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Beiträge zur Arithmetik von Funktionenkörpern positiver Charakteristik geleistet hat.
Seine mathematische Ausbildung erhielt er vor allem an der Universität Bonn.

Let q be a power of a prime number p. Many of the wonders of algebra in characteristic
p are based on the fact that the binomial coefficients

(q
m

)
are divisible by p for all integers

0 < m < q . As a consequence, the map x �→ xq on any unitary commutative ring R
with p · 1R = 0R satisfies not only the multiplicativity relation (xy)q = xq yq , but also
the additivity relation (x + y)q = xq + yq , and is therefore a ring homomorphism. This
homomorphism, called Frobenius, is an important tool for all questions concerning finite
fields of characteristic p.

In this short note we answer an elementary question about the action of Frobenius on the
zeros of a polynomial over a finite field that seems not to have been raised before. The
necessary prerequisites are nothing more than a standard two semester course in algebra.

Throughout this note we fix a finite field 𝔽q of cardinality q , a finite field extension k/𝔽q

of degree n, and an algebraic closure k̄ of k. Let σq : x �→ xq denote the Frobenius map
on k̄. Recall that σ n

q : x �→ xqn
acts trivially on k and that the Galois group Gal(k̄/k) is

the free pro-cyclic group topologically generated by it.

.

Ein Grundproblem der Algebra ist die Bestimmung der Galoisgruppe eines separablen
Polynoms in einer Variablen. Liegen die Koeffizienten des Polynoms in einem endli-
chen Körper der Kardinalität qn , so ist diese Galoisgruppe erzeugt von dem Bild des
Frobenius-Automorphismus x �→ xqn

. Hat das Polynom zusätzlich die spezielle Form
a0X + a1Xq + . . . + ad Xqd

mit a0, ad �= 0, so wird die Operation von Frobenius
durch eine Matrix in GLd(𝔽q) repräsentiert. Der vorliegende Artikel beantwortet die
Frage, welche Matrizen auf diese Weise auftreten können für gegebene q , n und d . In
gewissem Sinn löst dies eine Variante des “Umkehrproblems der Galoistheorie” über
endlichen Körpern.
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Fix an integer d ⩾ 0, and consider a separable q-linear polynomial of degree qd over k,
that is, a polynomial in one variable of the form

f (X) =
d∑

i=0

ai X
qi = a0X + a1Xq + . . . + ad Xqd

with coefficients ai ∈ k, for which a0 and ad are non-zero. Since σq : x �→ xq is the
identity on 𝔽q , the map k̄ → k̄ induced by f is 𝔽q -linear, and so its kernel

V f := {a ∈ k̄ | f (a) = 0}
is an 𝔽q -subspace of k̄. On the other hand the formal derivative of f is the non-zero
constant polynomial a0; hence f has no multiple roots in k̄. Thus V f has cardinality qd

and therefore dimension dim𝔽q V f = d . Moreover, the fact that σ n
q acts trivially on k

implies that V f is mapped to itself under σ n
q . Again the linearity of σ n

q implies that σ n
q

induces an automorphism of the 𝔽q -vector space V f . In any basis of V f over 𝔽q this
automorphism is represented by a matrix ϕ f ∈ GLd (𝔽q), and the conjugacy class of ϕ f

depends only on the data (q, k, f ).

The question we are interested in is whether anything else can be said about ϕ f if f is
arbitrary. In precise terms we mean:

Question 1. Which conjugacy classes in GLd (𝔽q) arise as ϕ f for fixed 𝔽q , k, d, and
arbitrary f ?

An answer to this question helps in constructing polynomials with given Galois groups, as
in Ziegler’s bachelor thesis on the so-called inverse Galois problem [3].

To help the reader develop a feeling for the situation we suggest the following special cases
as warmup exercises:

Exercise 2. For k = 𝔽q and f (X) = X + Xq + Xq2
, show that V f is contained in an

extension of k of degree 3 and that the associated matrix ϕ f is conjugate to
( 0 −1

1 −1

)
.

Exercise 3. Show that f (X) = Xq − aX with a ∈ k× has the associated “matrix”
ϕ f = α ∈ GL1(𝔽q) = 𝔽

×
q if and only if Normk/𝔽q (a) = α.

Exercise 4. Show that the identity matrix in GLd(𝔽q) arises as ϕ f if and only if d ⩽ n.

(For the last exercise observe that ϕ f is the identity matrix if and only if V f ⊂ k, and
apply Lemma 13. Note that the last exercise also shows that the question is non-trivial.)

Now we state our general answer to Question 1. For any matrix ϕ ∈ GLd(𝔽q) we let 𝔽q [ϕ]
denote the 𝔽q -subalgebra of the ring of d × d-matrices over 𝔽q that is generated by ϕ.

Theorem 5. For any ϕ ∈ GLd (𝔽q) and any k/𝔽q of degree n the following are equivalent:

(a) 𝔽
d
q as a module over 𝔽q [ϕ] is generated by ⩽ n elements.

(b) Every eigenvalue of ϕ in k̄ has geometric multiplicity ⩽ n.

(c) There exists a separable q-linear polynomial f over k with ϕ f conjugate to ϕ.
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It may be worthwhile to give yet another equivalent condition in a special case:

Corollary 6. If k = 𝔽q , the conditions in Theorem 5 are also equivalent to:

(d) ϕ is conjugate to a matrix of the following form:

⎛
⎜⎜⎜⎝

0 0 ∗
1

0

0

0 0 1 ∗

⎞
⎟⎟⎟⎠

Proof. We prove that (d) is equivalent to condition (a) of Theorem 5. Since k = 𝔽q , we
have n = 1; hence condition (a) means that 𝔽d

q = ∑
i⩾0 𝔽q · ϕi (v) for some vector v. If

this holds, let e be the smallest integer ⩾ 0 such that ϕe(v) is an 𝔽q -linear combination of
the vectors v, ϕ(v), . . . , ϕe−1(v). Then the subspace

∑e−1
i=0 𝔽q · ϕi (v) is mapped to itself

under ϕ, so it actually contains the elements ϕi (v) for all i ⩾ 0. On the other hand the
vectors v, ϕ(v), . . . , ϕe−1(v) are 𝔽q -linearly independent by construction; hence the stated
condition is equivalent to saying that these vectors form an 𝔽q-basis of 𝔽d

q . Of course this
requires that e = d . To show that the condition is equivalent to (d), it remains to observe
that the matrix of ϕ associated to any basis of 𝔽d

q has the indicated form if and only if that

basis is v, ϕ(v), . . . , ϕd−1(v) for some vector v.

By Theorem 5 the matrices of the form in Corollary 6 (d) actually arise for any value of n.
Furthermore:

Corollary 7. For any k/𝔽q of degree n the following are equivalent:

(a) d ⩽ n.

(b) For every ϕ ∈ GLd(𝔽q) there exists a separable q-linear polynomial f over k with
ϕ f conjugate to ϕ.

Proof. By Theorem 5 the condition d ⩽ n is sufficient for (b). As the identity matrix in
GLd(𝔽q) satisfies condition 5 (a) if and only if d ⩽ n, the condition is also necessary.

Now we begin with the preparations for the proof of Theorem 5. For any positive integer r
we let kr denote the finite subextension of k̄ of degree r over k. Then kr/k is Galois, and
its Galois group �r := Gal(kr/k) is cyclic of order r with generator γr := σ n

q |kr . We are
interested in the structure of kr as a representation of �r over 𝔽q . By general principles
this is equivalent to describing kr as a module over the group ring 𝔽q[�r ].
Lemma 8. As an 𝔽q [�r ]-module kr is free of rank n.

Proof. Since kr/k is a finite Galois extension, it possesses a normal basis, i.e., there exists
an element y ∈ kr such that the elements γ (y) for all γ ∈ �r form a basis of kr over k.
Let x1, . . . , xn be a basis of k over 𝔽q . Then the elements γ (y) · xi for all γ ∈ �r and
1 ⩽ i ⩽ n form a basis of kr over 𝔽q . Since the elements γ ∈ �r form a basis of 𝔽q [�r ]
over 𝔽q , it follows that x1, . . . , xn is a basis of kr as a free module over 𝔽q [�r ].
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Next, for any finite-dimensional representation W of �r over 𝔽q let W∗ := Hom𝔽q (W,𝔽q)

denote the dual vector space endowed with the contragredient representation of �r defined
by �r × W∗ → W∗, (γ, �) �→ � ◦ γ −1. In the special case of the regular representation
𝔽q [�r ] we obtain:

Lemma 9. The dual representation 𝔽q [�r ]∗ is isomorphic to 𝔽q [�r ].
Proof. This is a general fact about group rings of finite groups. Indeed, by direct calcula-
tion one can show that the element � ∈ 𝔽q[�r ]∗ defined by

∑
γ αγ γ �→ α1 is a basis of

𝔽q [�r ]∗ as a free module of rank 1 over 𝔽q [�r ].
Lemma 10. For any finite-dimensional 𝔽q [�r ]-module W the following are equivalent:

(a) W is generated by ⩽ n elements.
(b) Every eigenvalue of γr on W ⊗k k̄ has geometric multiplicity ⩽ n.
(c) Every eigenvalue of γr on W∗ ⊗k k̄ has geometric multiplicity ⩽ n.
(d) W∗ is generated by ⩽ n elements.

Proof. These equivalences are special properties of representations of cyclic groups. We
deduce them from properties of the Jordan normal form in the guise of modules over the
polynomial ring 𝔽q[X].
First, we view W as a module over the polynomial ring R := 𝔽q [X] such that

∑
i ai X i

acts as
∑

i aiγ
i
r . By the elementary divisor theorem there exist a non-negative integer m

and non-constant monic polynomials Pi ∈ R for all 1 ⩽ i ⩽ m such that Pi divides
Pi+1 for all 1 ⩽ i < m and that W ∼= ⊕m

i=1 R/RPi . Clearly W is then generated by m
elements. Conversely, any irreducible factor P of P1 divides every Pi ; hence there exists
a surjection W ↠

⊕m
i=1 R/RP ∼= (R/RP)m . The latter is a vector space of dimension

m over the residue field R/RP; hence it cannot be generated by fewer than m elements.
Together it follows that m is the minimal number of generators of W as an R-module, or
equivalently as a module over 𝔽q [�r ]. Thus (a) is equivalent to m ⩽ n.
Secondly, every Pi divides Pm ; hence the minimal polynomial of γr as an endomorphism
of W is Pm ; and so the eigenvalues of γr on W ⊗k k̄ are precisely the roots of Pm . Write
Pm(X) = ∏s

j=1(X − α j )
μm, j with distinct α1, . . . , αs ∈ k̄ and multiplicities μm, j ⩾ 1.

Since each Pi divides Pm , we can also write Pi (X) = ∏s
j=1(X−α j )

μi, j with multiplicities
μi, j ⩾ 0. By the Chinese remainder theorem we then have

W ⊗k k̄ ∼=
m⊕

i=1

k̄[X]/k̄[X]Pi ∼=
m⊕

i=1

s⊕
j=1

k̄[X]/k̄[X](X − α j )
μi, j

as a module over k̄[X]. For any 1 ⩽ j ⩽ s, the geometric multiplicity of the eigenvalue α j

on k̄[X]/k̄[X](X − α j )
μi, j is 1 if μi, j ⩾ 1, and 0 otherwise. The geometric multiplicity

of α j on W ⊗k k̄ is therefore the number of indices 1 ⩽ i ⩽ m with μi, j > 0. Of
course this number is always ⩽ m. Conversely, at least one of the eigenvalues is a root
of the non-constant polynomial P1 and hence of every Pi . The geometric multiplicity of
this eigenvalue is therefore equal to m, and together it follows that m is the maximum of
the geometric multiplicities of all eigenvalues of γr on W ⊗k k̄. Thus (b) is equivalent
to m ⩽ n.
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Thirdly, the above decomposition of W ⊗k k̄ induces a decomposition

W∗ ⊗k k̄ ∼=
m⊕

i=1

(k̄[X]/k̄[X]Pi )
∗ ∼=

m⊕
i=1

s⊕
j=1

(k̄[X]/k̄[X](X − α j )
μi, j )∗,

where the dual vector spaces in the middle and on the right hand side are taken over k̄. This
decomposition is invariant under the natural endomorphism induced by γ ∗

r : W∗ → W∗,
� �→ � ◦ γr . But each non-zero summand k̄[X]/k̄[X](X − α j )

μi, j corresponds to a sin-
gle indecomposable Jordan block of γr on W ⊗k k̄ with eigenvalue α j ; hence its dual
corresponds to an indecomposable Jordan block of γ ∗

r on W∗ ⊗k k̄ with the same eigen-
value α j . Moreover, since the contragredient representation on W∗ is defined by letting γr

act through (γ ∗
r )−1, it follows that each non-zero (k̄[X]/k̄[X](X − α j )

μi, j )∗ corresponds
to an indecomposable Jordan block of the contragredient action of γr on W∗ ⊗k k̄ with
the eigenvalue α−1

j . Thus m is also the maximum of the geometric multiplicities of all

eigenvalues of γr in its contragredient action on W∗ ⊗k k̄. Thus (c) is equivalent to m ⩽ n.

The above three characterizations of m already prove the equivalences (a)⇔(b)⇔(c). Ap-
plying the equivalence (a)⇔(b) to W∗ in place of W also shows (c)⇔(d). This finishes the
proof of Lemma 10.

Lemma 11. The conditions in Lemma 10 are also equivalent to:

(e) There exists an injective homomorphism of 𝔽q [�r ]-modules W ↪→ kr .

Proof. The condition (d) of Lemma 10 is equivalent to saying that there exists a surjec-
tive homomorphism of 𝔽q [�r ]-modules 𝔽q [�r ]n ↠ W∗. Since Lemmas 8 and 9 provide
isomorphisms of 𝔽q[�r ]-modules

k∗
r

∼= (𝔽q [�r ]n)∗ ∼= (𝔽q [�r ]∗)n ∼= 𝔽q [�r ]n,
this amounts to giving a surjective homomorphism of 𝔽q [�r ]-modules k∗

r ↠ W∗. By
duality any such homomorphism corresponds to an injective homomorphism of 𝔽q[�r ]-
modules W ↪→ kr , and vice versa. Thus (d) is equivalent to (e), as desired.

To prove Theorem 5 we will apply the above results in the special case that r is the order
of the finite group GLd(𝔽q). With this choice we have:

Lemma 12. Any σ n
q -invariant 𝔽q-subspace U ⊂ k̄ of dimension d is contained in kr .

Proof. By Lagrange the r th power of any element of GLd(𝔽q) is the identity matrix. Thus
the power σ nr

q acts trivially on U . But by Galois theory the field of fixed points of σ nr
q on

k̄ is just kr ; hence we have U ⊂ kr , as desired.

As a final ingredient, the following lemma concerns the passage back from V f to f :

Lemma 13. For every finite-dimensional σ n
q -invariant 𝔽q-subspace U ⊂ k̄ there exists a

separable q-linear polynomial f over k with V f = U.
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Proof. Since U is a finite set, we can form the polynomial f (X) := ∏
u∈U (X −u) ∈ k̄[X],

which by construction is separable with set of zeros U . Moreover, as U is invariant under
σ n

q , so is f ; hence f already lies in k[X]. That f is q-linear follows from its explicit
description in terms of the Moore determinant from [2, Statement III] or [1, Lemma 1.3.6].

Proof of Theorem 5. Consider any matrix ϕ ∈ GLd(𝔽q). Then by the choice of r and
Lagrange’s theorem the r th power ϕr is the identity matrix. Thus W := 𝔽

d
q carries a unique

representation of the cyclic group �r such that γr acts as ϕ. The equivalence (a)⇔(b)
in Theorem 5 thus follows from the equivalence (a)⇔(b) in Lemma 10. By Lemma 11
these conditions are also equivalent to the existence of an injective homomorphism of
𝔽q [�r ]-modules W ↪→ kr . Giving such a homomorphism amounts to giving a γr -invariant
𝔽q -subspace U ⊂ kr and an isomorphism of 𝔽q-vector spaces i : W ∼→ U satisfying
i ◦ γr = γr ◦ i . By the definition of the actions of γr the last relation is equivalent to
i ◦ ϕ = σ n

q ◦ i . By Lemma 12 such data is therefore the same as giving a σ n
q -invariant

𝔽q -subspace U ⊂ k̄ and an isomorphism of 𝔽q -vector spaces i : W ∼→ U satisfying
i ◦ ϕ = σ n

q ◦ i .

As explained above, the set of zeros V f of any separable q-linear polynomial f over k
is a finite-dimensional σ n

q -invariant 𝔽q -subspace of k̄. Lemma 13 asserts that, conversely,

every finite-dimensionalσ n
q -invariant𝔽q -subspace of k̄ arises in this way. Giving the above

data is therefore equivalent to giving a separable q-linear polynomial f over k and an
isomorphism of 𝔽q -vector spaces i : W ∼→ V f satisfying i ◦ϕ = σ n

q ◦i . But the existence of
such an isomorphism i means that dim𝔽q V f = d and that ϕ represents the conjugacy class
of Frobenius associated to f , in other words, that ϕ f is conjugate to ϕ. Thus altogether we
find that the conditions (a) and (b) of Theorem 5 are also equivalent to condition (c), and
we are done.
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