiction. Hence q1/n is an irrational
number. �
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Example 3.2. Any number q of the form (2.1), with pi < pi+1 for infinitely many i , is an
irrational number. In particular e is an irrational number.

Proof. If q is of the form (2.1) and pi < pi+1 for infinitely many i , then, by (2.4),

zn = p1 p2 · · · pn

(
q −

n∑
i=1

1

p1 p2 · · · pi

)
tends to zero.

So there are elements zn ∈ A = {m + nq : m, n ∈ Z} which tend to zero as n tends to
infinity. So by Theorem 2.2 the result follows. �

Example 3.3. Let ln p
ln q (p, q ∈ R+ \ {1}) be an irrational number and f be a locally

integrable function on R \ {0}. Then
∫ px
x f (t)dt and

∫ qx
x f (t)dt are constant functions of

x if and only if f (t) = c
t , c ∈ R.

Proof. The sufficient part of the theorem is trivial. We prove the necessary part: Define the
measure μ on the multipicative group R+ as follows: Let E be any Borel measurable set
of R+. Define μ(E) = ∫

E f (y)dy, then we claim that μ is a Haar measure on R.

μ([a, b]) =
∫ b

a
f (y)dy

=⇒ μ([pa, pb]) =
∫ pb

pa
f (y)dy

=
∫ a

pa
f (y)dy +

∫ b

a
f (y)dy +

∫ pb

b
f (y)dy.

(3.1)

Now
∫ a

pa f (y)dy + ∫ pb
b f (y)dy = 0, since

∫ px
x f (y)dy is constant. This implies

μ([pa, pb] =
∫ b

a
f (y)dy = μ([a, b].

By approximation, we get μ(pE) = μ(E) and hence μ(pm E) = μ(E) for m ∈ Z.
Following the same analysis as before we get, μ(pmqn E) = μ(E). By Corollary 2.3, the
set {pmqn : m, n ∈ Z} is a dense subset of R+. This implies μ(aE) = μ(E) for any
a ∈ R+ and Borel measurable set E . This proves that μ is a Haar measure.

Note that μ̄(E) = ∫
E

1
t dt is a Haar measure on the multiplicative topological group R+.

Applying Theorem 11.9 from [2, Chapter 9], μ = cμ̄, for some c ∈ R. This in turn gives
f (t) = c1

t on R+.

Similarly, considering the same Haar measure concept onR+ as before with f (t) replaced
by f (−t), we can discover f (−t) = c2

t , t > 0. Now c1 = −c2, since
∫ −p
−1 f (t)dt =∫ p

1 f (t)dt . Hence f (t) = c
t , c ∈ R. �
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