
Elem. Math. 71 (2016) 21 – 38
0013-6018/16/010021-18
DOI 10.4171/EM/296

c© Swiss Mathematical Society, 2016

Elemente der Mathematik

Counting the number of round-robin
tournament schedules

Alyssa Cherry, Drake Olejniczak and Qinghong Zhang

Alyssa D. Cherry obtained her Bachelor of Science in Mathematics from Northern
Michigan University in 2013. She completed her master’s degree at Northern Illinois
University and started a doctoral program at the University of Missouri.

Drake P. Olejniczak obtained his Bachelor of Science in Mathematics from Northern
Michigan University in 2014. He is currently in the Ph.D program at Western Michi-
gan University and working on Graph Theory.

Qinghong Zhang obtained his PhD from the University of Iowa in 2002. He is cur-
rently a full professor at Northern Michigan University, Marquette, Michigan, USA.
His interests are in optimization. Specifically, he is interested in semi-infinite pro-
gramming, semidefinite programming, and conic linear programming.

1 Introduction

If you are an organizer of a local softball tournament this summer, you probably need to
set up a schedule. Suppose there are n teams, each team plays every other team just once,
and we don’t consider whether the games are at home or away. Then if n is even, we have
a total of n − 1 rounds with n

2 games for each round. If n is odd, we use a dummy team
whose opponent does not play and is given a bye that round. So for the case that n is odd,
we have a total of n rounds with n−1

2 games for each round. In the related literature, such
type of tournament is called a round-robin tournament. In this paper, we just simply call it
a tournament.

.

Im Englischen ist “round-robin tournament” die Bezeichnung für einen Wettkampf,
bei dem jedes Team genau einmal gegen jedes andere antritt. Ist die Anzahl der Teams
gerade, finden in jeder von n − 1 Runden n

2 Spiele statt. Der “round robin” Algorith-
mus ist eine effiziente Methode, um einen entsprechenden Spielplan zu erstellen. Aber
wieviele Spielpläne sind überhaupt möglich? Die Autoren der vorliegenden Arbeit zei-
gen, wie dieser Frage mit Hilfe chromatischer Polynome nachgegangen werden kann.
Beschränkt man sich auf die Anzahl der Spielpläne, die der “round robin” Algorithmus
liefert, so gibt eine elegante Formel die Antwort.

22 A. Cherry, D. Olejniczak and Q. Zhang

Of course, there are different ways to set up a tournament schedule. A widely used method
to generate a tournament schedule, which is called the round-robin tournament scheduling
algorithm or simply the round-robin algorithm in this paper, will be reviewed in Section
3 and is described in [3] using modular arithmetic. In real-world problems, often optimal
schedules based on some criteria are requested, for example, schedules having a minimum
number of breaks [2], schedules in the presence of strength group requirements [1]. In
this paper, we do not study specific scheduling strategies, instead we are interested in
finding how many different schedules one can set up. We will describe a process to find
the number of all tournament schedules using chromatic polynomials in Graph Theory.
Since computing chromatic polynomials in general can be hard, to find the number of all
tournament schedules could be very challenging. Finding a formula to compute the number
of all tournament schedules is even more challenging. However, if we consider a subset of
all tournament schedules that are generated by the round-robin algorithm, such a formula
exists. We will provide a formula to find the number of schedules that are set up by the
round-robin algorithm in this paper.

2 The number of tournament schedules

If there is an odd number of teams, then a dummy team can be added. Therefore, in this
paper we assume we have an even number of teams. Suppose there are n teams. A sched-
ule, therefore, consists of n − 1 rounds of games with n

2 games for each round such that
each team plays every other team just once. Mathematically, a schedule is a permutation
of n − 1 sets. Each set consists of n

2 games. Therefore, two schedules are equal if and only
if the set of games in each round are the same, that is, the set of games in round one are
the same, the set of games in round two are the same, etc.

In this section, we describe a process to find the number of all schedules using chromatic
polynomials in Graph Theory. The process is described using Maple language as follows:

G := CompleteGraph(n);
H := LineGraph(G);
P := ChromaticPolynomial(H, ‘x’);
P(n − 1).

Of course, we need to know some basic concepts in Graph Theory in order to understand
these commands in Maple. We also need to verify that these commands return the number
of all tournament schedules. Now we give some basic concepts in Graph Theory, [4].

Definition 1. A graph consists of two finite sets, V and E . Each element in V is called a
vertex. The elements of E , called edges, are unordered pairs of vertices. A complete graph
is a graph such that for any two vertices u and v, there is an edge connecting them, in
other words, uv ∈ E . The line graph L(G) of a graph G is defined in the way: the vertices
of L(G) are the edges of G, and two vertices in L(G) are adjacent (there exists an edge
connecting them) if and only if the corresponding edges in G share a vertex.

Definition 2. An edge coloring of a graph is an assignment of colors to the edges of the
graph so that no two adjacent edges have the same color. A vertex coloring is a way of
coloring the vertices of a graph such that no two adjacent vertices share the same color.

Counting the number of round-robin tournament schedules 23

For a given graph G, the number of ways of coloring the vertices with x or fewer colors is
denoted by P(G, x) and is called the chromatic polynomial of G in terms of x .

We use Kn to denote the complete graph with n vertices. If we do an edge coloring of
Kn , then we need at least n − 1 colors. This is because for each vertex v in Kn , there are
n − 1 edges which have v as one of their end vertices. If we color the edges of Kn with
exactly n − 1 colors, namely, c1, c2, . . . , cn−1, then for each color ci and each vertex v,
there is one and only one edge with color ci and with v as an end vertex. Since for each
edge there are two end vertices, we therefore obtain that there are n

2 edges for each color.
Now if we view the n vertices of Kn as the n teams in a tournament and each edge viv j as
a game between team vi and v j , then an edge coloring of Kn corresponds to a tournament
schedule. This can be done by corresponding ci with the i th round of the tournament, and
by viewing n

2 edges with color ci as the n
2 games in the i th round. With this in mind, to find

the number of all tournament schedules with n teams, we only need to find the number of
edge colorings of Kn . Since each edge coloring corresponds to a vertex coloring of its line
graph L(Kn) and each vertex coloring of L(Kn) corresponds to an edge coloring of Kn ,
to find the number of edge colorings of Kn using n − 1 colors is the same as finding the
number of vertex colorings of L(Kn) using n − 1 colors, which can be obtained by first
finding the chromatic polynomial P(L(Kn), x) of L(Kn), and then plugging in x = n − 1
in P(L(Kn), x).

Now let us go back to the Maple commands and explain their meanings:

CompleteGraph(n) returns a complete graph with n vertices; LineGraph(G) returns
the line graph of G; ChromaticPolynomial (H, ‘x’) returns the number of its vertex
colorings using no more than x colors; and P(n − 1) returns the number of its proper
vertex colorings using no more than n − 1 colors.

As an example of this process, we compute the number of schedules for six teams. Using
Maple, we have the chromatic polynomial as follows:

P(x) = x(x − 1)(x − 2)(x − 3)(x − 4)
(
x10 − 50x9 + 1155x8

− 16245x7 + 154083x6 − 1029213x5 + 4896820x4

− 16356845x3 + 36630736x2 − 49547792x + 30666816
)
.

Set x = 5, we have P(5) = 720. In other words, for six teams there are 720 different
tournament schedules.

Remark 1. Maple takes a lot of time to find the chromatic polynomial for six teams
(close to an hour). For eight teams, Maple returns an error message “Error, (in Matrix)
object too large”. Computationally, finding the number of tournament schedules could be
very challenging.

24 A. Cherry, D. Olejniczak and Q. Zhang

3 The round-robin algorithm
The round-robin algorithm is to pair the teams off in the first round. For example, if there
are eight teams named p0, p1, . . . , p7, we may initiate the first round of games as follows:

Round 1. (p0 plays p7 , p1 plays p6, . . .) S1 =
[

p0 p1 p2 p3
p7 p6 p5 p4

]
.

Now, we fix team p0 and rotate the others clockwise one position. We obtain the games
for the second round.

Round 2. (p0 plays p6, p7 plays p5, . . .) S2 =
[

p0 p7 p1 p2
p6 p5 p4 p3

]
.

We rotate the teams p1, p2, . . . , p7 clockwise one more position. We obtain the games for
the third round.

Round 3. (p0 plays p5, p6 plays p4, . . .) S3 =
[

p0 p6 p7 p1
p5 p4 p3 p2

]
.

.

Round 7. (p0 plays p1, p2 plays p7, . . .) S7 =
[

p0 p2 p3 p4
p1 p7 p6 p5

]
.

In the above tournament schedule, the games in each round (Round 2 to Round 7) are deter-
mined by the round-robin algorithm based on the games for the previous round. Of course,
we do not have to follow this order. Actually, any permutation of S1, S2, . . . , S7 will give
a specific tournament schedule. For example, S2S5S7S1S3S6S4 indicates that the games in
Round 1 are determined by S2, the games in Round 2 are determined by S5, etc. Therefore,
we have a total of 7! different tournament schedules if one tournament schedule is given.

We use the notation

(
p0 p1 . . . pm

p2m+1 p2m . . . pm+1

)
, which is also called a setting of the

round-robin algorithm in this paper, to represent the set of all tournament schedules gener-
ated by the round-robin algorithm (p0 is fixed and p1, p2, . . . , p2m+1 are rotated clock-
wise or equivalently counterclockwise) for 2m + 2 teams, p0, p1, . . . , p2m+1. Using this

notation, we can see that

(
p0 p1 p2 p3
p7 p6 p5 p4

)
is the same as

(
p0 p7 p1 p2
p6 p5 p4 p3

)
,

which represents the set of all permutations of S1, S2, . . . , S7 and each permutation repre-
sents a schedule of a tournament.

In this study, since we do not consider home or away games, the games determined by[
p1 p2 p6 p4
p0 p7 p3 p5

]
are the same as the ones determined by S7. We should point out

the difference between the notation(
p0 p1 . . . pm

p2m+1 p2m . . . pm+1

)
and

[
p0 p1 . . . pm

p2m+1 p2m . . . pm+1

]
.

While

(
p0 p1 . . . pm

p2m+1 p2m . . . pm+1

)
represents the set of all tournament schedules

generated by the round-robin algorithm,

[
p0 p1 . . . pm

p2m+1 p2m . . . pm+1

]
represents the

games, p0 plays p2m+1, p1 plays p2m , . . ., pm plays pm+1, in a round of a tournament.

The round-robin algorithm can also be represented by a graph, see Figure 1 for eight teams.

Counting the number of round-robin tournament schedules 25

�

Rotate 7 times

�

�

� �

� �

� �

p0

p7

p3p4

p5

p1p6

p2

Figure 1 Round robin algorithm diagram

4 The number of tournament schedules by the round-robin algorithm

In this section, we first give several results stated as lemmas. Then we obtain an equality
regarding the number of schedules using the round-robin algorithm when a specific team
is fixed. Finally, we prove an equality regarding the number of schedules using the round-
robin algorithm when the fixed team is arbitrarily selected.

For a setting of the round-robin algorithm, a team is fixed and the others are rotated clock-
wise or equivalently counterclockwise based on an initial assignment of games. Therefore,
the following result is valid due to the fact that one clockwise rotation of M is the same as
one counterclockwise rotation of N , where M and N are the ones appearing in Lemma 1.

Lemma 1. Let

M =
(

p0 p1 . . . pm

p2m+1 p2m . . . pm+1

)
and N =

(
p0 p2m . . . pm+1
p2m+1 p1 . . . pm

)
.

Then M = N.

We point out that in the next lemma the notation {p0, p1} represents a set of two elements
p0 and p1 and {{p0, p2m+1}, {p1, p2m}, . . . , {pm, pm−1}} represents a set with elements
{p0, p2m+1},{p1, p2m}, . . . , {pm, pm−1}. Actually, the proof of the next lemma becomes
obvious if we view {p0, p1} as the game that p0 plays p1.

Lemma 2. Let

M =
(

p0 p1 . . . pm

p2m+1 p2m . . . pm+1

)
and N =

(
q0 q1 . . . qm

q2m+1 q2m . . . qm+1

)
.

If M = N and {pi , p2m−i+1} = {q j , q2m− j+1} for some 0 ≤ i, j ≤ m, then

{{p0, p2m+1}, {p1, p2m}, . . . , {pm, pm+1}} = {{q0, q2m+1}, {q1, q2m}, . . . , {qm, qm+1}}.

26 A. Cherry, D. Olejniczak and Q. Zhang

Proof. It is easy to see that pi and p2m−i+1 are in the same column in M and qi and
q2m−i+1 are in the same column in N . Consider the round that pi plays p2m−i+1. Since
M = N and {pi , p2m−i+1} = {q j , q2m− j+1}, we know that the games for this round
generated by M and N are exactly the same. Therefore, the conclusion of the lemma is
true. �

If p0 is fixed, then a circular permutation of p1, p2, . . . , p2m+1 corresponds to a setting of
the round-robin algorithm. Though different circular permutations of p1, p2, . . . , p2m+1
correspond to different settings of the round-robin algorithm, these different settings of the
round-robin algorithm may generate the same set of schedules. For example, as Lemma
1 shows, if we reverse the order of the circular permutation, it will generate the same set
of schedules. Even more as the following example shows, two totally different circular
permutations can generate the same set of schedules.

Example 1. Let

M =
(

p0 p1 p2 p3
p7 p6 p5 p4

)
and N =

(
p0 p4 p1 p5
p7 p3 p6 p2

)
.

It can be easily seen that M and N correspond to different circular permutations. Let the
first rounds of games based on M and N be the games

M1 =
[

p0 p1 p2 p3
p7 p6 p5 p4

]
and N1 =

[
p0 p4 p1 p5
p7 p3 p6 p2

]
, respectively.

Then the second round of games M2, the third round of games M3, . . . , the seventh round
of games M7 based on M can be obtained by rotating p1, p2, p3, p4, p5, p6, p7 in M1
clockwise one position, two positions, . . . , seven positions, respectively. Similarly, the
second round of games N2, the third round of games N3, . . . , the seventh round of games
N7 based on N can be obtained by rotating p4, p1, p5, p2, p6, p3, p7 in N1 clockwise one
position, two positions, . . . , seven positions.

It is obvious that M1 = N1. It is also easily seen that M2 = N3, M3 = N5, M4 = N7,
M5 = N2, M6 = N4, and M7 = N6. Because M and N are the sets of all the permutations
of M1, M2, . . . , M7 and N1, N2, . . . , N7, respectively, we obtain M = N .

The next lemma shows that if two different circular permutations generate the same set of
schedules, then they cannot be too different.

Lemma 3. Let M be generated by
(

p0 p1 . . . pm

p2m+1 p2m . . . pm+1

)
. (1)

If M is also generated by
(

p0 a1 . . . am

p2m+1 a2m . . . am+1

)
(2)

Counting the number of round-robin tournament schedules 27

and (
p0 b1 . . . bm

p2m+1 b2m . . . bm+1

)
(3)

with a j = b j = p1 and a2m− j+1 = b2m− j+1 = p2m for a fixed 1 ≤ j ≤ m, then ai = bi

for all 1 ≤ i ≤ m.

Proof. In view of a2m− j+1 = b2m− j+1 = p2m , we consider the round when p0 plays
p2m . The games in this round can be easily seen by an appropriate number of rotations in
(1)–(3). Respectively, we obtain

[
p0 p2m+1 p1 . . . pm−1
p2m p2m−1 p2m−2 . . . pm

]
, (4)

[
p0 a2m− j+2 . . . a2m p2m+1 a1 . . . am− j

a2m− j+1 a2m− j . . . a2m−2 j+2 a2m−2 j+1 a2m−2 j . . . am− j+1

]
, (5)

and[
p0 b2m− j+2 . . . b2m p2m+1 b1 . . . bm− j

b2m− j+1 b2m− j . . . b2m−2 j+2 b2m−2 j+1 b2m−2 j . . . bm− j+1

]
, (6)

where (4) is based on (1), (5) is based on (2), and (6) is based on (3). The games determined
by (4)–(6) are the same. Therefore, we obtain that a2m−2 j+1 = b2m−2 j+1 = p2m−1. In
other words, p2m−1 appears in the same location in (5) and (6), and therefore, appears
in the same location in (2) and (3). Now we consider the round that p0 plays p2m−1. If
we make an appropriate number of rotations in (4)–(6) and apply the same argument as
above, we obtain that p2m−2 appears in the same location in (2) and (3). Keep doing this
repeatedly, and we get that ai = bi for all 1 ≤ i ≤ 2m. �

Lemma 3 shows that if there is a circular permutation which corresponds to a setting of
the round-robin algorithm that generates the same set of schedules as in (1), then up to
reversion this circular permutation is uniquely determined by the location of the column(

p1
p2m

)
in its corresponding setting of the round-robin algorithm for the round that p0

plays p2m+1. However, not every location of the column

(
p1
p2m

)
in its corresponding

setting of the round-robin algorithm for the round that p0 plays p2m+1 will give the same
set of schedules. We have the following example for m = 4 indicating that if we shift
the second column to the fourth column, these settings do not generate the same set of
schedules.

Example 2. Let

M =
(

p0 p1 p2 p3 p4
p9 p8 p7 p6 p5

)
and N =

(
p0 x1 x2 p1 x4
p9 x8 x7 p8 x5

)
.

Then there does not exist x1, x2, x4, x5, x7, x8 such that M = N . Suppose there are
x1, x2, x4, x5, x7, x8 such that M = N .

28 A. Cherry, D. Olejniczak and Q. Zhang

Consider the round that p0 plays p8. Based on M , we get the games[
p0 p9 p1 p2 p3
p8 p7 p6 p5 p4

]
. (7)

Based on N , we have the games[
p0 x7 x8 p9 x1
p8 x5 x4 p1 x2

]
. (8)

Obviously, from (7) we know that p0 plays p8 and p9 plays p7. From (8) we know that p0
plays p8 and p1 plays p9. By Lemma 2, we know that M �= N .

It would be interesting to ask what circular permutations will generate the same set of
schedules. The next lemma provides a necessary and sufficient condition for circular per-
mutations that lead to the same set of schedules.

Lemma 4. Let M be (
p0 p1 . . . pm

p2m+1 p2m . . . pm+1

)
(9)

and N be (
p0 a1 . . . am

a2m+1 a2m . . . am+1

)
(10)

with a2m+1 = p2m+1 and ak = p1 for a fixed k ∈ {1, 2, . . . ,m}. Then M = N if and
only if gcd(2m + 1, k) = 1 and a[ik] = pi for i ∈ {1, 2, . . . , 2m + 1}, where [x] denotes
the unique integer in {1, 2, . . . , 2m + 1} congruent to x modulo 2m + 1 and gcd(k1, k2)
represents the greatest common divisor of natural numbers k1 and k2.

Proof. First let us prove that if M = N , then a[ik] = pi .

By an appropriate number of rotations, (9) and (10) equivalently become

(
p0 p2 p3 . . . pm+1
p1 p2m+1 p2m . . . pm+2

)
(11)

and (
p0 ak+1 . . . a2k−1 a2k a2k+1 . . . am+k

ak(= p1) ak−1 . . . a1 p2m+1 a2m . . . am+k+1

)
, (12)

respectively. The games determined by (11) and (12) for the round that p0 plays p1 are
the same. Therefore, we obtain that a[2k] = a2k = p2. Now let qi = p[i+1] in (11) and
bi = a[k+i] in (12) for i = 1, 2, . . . , 2m + 1. Then (11) and (12) become

(
p0 q1 . . . qm

q2m+1(= p1) q2m . . . qm+1

)
(13)

and (
p0 b1 . . . bm

b2m+1(= p1) b2m . . . bm+1

)
(14)

with bk = a2k = p2 = q1.

Counting the number of round-robin tournament schedules 29

Now we consider the round that p0 plays p1. Using (13) and (14) and applying the same
argument as the one we use to obtain a[2k] = a2k = p2, we know that b2k = q2, which
implies that a[3k] = p3. Similarly, by relabeling the teams and using the same argument,
we can prove that a[ik] = pi for i = 4, 5, . . . , 2m + 1.

Next we prove that if M = N , then gcd(2m + 1, k) = 1. We prove it by contradiction.
Suppose that gcd(2m +1, k) = l > 1. Then 2m+1

l +1 is an integer in {2, . . . , 2m +1} and
[(2m+1

l + 1)k] = [k] because (2m+1
l + 1)k − k = k

l × (2m + 1). Therefore, p1 = a[k] =
a[(2m+1

l +1)k] = p(2m+1
l +1), which is impossible due to the fact that 2m+1

l + 1 �= 1. Hence,

gcd(2m + 1, k) = 1.

On the other hand, if gcd(2m + 1, k) = 1 and a[ik] = pi for i ∈ {1, 2, . . . , 2m + 1}, then
[ik] �= [jk] for i �= j and i, j ∈ {1, 2, . . . , 2m + 1}. Therefore, {ai : i = 1, 2, . . . , 2m +
1} = {a[ik] : i = 1, 2, . . . , 2m + 1}. This shows that for each ai , i ∈ {1, 2, . . . , 2m + 1},
there is a j ∈ {1, 2, . . . , 2m + 1} such that ai = a[j k] = p j . We now prove that M =
N . Consider the round that p0 plays p2m+1. Let (ai0 , a2m+1−i0) be any pair representing
a column in (10) with i0 ∈ {1, 2, . . . , 2m + 1}. We need to show that (ai0 , a2m+1−i0)
is also a pair representing a column in (9). For ai0 , there is an r ∈ {1, 2, . . . , 2m + 1}
such that ai0 = a[rk] = pr . For a2m+1−i0 , there is an s ∈ {1, 2, . . . , 2m + 1} such that
a2m+1−i0 = a[sk] = ps . Hence, i0 = [rk] and 2m + 1 − i0 = [sk], which give that
rk − i0 and sk − (2m + 1 − i0) are multiples of 2m + 1. Therefore, (r + s)k is a multiple
of 2m + 1. Since gcd(2m + 1, k) = 1, r, s ∈ {1, 2, . . . , 2m + 1} and r �= s, we obtain
that r + s = 2m + 1, which implies that (pr , ps) ((ai0 , a2m+1−i0)) is a pair representing
a column in (9). Because i0 ∈ {1, 2, . . . , 2m + 1} is arbitrarily chosen, we know that M
and N lead to the same set of games for the round p0 plays p2m+1. We now consider the
round that p0 plays p1. Using (13) and (14) and applying the same argument, we obtain
that each game determined by a pair (bi0 , b2m+1−i0) in (14) for i0 ∈ {1, 2, . . . , 2m + 1}
is also a game determined by a pair in (13) . Since (13) is the same as (9) and (14) is the
same as (10), we obtain that M and N lead to the same set of games for the round p0 plays
p1. Similarly, we can prove that M and N lead to the same set of games for the rounds that
p0 plays p2, p0 plays p3, . . . , and p0 plays p2m . Hence, M = N . �

Let us look back at Examples 1 and 2. In Example 1, m = 3 and k = 2, so gcd(2m +
1, k) = 1. By Lemma 4, we know that there is a different setting of the round-robin
algorithm leading to the same set of schedules (with p1 being in the first row and the third
column). In Example 2, we know m = 4 and k = 3, therefore, gcd(2m + 1, k) = 3,
which implies that no such setting of the round-robin algorithm leading to the same set of
schedules exists by Lemma 4.

Now we are ready to give the first result regarding the number of schedules. We use φ(2m+
1) to denote the Euler totient, which is the number of positive integers less than or equal
to 2m + 1 that are relatively prime to 2m + 1.

Theorem 1. Suppose there are 2m+2 teams, namely p0, p1, . . . , p2m+1. Let n(m) denote
the number of different schedules with p0 being fixed using the round-robin algorithm.
Then

n(m) = (2m)!(2m + 1)!
φ(2m + 1)

.

30 A. Cherry, D. Olejniczak and Q. Zhang

Proof. There are 2m+2 teams, and hence there are 2m+1 rounds. If we have a tournament
schedule, we may reorder the rounds, so we can obtain different schedules. In other words,
a given tournament schedule determines a set of (2m + 1)! different schedules.

Since p0 is fixed, a circular permutation of p1, p2, . . . , p2m+1 corresponds to a set of tour-
nament schedules. There are (2m)! different circular permutations. By Lemma 1, we know
that if we reverse the order of a circular permutation, we will obtain the same set of tourna-
ment schedules by using the round-robin algorithm. If a circular permutation is given, for
example, a circular permutation corresponds to (1), then a different circular permutation
which generates the same set of tournament schedules as (1) is determined by the position

of the column

(
p1
p2m

)
by Lemma 3. By Lemma 4, for each k ∈ {1, 2, . . . ,m} that is

relatively prime to 2m + 1, there is a circular permutation which generates the same set of
tournament schedules. There are φ(2m + 1)/2 numbers in {1, 2, . . . ,m} that are relatively
prime to 2m + 1. Combining all these results, we obtain that the number of tournament
schedules is equal to (2m)!(2m+1)!

φ(2m+1) . �

Next, we try to answer the question: Is it possible to get the same set of tournament sched-
ules using a different fixed team by the round-robin algorithm? We find that this is only
possible for the case that there are 4 teams or 6 teams. Actually, by a straightforward
computation, we can see that

(
p0 p1
p3 p2

)
=

(
p3 p1
p0 p2

)
and

(
p0 p1 p2
p5 p4 p3

)
=

(
p5 p2 p1
p0 p3 p4

)
.

Therefore, the numbers of schedules generated by the round-robin algorithm for four and
six teams are obtained by Theorem 1, that is, six schedules for four teams and 720 sched-
ules for six teams.

If there are more than six teams, then we have the following theorem.

Theorem 2. Let p0, p1, . . . , p2m+1 represent 2m + 2 teams. If we use the round-robin
algorithm to generate tournament schedules with different fixed teams, for example, p0
and p2m+1, then the resulting schedules are different for m ≥ 3.

Proof. We assume that the tournament schedules are generated by

(
p0 p1 . . . pm

p2m+1 p2m . . . pm+1

)
. (15)

Suppose to the contrary that the schedules can be generated by the round-robin algorithm
using a different fixed team. We may assume that the schedules are generated by

(
p2m+1 x1 pi x3 . . . xm

p0 x2m p2m−i+1 x2m−2 . . . xm+1

)
(16)

with 1 ≤ i ≤ m being a fixed index and x j , 1 ≤ j ≤ 2m, j �= 2, and j �= 2m − 1, to be
determined.

Counting the number of round-robin tournament schedules 31

Consider the round when p0 plays p2m−i+1. Using (15) we obtain
[

p0 p2m−i+2 p2m−i+3 . . . p2m p2m+1 p1 . . . pm−i

p2m−i+1 p2m−i p2m−i−1 . . . p2m−2i+2 p2m−2i+1 p2m−2i . . . pm−i+1

]
.

(17)
We should point out that when m − i = 0, (17) should be understood as

[
p0 pm+2 pm+3 . . . p2m p2m+1
pm+1 pm pm−1 . . . p2 p1

]
.

Using (16), we have
[

p2m+1 p0 x1 pi x3 . . . xm−1
x2m p2m−i+1 x2m−2 x2m−3 x2m−4 . . . xm

]
. (18)

Comparing (17) with (18), we obtain that x2m = p2m−2i+1, which in view of (15) and (16)
further implies that x1 = p2i . Now we will try to find x2m−2 and x2m−3. It depends on
where pi and p2i are located in (17). We consider the following cases, which list all the
possible locations of pi and p2i in (17).

Case 1: i ≤ m − i and 2i ≤ m − i . In this case, we obtain that x2m−2 = p2m−4i+1
and x2m−3 = p2m−3i+1 by comparing (17) and (18). Consider the round that p0 plays
p2m−3i+1. Since 2m − 3i + 1 ≥ m + 1 due to the assumption that 2i ≤ m − i , p2m−3i+1
is in the second row of (15). By the round-robin algorithm and using (15), we obtain that

[
p0 p2m−3i+2 . . . p2m p2m+1 p1 . . . pm−3i

p2m−3i+1 p2m−3i . . . p2m−6i+2 p2m−6i+1 p2m−6i . . . pm−3i+1

]
.

(19)

Using (18), we have
[

p2m+1 p2m−2i+1 p0 p2i pi . . . xm−2
p2m−i+1 p2m−4i+1 p2m−3i+1 x2m−4 x2m−5 . . . xm−1

]
. (20)

Because the games determined by (19) and (20) are the same, we know that p2m−i+1 =
p2m−6i+1, which implies that 2m − 6i + 1 = 2m − i + 1. It is impossible.

Case 2: i ≤ m − i and 2i ≥ m − i + 1, that is, m+1
3 ≤ i ≤ m

2 . In this case, we know
pi is in the first row and p2i is in the second row of (17) and 2i ≤ 2m − 2i . By the same
argument as in Case 1, we obtain that x2m−2 = p2m−4i+1 and x2m−3 = p2m−3i+1. Since
2m − 3i + 1 ≤ m due to the assumption that 2i ≥ m − i + 1, p2m−3i+1 is in the first row
of (15). Consider the round that p0 plays p2m−3i+1. Using (15), we obtain
[

p0 p2m−3i+2 . . . p4m−6i+1 p4m−6i+2 p4m−6i+3 . . . p3m−3i+1
p2m−3i+1 p2m−3i . . . p1 p2m+1 p2m . . . p3m−3i+2

]
.

(21)
Using (18), we obtain (20). Comparing (20) with (21), we have p4m−6i+2 = p2m−i+1,
which shows that 4m − 6i + 2 = 2m − i + 1. So 2m + 1 = 5i . Therefore, x2m−2 =
p2m−4i+1 = pi , which is impossible due to (16) unless m = 2.

32 A. Cherry, D. Olejniczak and Q. Zhang

Case 3: m− i +1 ≤ i ≤ 2m−2i . In this case, we also have 2m−2i +1 ≤ 2i ≤ 2m− i +1.
It shows that pi and p2i are in different portions of the second row separated by p2m−2i

in (17). We obtain that x2m−2 = p4m−4i+2 and x2m−3 = p2m−3i+1 by comparing (17)
and (18). Consider the round that p0 plays p2m−3i+1. From 2m − 2i + 1 ≤ 2i , we know
2m − 3i + 1 ≤ i ≤ m. Now using (15) we obtain (21). Using (18), we have

[
p2m+1 p2m−2i+1 p0 p2i pi . . . xm−2
p2m−i+1 p4m−4i+1 p2m−3i+1 x2m−4 x2m−5 . . . xm−1

]
. (22)

Comparing (21) with (22), we obtain that p2m−i+1 = p4m−6i+2, which implies 2m +
1 = 5i . If m ≥ 3, then x2m−2 = p4m−4i+2 = p6i , which in view of (15) implies that
x3 = p2m−6i+1. Using the fact that 2m + 1 = 5i , we get a negative index −i , which is
impossible.

Case 4: 2m − 2i + 1 ≤ i ≤ 2m − i + 1 and 2m − 2i + 1 ≤ 2i ≤ 2m − i + 1. In this case,
we obtain that 2m+1

3 ≤ i ≤ 2m+1
3 . So we have 2m + 1 = 3i , plugging this into (16) and

noting that x1 = p2i , we know p2m−i+1 = p2i = x1, which is impossible.

Case 5: 2m − 2i + 1 ≤ i ≤ 2m − i + 1 and 2m − i + 2 ≤ 2i ≤ 2m + 1. We, therefore,
have 2m+2

3 ≤ i ≤ m + 1
2 . We now have x2m−2 = p4m−4i+2 and x2m−3 = p4m−3i+2 by

comparing (17) and (18). Consider the round when p0 plays p4m−3i+2. Using (15) and in
view of the fact that 4m − 3i + 2 ≥ m + 1 (due to the assumption i ≤ m), we have

[
p0 p4m−3i+3 . . . p2m p2m+1 p1 . . . p3m−3i+1
p4m−3i+2 p4m−3i+1 . . . p6m−6i+4 p6m−6i+3 p6m−6i+2 . . . p3m−3i+2

]
.

(23)

Using (18), we obtain

[
p2m+1 p2m−2i+1 p0 p2i pi . . . xm−2
p2m−i+1 p4m−4i+2 p4m−3i+2 x2m−4 x2m−5 . . . xm−1

]
. (24)

Comparing (23) with (24), we have p2m−i+1 = p6m−6i+3, which implies 5i = 4m + 2. If
m ≥ 3, then x2m−2 = p4m−4i+2 = pi , which is impossible since pi appears twice in (16).

Since Cases 1–5 include all the possibilities of the locations of pi and p2i in (17), we,
therefore, complete the proof of the theorem. �

Using Theorem 2, we have the following result.

Theorem 3. Suppose there are 2m + 2 (m ≥ 3) teams, p0, p1, . . . , p2m+1. Let T (m)
denote the number of tournament schedules using the round-robin algorithm. Then

T (m) = (2m + 2)(2m)!(2m + 1)!
φ(2m + 1)

.

Proof. For m ≥ 3, by Theorem 2, we know for different fixed teams, we obtain different
sets of tournament schedules. There are a total of 2m + 2 teams. Therefore, T (m) =
(2m + 2)n(m), which by Theorem 1 indicates that the equality is true. �

Counting the number of round-robin tournament schedules 33

5 Does the round-robin algorithm generate all the schedules?

For six teams, both approaches using chromatic polynomials and Theorem 1 give 720 dif-
ferent schedules. Therefore, in this case the round-robin algorithm generates all schedules.
For two teams or four teams, we can verify in a straightforward manner that all schedules
are generated by the round-robin algorithm. Is the statement still true if there are more
than six teams? The answer is no. In fact, two, four, and six are the only numbers with the
property that all schedules of the tournament are generated by the round-robin algorithm.
We have the following examples for more than six teams. We first consider the case that
there are an even number of games in each round. In other words, there are 4p teams in
the tournament with p ≥ 2.

Example 3. Suppose there are 4p teams in the tournament, which gives an even num-
ber of games in each round of the tournament. We divide them into two groups called
Group A and Group B . In each group there are 2p teams. We use a0, a1, . . . , a2p−1 and
b0, b1, . . . , b2p−1 to denote the teams in Group A and Group B , respectively. Now we
construct a schedule that will be proved not to be generated by the round-robin algorithm.
We use (

a0 a1 . . . ap−1
a2p−1 a2p−2 . . . ap

∣∣∣∣ b0 b1 . . . bp−1
b2p−1 b2p−2 . . . bp

)
(25)

to denote 2p−1 rounds of games concatenated by the games generated by the round-robin
algorithm individually in Group A and Group B . In other words, these 2p − 1 rounds of
games are as follows:

[
a0 a1 . . . ap−1

a2p−1 a2p−2 . . . ap

b0 b1 . . . bp−1
b2p−1 b2p−2 . . . bp

]
,

[
a0 a2p−1 . . . ap−2

a2p−2 a2p−3 . . . ap−1

b0 b2p−1 . . . bp−2
b2p−2 b2p−3 . . . bp−1

]
,

.

[
a0 a2 . . . ap

a1 a2p−1 . . . ap+1

b0 b2 . . . bp

b1 b2p−1 . . . bp+1

]
.

We use (
a0 a1 . . . ap−1

b2p−1 b2p−2 . . . bp

]
b0 b1 . . . bp−1

a2p−1 a2p−2 . . . ap

)
(26)

to denote p rounds of games concatenated by the games obtained by fixing a0, a1, . . .,
ap−1, b0, b1, . . ., bp−1, and rotating the sequences b2p−1, b2p−2, . . ., bp and a2p−1, a2p−2,
. . ., ap simultaneously. These p rounds of games are

[
a0 a1 . . . ap−1

b2p−1 b2p−2 . . . bp

b0 b1 . . . bp−1
a2p−1 a2p−2 . . . ap

]
,

34 A. Cherry, D. Olejniczak and Q. Zhang

[
a0 a1 . . . ap−1

b2p−2 b2p−3 . . . b2p−1

b0 b1 . . . bp−1
a2p−2 a2p−3 . . . a2p−1

]
,

.[
a0 a1 . . . ap−1
bp b2p−1 . . . bp+1

b0 b1 . . . bp−1
ap a2p−1 . . . ap+1

]
.

With this notation,(
a0 a1 . . . ap−1
b0 b1 . . . bp−1

]
ap ap+1 . . . a2p−1
bp bp+1 . . . b2p−1

)
(27)

represents the other p rounds of games. Now, if we put the rounds in (25)–(27) together,
we get 4p−1 rounds of games, which give us a schedule of the tournament with 4p teams.
We should also point out that for each round in (25) teams in Group A only play teams in
Group A and teams in Group B only play teams in Group B , and for each round in (26)
and (27) teams in Group A only play teams in Group B and teams in Group B only play
teams in Group A. Now we prove that the round-robin algorithm does not generate this
schedule.

Suppose to the contrary that the round-robin algorithm generates this schedule. Without
loss of generality, we may assume that ai is the fixed team in the setting of the round-robin
algorithm. In the circular permutation which corresponds to the setting of the round-robin
algorithm, if at least two consecutive teams are from group A, for example, a j and ak , then
the round when ai plays a j , which is a round in (25), can be written as follows:

[
ai ak x4p−3 . . . x2p

a j x1 x2 . . . x2p−1

]
.

Because teams in Group A only play teams in Group A in all rounds in (25), we should
know that x1 should be a team in Group A. By rotating the sequence a j , ak, x4p−3, . . . , x1
clockwise one position, we have a round with a game that ai plays x1. Since x1 is in Group
A, we know that this round is in (25). However, in all rounds in (25), teams in Group A
play teams in Group A, we obtain that x2 and x3 are in Group A, too. In a similar way, we
obtain that all xi , 1 ≤ i ≤ 4p − 3 are in Group A. Of course, this is impossible because no
teams in Group B are presented in the setting of the round-robin algorithm. Therefore, we
cannot have two consecutive teams from Group A in a setting of the round-robin algorithm
in order to generate a schedule determined by (25)–(27).

Now, suppose there is a setting of the round-robin algorithm that generates a schedule
determined by (25)–(27). Then in the circular permutation corresponding to the setting of
the round-robin algorithm, teams in Group A should be separated by teams in Group B . In
other words, no two consecutive teams are from Group A. Since ai is fixed, we only have
2p−1 teams in Group A and 2p teams in Group B in the circular permutation. Therefore,
there exists one and only one subsequence with two consecutive teams from Group B ,
namely b j , bk . We now consider a round that is as follows:

[
ai . . . b j bk . . .
z . . . x y . . .

]
.

Counting the number of round-robin tournament schedules 35

In this round, b j plays x and bk plays y. Since no two consecutive teams are from Group A
and b j , bk is the only subsequence with two consecutive teams from Group B , we obtain
that one of x and y is in Group A and the other one is in Group B . Therefore, either the
game that b j plays x or the game that bk plays y is a game between two teams in Group
B and the other game is one between a team in Group A and a team in Group B . This is
impossible because for each round in (25) teams in Group A only play teams in Group A
and teams in Group B only play teams in Group B , and for each round in (26) and (27)
teams in Group A only play teams in Group B and teams in Group B only play teams in
Group A. Therefore, the round-robin algorithm does not generate the schedule which is
put together by (25)–(27).

Example 4. Suppose there are an odd number of games in each round of the tournament.
We may assume that there are 4p − 2 teams with p ≥ 3. As in the previous example,
we divide these 4p − 2 teams into two groups still called Group A and Group B . In each
group, there are now 2p − 1 teams. We use a1, a2, . . . , a2p−1 to represent teams in Group
A and b1, b2, . . . , b2p−1 to represent teams in Group B . In order to use the round-robin
algorithm within each group, we add a dummy team for each group. We add a0 to Group
A and b0 to Group B . Now we construct a schedule that will be proved not to be generated
by the round-robin algorithm. We use

(
a0 a1 . . . ap−1

a2p−1 a2p−2 . . . ap

∣∣∣∣
∣∣∣∣ b0 b1 . . . bp−1

b2p−1 b2p−2 . . . bp

)
(28)

to denote 2p−1 rounds of games concatenated by the games generated by the round-robin
algorithm individually in Group A and Group B . We note that if a0 plays ai and b0 plays
b j , because a0 and b0 are dummy teams, we should understand this is equivalent to the
game that ai plays b j . With this in mind, the set of rounds in (28) consists of the following
rounds [

a2p−1 a1 . . . ap−1
b2p−1 a2p−2 . . . ap

b1 . . . bp−1
b2p−2 . . . bp

]
,

[
a2p−2 a2p−1 . . . ap−2
b2p−2 a2p−3 . . . ap−1

b2p−1 . . . bp−2
b2p−3 . . . bp−1

]
,

.

[
a1 a2 . . . ap

b1 a2p−1 . . . ap+1

b2 . . . bp

b2p−1 . . . bp+1

]
.

We use (
a0 a1 . . . ap−1

b2p−1 b2p−2 . . . bp

[]
b0 b1 . . . bp−1

a2p−2 a2p−3 . . . a2p−1

)
(29)

to denote p rounds of games concatenated by the games obtained by fixing a0, a1, . . .,
ap−1, b0, b1, . . ., bp−1, and rotating the sequences b2p−1, b2p−2, . . ., bp and a2p−2, a2p−3,

36 A. Cherry, D. Olejniczak and Q. Zhang

. . ., ap, a2p−1 simultaneously. In other words, the set of the rounds in (29) consists of the
following rounds[

a2p−2 a1 . . . ap−1
b2p−1 b2p−2 . . . bp

b1 . . . bp−1
a2p−3 . . . a2p−1

]
,

[
a2p−3 a1 . . . ap−1
b2p−2 b2p−3 . . . b2p−1

b1 . . . bp−1
a2p−4 . . . a2p−2

]
,

.[
a2p−1 a1 . . . ap−1

bp b2p−1 . . . bp+1

b1 . . . bp−1
a2p−2 . . . ap

]
.

We note that for each round in (28), there is only one game between a team in Group A
and a team in Group B which can be described as ai plays bi . All other games are played
within their groups. We also find that for each round in (29), there is no game between a
team in {a1, a2, . . . , ap−1} and a team in {b1, b2, . . . , bp−1}, and there is only one game
between a team in {ap, ap+1, . . . , a2p−1} and a team in {bp, bp+1, . . . , b2p−1} which is
either a game that ai plays bi+1 for p ≤ i ≤ 2p − 2 or a game that a2p−1 plays bp .
Therefore, the following p − 2 rounds of games(

a1 . . . ap−2 ap−1
b2 . . . bp−1 b1

]]
ap ap+1 . . . a2p−3 a2p−2 a2p−1

bp+2 bp+3 . . . b2p−1 bp bp+1

)
(30)

obtained by fixing a1, a2, . . . , ap−1 and ap, ap+1, . . . , a2p−1, and rotating the sequences
b2, b3, . . . , bp−1, b1 and bp+2, bp+3, . . . , bp+1 simultaneously p − 3 times, can be added
to (28) and (29) to form a schedule of the tournament.

We should point out that only rounds in (28) have games between teams within Group A
or Group B and if a game that ai plays a j in a round in (28), then there is also a game
between bi and b j for that round. Now we prove that the round-robin algorithm does not
generate this schedule formulated above.

Suppose to the contrary that the round-robin algorithm generates this schedule. Without
loss of generality, we may assume that ai is the fixed team in the setting of the round-robin
algorithm. In the circular permutation which corresponds to the setting of the round-robin
algorithm, if at least two consecutive teams are from Group A, for example, a j and ak ,
then we may assume a subsequence a j , ak, bl in the circular permutation. We consider the
round when ai plays ak , which is a round in (28) and can be written as follows:[

ai bl x4p−6 . . . x2p−2
ak a j x1 . . . x2p−3

]
. (31)

Because a j and bl are in Group A and Group B , respectively, due to a property of the
rounds in (28), we obtain that l = j . Now we rotate the sequence a j , ak, bl, x4p−6, . . . , x1
clockwise one position and consider the round that ai plays a j that is also a round in (28),
we have the following games[

ai ak bl x4p−6 . . . x2p−2
a j x1 x2 x3 . . . x2p−3

]
. (32)

Counting the number of round-robin tournament schedules 37

Now if x1 is in Group B , then x1 = bk by (32), which by (31) further implies that
x4p−6 = bi , which by (32) again implies that x3 = b j , which is a contradiction since
bl = b j already appeared in the setting. If x1 is in Group A, by (31) we know that x4p−6
is also in Group A. Now rotating the sequence x1, x2, . . . , x4p−6, bl , ak, a j in (31) coun-
terclockwise one position, we have

[
ai x4p−6 x4p−5 . . . x2p−3
bl ak a j . . . x2p−4

]
. (33)

Since x4p−6 is in Group A, a game between teams in Group A in the round (33), that is the
game that x4p−6 plays ak , shows that the round (33) must be in (28). Therefore, bl = bi ,
which shows that l = i . However, we already know that l = j . We have a contradiction.

Now, suppose there is a setting of the round-robin algorithm that generates a schedule
determined by (28)–(30). Then in the circular permutation corresponding to the setting of
the round-robin algorithm, teams in Group A should be separated by teams in Group B .
Therefore, there exists one and only one subsequence with two consecutive teams from
Group B , namely b j1, b j2 . We now consider a round that is as follows:

[
ai . . . ai1 b j1 b j2 ai2
z . . . a j5 b j4 ai4 b j3

]
. (34)

In this round, b j1 plays b j4 . Since only the rounds in (28) have games between teams in
Group B , we know that the round (34) must be in (28). However, for all rounds in (28),
there is only one game between a team in Group A and a team in Group B and there are
two such games in the round (34). We, therefore, get a contradiction.

Therefore, there does not exist a setting of the round-robin algorithm which generates a
schedule put together by (28)–(30).

6 Conclusion

We have proved an equality for the number of schedules generated by the round-robin
algorithm. As Examples 3 and 4 show, some tournament schedules may not be generated
by the round-robin algorithm. It might be interesting to develop a practical approach to
find the number of all tournament schedules for n teams. Though chromatic polynomials
can be used to describe the total number of schedules for n teams, it is not easy to compute
chromatic polynomials even for a small number of teams, for example eight teams. So we
further ask if an equality or an inequality exists for the number of all tournament schedules
for n teams. It seems to us that this is not an easy problem. Our future work will try to
answer this question.

Acknowledgment

The authors would like to thank the referee for the comments that helped improve the pa-
per. Specifically, the comment that motivates us to construct counterexamples in Section 5,
is greatly appreciated.

38 A. Cherry, D. Olejniczak and Q. Zhang

References

[1] Briskorn, D., Combinatorial properties of strength groups in round-robin tournaments, European Journal of
Operational Research, 192(2009), 744–754.

[2] Briskorn, D.; Drexl, A., A branch-and-price algorithm for scheduling sport leagues, Journal of the Opera-
tional Research Society, 60(2009), 84–93.

[3] Freund, J.F., Round robin mathematics, The American Mathematical Monthly, 63(1956), No. 2 , 112–114.

[4] Harris, J.M., Hirst, J.L., and Mossinghoff, M.J., Combinatorics and Graph Theory, 2nd edition, Springer,
2008.

Alyssa Cherry
University of Missouri
Department of Mathematics
Columbia, MO 65211, USA
e-mail: alyssa.cherry@mail.missouri.edu

Drake Olejniczak
Department of Mathematics
Western Michigan University
Kalamazoo, MI 49008, USA
e-mail: Drake.P.Olejniczak@wmich.edu

Qinghong Zhang (Corresponding author)
Department of Mathematics and Computer Science
Northern Michigan University
Marquette, MI 49855, USA
e-mail: qzhang@nmu.edu

