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1 Introduction

Imagine a train moving at speed u with respect to the ground (as reckoned by someone
sitting on the ground), and further that a person P is running with a speed v on the train
(as reckoned by somebody sitting in the train). Before 1905, Newtonian physics dictated
that the speed of the person P as observed by someone on the ground is u + v, while we

.

In einem Brief an Hendrik Lorentz vom Mai 1905 beschrieb Henri Poincaré die Formel
für die relativistische Addition von Geschwindigkeiten in einer Dimension, nämlich
u ⊕ v = u+v

1+uv , wenn man für die Lichtgeschwindigkeit c = 1 setzt. Dieses Additions-
theorem enspricht einer geometrischen Konstruktion, die Jerzy Kocik 2012 im Ameri-
can Journal of Physics veröffentlichte. Sein Originalbeweis verwendet kartesische Ko-
ordinaten. In der vorliegenden Arbeit geben die Autoren gleich drei kurze und elegante
Beweise für die Korrespondenz der Poincaré-Formel und der Kocik-Konstruktion: Ei-
ner ist trigonometrischer Natur, ein zweiter ist in der euklidischen Geometrie angesie-
delt, und der dritte verwendet Argumente der projektiven Geometrie. Alle drei Beweise
werfen ein erhellendes Licht auf die relativistische Addition von Geschwindigkeiten.
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now know better; the relativistic formula for velocity addition says that the speed should
be u ⊕ v := (u + v)/(1 + uv), in units in which the speed of light is 1.

uv

In [1], a geometric diagram for the construction of u⊕v from u and v was given. We recall
it below.

Theorem 1.1 ([1]). Draw a circle with center O and radius 1. Mark points U, V at dis-
tances u, v from O along the radius OC perpendicular to a diameter AB. Let the line
joining B to V meet the circle at V ′, and let the line joining A to U meet the circle at U ′.
Then u ⊕ v = OW, where W the point of intersection of U ′V ′ with the radius OC.

A

B

V U

V ′

U ′

WO
C

This construction allows visual justification of the following properties of ⊕. For all u, v ∈
[0, 1], u ⊕ v ∈ [0, 1], v ⊕ 1 = 1, v ⊕ 0 = v, and when 0 ≤ u, v � 1, then u ⊕ v ≈ u + v.
For example, let us justify this last fact geometrically. If u, v � 1, then ∠OBV ≈ 0, and
AV ′ is almost parallel to OV .

A

B

V

U

V ′

U ′

W
O C
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So �BOV is almost similar to �B AV ′, giving

AV ′ ≈ AB

OB
· OV = 2

1
· OV = 2v.

Since AV ′ is almost parallel to OC , �U ′UW is almost similar to �U ′AV ′. Moreover, as
u, v � 1, U ′V ′ ≈ AB = 2, and U ′W ≈ OB = 1. Hence

UW ≈ U ′W
U ′V ′ · AV ′ ≈ 1

2
· 2v = v.

Thus if w := OW , then w − u = UW ≈ v, that is, w ≈ u + v.

In [1], Theorem 1.1 was proved using Cartesian coordinate geometry. In the next three
sections, we give three alternative proofs of this result. (The more proofs, the merrier!)

2 A trigonometric proof

A

B

V U

V ′

U ′

W

α

β

O
C

We refer to the picture above, calling

∠B AU ′ = ∠O AU =: α and ∠ABV ′ = ∠OBV =: β.

Let W be the point of intersection of U ′V ′ and OC , and set OW =: w. Then by looking
at the right triangles �BOV and �AOU , we see that

tan β = v and tan α = u.

Using the Sine Rule in �OWU ′, we have

1

sin∠OWU ′ = OU ′

sin∠OWU ′ = OW

sin∠OU ′W
= w

sin∠OU ′W
,

giving

w = sin∠OU ′W
sin∠OWU ′ . (1)
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The proof will be completed by showing (below) that ∠OU ′W = α + β and ∠OWU ′ =
90◦ + (α − β), so that (1) yields

w = sin(α + β)

sin(90◦ + (α − β))
= sin(α + β)

cos(α − β)
= sin α cosβ + cosα sin β

cosα cosβ + sinα sin β

= tanα + tanβ

1 + tanα tan β
= u + v

1 + uv
,

as desired.

First we will show∠OU ′W = α+β. Note that �O AU ′ is isosceles with O A = OU ′ = 1
and so ∠OU ′U = ∠O AU = α. The chord AV ′ subtends equal angles at B and U ′, and
so ∠UU ′W = ∠ABV = β. Hence

∠OU ′W = ∠OU ′U + ∠UU ′W = α + β.

Next, let us show that ∠OWU ′ = 90◦ + (α − β). To this end, note that ∠OUU ′ is the
common exterior angle for �AOU and �OU ′U , and using the fact that this equals the
sum of the opposite interior angles in each triangle, we obtain

90◦ + α = ∠OUU ′ = β + ∠UWU ′,

so that ∠OWU ′ = ∠UWU ′ = 90◦ + (α − β), completing the proof.

Yet another trigonometric proof can be obtained by focussing on �U ′CW , determining
all its angles, and the side length U ′C (using the isosceles triangle �OU ′C), enabling
the determination of WC (= 1 − w). The details are as follows. In the isosceles triangle
�OU ′C , we have

∠U ′OC = 90◦ − ∠BOU ′ = 90◦ − 2∠B AU ′ = 90◦ − 2α.

As OU ′ = OC = 1, we obtain ∠OCU ′ = 45◦ + α and U ′C = 2 cos(45◦ + α). Also
∠WU ′C = ∠V ′U ′C = ∠V ′BC = ∠ABC −∠ABV ′ = 45◦ −β. This yields ∠U ′WC =
180◦ − (∠WU ′C + ∠U ′CW ) = 90◦ + (β − α). Again, by the Sine Rule, this time in
�U ′WC , we have

1 − w

sin∠WU ′C
= WC

sin(45◦ − β)
= U ′C

sin∠U ′WC
= 2 cos(45◦ + α)

sin(90◦ + (β − α))
,

that is,

1 − w = 2 cos(45◦ + α) sin(45◦ − β)

sin(90◦ + (β − α))
= (cosα − sin α)(cosβ − sinβ)

cosα cosβ + sin α sinβ

= (1 − tanα)(1 − tan β)

1 + tanα tanβ
= (1 − u)(1 − v)

1 + uv
,

which, upon solving for w, gives

w = u + v

1 + uv
.
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3 A Euclidean geometric proof

A

B

V U

V ′

U ′

WO

O ′

C

As ∠AOU = 90◦ = ∠AU ′B and ∠O AU = ∠U ′AB (common), by the AA Similarity
Rule, �AOU ∼ �AU ′B . So

AU ′

2
= AU ′

AB
= AO

AU
= 1√

1 + u2
,

giving AU ′ = 2/
√

1 + u2. Hence

UU ′ = AU ′ − AU = 2√
1 + u2

−
√

1 + u2 = 1 − u2

√
1 + u2

.

Proceeding similarly, BV ′ = 2/
√

1 + v2 and V V ′ = (1 − v2)/
√

1 + v2. Let W be the
point of intersection of U ′V ′ and OC , and set OW =: w. Let the extension of U ′V ′ meet
the extension of AB at O ′. Menelaus’ Theorem applied to �AOU with the line O ′U ′
gives

w − u

w
· OO ′

OO ′ − 1
· 2/

√
1 + u2

(1 − u2)/
√

1 + u2
= UW

OW
· OO ′

AO ′ · AU ′

UU ′ = 1.

This yields
1

OO ′ = 1 − 2

1 − u2 · w − u

w
. (2)

Similarly, Menelaus’ Theorem applied to �BOV with the line O ′U ′ gives

w − v

w
· OO ′

OO ′ + 1
· 2/

√
1 + v2

(1 − v2)/
√

1 + v2
= V W

OW
· OO ′

BO ′ · BV ′

V V ′ = 1.



Relativistic velocity addition 127

This yields

1

OO ′ = 2

1 − v2 · w − v

w
− 1. (3)

Equating the right-hand sides of (2) and (3) gives w = u + v

1 + uv
.

4 A projective geometric proof

We recall the notion of the cross ratio in projective geometry. If A, B,C, D are collinear
points that are projected along four concurrent lines meeting at P , to the collinear points
A′, B ′,C ′, D′, respectively, then we know that the cross ratio is preserved, that is,

(A, B; C, D) := AC

AD

/ BC

BD
= A′C ′

A′D′
/ B ′C ′

B ′D′ =: (A′, B ′; C ′, D′).

Recall that this is an immediate consequence of the Sine Rule for triangles, using which
one can see that

AC

AP
= sin∠APC

sin∠PC A
,

AD

AP
= sin∠APD

sin∠PDA
,

BD

BP
= sin∠BPD

sin∠PDB
,

BC

BP
= sin∠BPC

sin∠PCB
,

and so

(A, B; C, D) = sin∠APC

sin∠APD

/ sin∠BPC

sin∠BPD
.

In light of this invariance, we refer to the cross ratio of the four concurrent lines instead of
particular collinear points on the lines.

A B
C D

A′ B ′ C ′ D′

P

We also recall Chasles’ Theorem, which says that if A1, A2, A3, A4 are four fixed points
on a circle, and P is a movable point, then the cross ratio of the lines P A1, P A2, P A3,
P A4 is a constant. This is an immediate consequence of the fact that a chord of a circle
subtends equal angles at any point on its major (or minor) arc.
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A1 A2

A3

A4

P

We refer to the geometric diagram for relativistic velocity addition below, with the la-
belling of points shown. X is the point of intersection of P ′ A3 with O A4.

A1

P

V U

A2

A3

P ′

W
XO A4

α

As �OP ′X is a right angled triangle, it follows that

OX = cos∠P ′OX = sin∠POP ′ = sin(2α) = 2 tanα

1 + (tanα)2
= 2u

1 + u2 .

Hence

U X = OX − OU = 2u

1 + u2 − u = u · 1 − u2

1 + u2 and

W X = OX − OW = 2u

1 + u2
− w.

By Chasles’ Theorem, we have

u

1

/u − v

1 − v
= OU

O A4

/ VU

V A4
= U X

U A4

/ W X

W A4
=

u · 1−u2

1+u2

1 − u

/u · 2u
1+u2 − w

1 − w
.

Solving for w, this yields w = u + v

1 + uv
.



Relativistic velocity addition 129

5 A few remarks

We remark that the projective perspective also sheds light on the (algebraically easily
verified) formula

u ⊕ v = 1

u
⊕ 1

v
.

Indeed, let us see the picture below, where U ′, V ′ are the images of the points U, V ,
respectively, under inversion in the circle.

A

B

V U
U ′ V ′

P

Q

R

SO

Let OS =: 1/w. By the preservation of the cross-ratio for the four collinear lines AP ,
AQ, AR, AS, we obtain

(P, Q; R, S) = (O, V ;U, S) = u

1/w

/ u − v

(1/w) − v
.

On the other hand, by the preservation of the cross-ratio for the four collinear lines BP ,
BQ, BR, BS, we obtain

(P, Q; R, S) = (O, V ′;U ′, S) = 1/u

1/w

/ (1/v) − (1/u)

(1/v) − (1/w)
.

Thus
u

1/w

/ u − v

(1/w) − v
= (P, Q; R, S) = 1/u

1/w

/ (1/v) − (1/u)

(1/v) − (1/w)
,

which gives w = u + v

1 + uv
.

We also mention that although we have been considering u, v ∈ [0, 1] for our pictures,
one may in fact take u, v ∈ [−1, 1] without any essential change in our derivations. The
operation ⊕ is associative and the set (−1, 1) is a group with the operation ⊕.
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