On some results related to Napoleon configurations

Nikolay Dimitrov
Nikolay Dimitrov completed his undergraduate studies at Sofia University "Saint Kliment Ohridski" in Bulgaria with a major in mathematics. In 2009 he received a doctoral degree in mathematics from Cornell University. Currently, he is a postdoctoral fellow at McGill University and Centre de Recherches Mathématiques in Montreal.

1 Introduction

In this short article we discuss some results from planar Euclidean geometry which have a close connection to Napoleon's theorem. They are summarized in Theorem 1. The statement of Theorem 1 appears in [1] where the proof is based on coordinate descriptions and algebraic computations. Since both Theorem 1 and Napoleon's theorem (see Theorem 2) are elementary geometric results, it makes sense to provide a proof that remains in the same simple geometric domain. For that reason, the arguments presented in the current paper are entirely in the spirit of synthetic Euclidean geometry and use only geometric methods with almost no algebraic computations. Thus, one gets a better feeling for the geometry and the properties of Napoleon configurations.
Definition 1. Let $\triangle A B C$ be an arbitrary triangle. We say that the points A_{1}, B_{1} and C_{1} form a non-overlapping Napoleon configuration for the triangle $\triangle A B C$ if all three triangles $\triangle A B C_{1}, \triangle A B_{1} C$ and $\triangle A_{1} B C$ are equilateral and no one of them overlaps with $\triangle A B C$ (see Figure 1). Alternatively, we say that the points $A_{1}^{\prime}, B_{1}^{\prime}$ and C_{1}^{\prime} form an overlapping Napoleon configuration for $\triangle A B C$ if all three triangles $\triangle A B C_{1}^{\prime}, \triangle A B_{1}^{\prime} C$ and $\triangle A_{1}^{\prime} B C$ are equilateral and all of them overlap with $\triangle A B C$.

Um den Satz von Napoleon kreisen in der Euklidischen Geometrie zahlreiche Varianten. Bekannt sind etwa die Kiepert-Dreiecke und deren schöne Eigenschaften. Branko Grünbaum hat 2001 eine besonders ausführliche Version des Satzes von Napoleon formuliert, in der zahlreiche neue Eigenschaften der Konfiguration beschrieben werden. Grünbaum benutzt in seinem Beweis Methoden der analytischen Geometrie. Der Autor der vorliegenden Arbeit beweist nun Grünbaums Variante des Satzes mit elementaren Methoden der synthetischen Geometrie, die sich darüberhinaus als besonders anschaulich erweisen.

Fig. 1 A non-overlapping Napoleon configuration and the first part of Napoleon's theorem.

2 The Main Result

The main result of the current article is the following theorem.
Theorem 1. Let us have an arbitrary triangle $\triangle A B C$ and let A_{1}, B_{1} and C_{1} form a non-overlapping Napoleon configuration for that triangle. Denote the midpoints of $B_{1} C_{1}$, $C_{1} A_{1}$ and $A_{1} B_{1}$ by A_{2}, B_{2} and C_{2} respectively. Also, denote the centroids of the triangles $\triangle A_{1} B C, \triangle A B_{1} C$ and $\triangle A B C_{1}$ by G_{1}, G_{2} and G_{3} respectively. Then the following statements are true:

1. The triangles $\triangle A_{2} B_{2} C, \triangle A B_{2} C_{2}$ and $\triangle A_{2} B C_{2}$ are equilateral;
2. The centroids A^{*}, B^{*}, C^{*} of $\triangle A B_{2} C_{2}, \triangle A_{2} B_{2} C, \triangle A_{2} B C_{2}$ respectively are vertices of an equilateral triangle, whose centroid coincides with the centroid G of $\triangle A B C$;
Similarly, let $A_{1}^{\prime}, B_{1}^{\prime}$ and C_{1}^{\prime} be an overlapping Napoleon configuration for $\triangle A B C$. Denote the midpoints of $B_{1}^{\prime} C_{1}^{\prime}, C_{1}^{\prime} A_{1}^{\prime}$ and $A_{1}^{\prime} B_{1}^{\prime}$ by $A_{2}^{\prime}, B_{2}^{\prime}$ and C_{2}^{\prime} respectively. Also, denote the centroids of triangles $\triangle A_{1}^{\prime} B C, \triangle A B_{1}^{\prime} C$ and $\triangle A B C_{1}^{\prime}$ by $G_{1}^{\prime}, G_{2}^{\prime}$ and G_{3}^{\prime} respectively. Then
3. The triangles $\triangle A_{2}^{\prime} B_{2}^{\prime} C, \triangle A B_{2}^{\prime} C_{2}^{\prime}$ and $\triangle A_{2}^{\prime} B C_{2}^{\prime}$ are equilateral;
4. The centroids $A^{* *}, B^{* *}, C^{* *}$ of $\triangle A B_{2}^{\prime} C_{2}^{\prime}, \triangle A_{2}^{\prime} B C_{2}^{\prime}, \triangle A_{2}^{\prime} B_{2}^{\prime} C$ respectively are vertices of an equilateral triangle, whose centroid coincides with the centroid G of $\triangle A B C$;
5. Triangle $\triangle A^{*} B^{*} C^{*}$ is homothetic to the triangle $\triangle G_{1}^{\prime} G_{2}^{\prime} G_{3}^{\prime}$ with homothetic center G and a coefficient of similarity $-1 / 2$;
6. Triangle $\triangle A^{* *} B^{* *} C^{* *}$ is homothetic to the triangle $\triangle G_{1} G_{2} G_{3}$ with homothetic center G and a coefficient of similarity $-1 / 2$.
7. The area of $\triangle A B C$ equals four times the algebraic sum of the areas of $\triangle A^{*} B^{*} C^{*}$ and $\triangle A^{* *} B^{* *} C^{* *}$.

3 Napoleon's Theorem

Napoleon's theorem is a beautiful result from planar Euclidean geometry and there are various ways to prove it. In order to make this article more self-contained, we present one possible geometrically oriented proof. Before we state and prove Napoleon's theorem we are going to need the following lemma.

Lemma 1. Given an arbitrary triangle $\triangle A B C$, let A_{1}, B_{1} and C_{1} form a non-overlapping Napoleon configuration for that triangle. Then, the following properties are true:

1. The segments $A A_{1}, B B_{1}$ and $C C_{1}$ are of equal length. In other words, $A A_{1}=$ $B B_{1}=C C_{1}$;
2. They intersect at a common point, denoted by J;
3. $\measuredangle A J B=\measuredangle B J C=\measuredangle C J A=120^{\circ}$;
4. The circles K_{1}, K_{2} and K_{3} circumscribed around the equilateral triangles $\triangle A_{1} B C$, $\triangle A B_{1} C$ and $\triangle A B C_{1}$ respectively pass through the point J (see Figure 2).

Proof. Perform a 60° rotation R_{A} around the point A in counterclockwise direction. Since $A C=A B_{1}$ and $\measuredangle C A B_{1}=60^{\circ}$, the point C is mapped to the point B_{1}. Similarly, C_{1} is mapped to B. Therefore the segment $C C_{1}$ maps to the segment $B_{1} B$. This implies that $B B_{1}=C C_{1}$ (see Figure 2). Moreover, if we denote by J the intersection point of $B B_{1}$ and $C C_{1}$, then $\measuredangle C J B_{1}=\measuredangle C_{1} J B=60^{\circ}$ and $\measuredangle B J C=180^{\circ}-\measuredangle C J B_{1}=180^{\circ}-60^{\circ}=$ 120°. We are going to show that the points A, J and A_{1} lie on the same line.
Notice that $\measuredangle C J B_{1}=\measuredangle C A B_{1}=60^{\circ}$. Therefore the quadrilateral $C B_{1} A J$ is inscribed in a circle K_{2}. Then, $\measuredangle C J A=180^{\circ}-\measuredangle A B_{1} C=180^{\circ}-60^{\circ}=120^{\circ}$. Since $\measuredangle B J C+$ $\measuredangle C A_{1} B=120^{\circ}+60^{\circ}=180^{\circ}$, the points B, A_{1}, C and J lie on a circle K_{1}. From here we can conclude that $\measuredangle A_{1} J C=\measuredangle A_{1} B C=60^{\circ}$. Then, $\measuredangle A_{1} J A=\measuredangle A_{1} J C+\measuredangle C J A=$ $60^{\circ}+120^{\circ}=180^{\circ}$. That means that J belongs to the straight line $A A_{1}$.
If we perform another 60° counterclockwise rotation R_{B}, this time around the point B, it will turn out that $A A_{1}$ is mapped to $C_{1} C$. Therefore, $A A_{1}=C C_{1}$. Also, $\angle A J B=$ $360^{\circ}-\measuredangle B J C-\measuredangle C J A=360^{\circ}-120^{\circ}-120^{\circ}=120^{\circ}$. Since $\measuredangle A J B+\measuredangle B C_{1} A=$ $120^{\circ}+60^{\circ}=180^{\circ}$, the points A, C_{1}, B and J lie on a circle K_{3}. We see that the circles K_{1}, K_{2}, K_{3} all pass through the same point J. This completes the proof of Lemma 1.

Remark. The point J from Lemma 1 (see also Figure 2) is often called Fermat point or alternatively Torricelli point.

Fig. 2 Constructions in the proof of Lemma 1.

Next, we are ready to state and prove Napoleon's theorem.
Theorem 2. Let $\triangle A B C$ be an arbitrary triangle and let G be its centroid. Then, the following statements are true:

1. Assume A_{1}, B_{1} and C_{1} form a non-overlapping Napoleon configuration for that triangle. Denote the centroids of the triangles $\triangle A_{1} B C, \triangle A B_{1} C$ and $\triangle A B C_{1}$ by G_{1}, G_{2} and G_{3} respectively. Then, the triangle $\triangle G_{1} G_{2} G_{3}$ is equilateral with a centroid coinciding with the point G;
2. Let $A_{1}^{\prime}, B_{1}^{\prime}$ and C_{1}^{\prime} form an overlapping Napoleon configuration for that triangle. Denote the centroids of triangles $\triangle A_{1}^{\prime} B C, \triangle A B_{1}^{\prime} C$ and $\triangle A B C_{1}^{\prime}$ by $G_{1}^{\prime}, G_{2}^{\prime}$ and G_{3}^{\prime} respectively. Then, the triangle $\triangle G_{1}^{\prime} G_{2}^{\prime} G_{3}^{\prime}$ is equilateral with a centroid coinciding with the point G;
3. The area of $\triangle A B C$ equals the algebraic sum of the areas of $\triangle G_{1} G_{2} G_{3}$ and $\triangle G_{1}^{\prime} G_{2}^{\prime} G_{3}^{\prime}$.

Proof. We start with the first claim of the theorem (see also Figure 3). Let M_{1}, M_{2} and M_{3} be the midpoints of the edges $B C, C A$ and $A B$ respectively. Since G is the centroid

Fig. 3 Constructions in the proof of Napoleon's theorem.
of $\triangle A B C$ and G_{2} is the centroid of $\triangle A B_{1} C$, we have the ratios $M_{2} G: M_{2} B=M_{2} G_{2}$: $M_{2} B_{1}=1: 3$. Therefore, by the intercept theorem $G G_{2}=\frac{1}{3} B B_{1}$ and $G G_{2}$ is parallel to $B B_{1}$. Analogously, $G G_{1}=\frac{1}{3} A A_{1}, G G_{1}$ is parallel to $A A_{1}, G G_{3}=\frac{1}{3} C C_{1}$ and $G G_{3}$ is parallel to $C C_{1}$. By part 1 of Lemma $1, A A_{1}=B B_{1}=C C_{1}$, hence $G G_{1}=G G_{2}=$ $G G_{3}$. By part 3 of Lemma 1, $\measuredangle A J B=\measuredangle B J C=\measuredangle C J A=120^{\circ}$, so $\measuredangle G_{1} G G_{2}=$ $\measuredangle G_{2} G G_{3}=\measuredangle G_{3} G G_{1}=120^{\circ}$.
We can conclude form here that $\triangle G_{1} G_{2} G \cong \triangle G_{2} G_{3} G \cong \triangle G_{3} G_{1} G$ and hence $G_{1} G_{2}=$ $G_{2} G_{3}=G_{3} G_{1}$, that is, the triangle $\Delta G_{1} G_{2} G_{3}$ is equilateral.
The proof of claim 2 from Napoleon's theorem is analogous to the proof of claim 1. We just have to consider overlapping configurations and rename their notations appropriately. In order to prove claim 3 form Theorem 2, we are going to show that Area $\left(\triangle G_{1} G_{2} G_{3}\right)=$ $\frac{1}{2} \operatorname{Area}(\triangle A B C)+\frac{1}{6}\left(\operatorname{Area}\left(\triangle A_{1} B C\right)+\operatorname{Area}\left(\triangle A B_{1} C\right)+\operatorname{Area}\left(\triangle A B C_{1}\right)\right)$. Let point P be the reflection image of the vertex C with respect to the line $G_{1} G_{2}$. In other words, P is chosen so that $G_{1} G_{2}$ is the perpendicular bisector of $C P$. Hence, $\triangle G_{1} G_{2} C \cong \triangle G_{1} G_{2} P$ and $G_{2} P=G_{2} C=G_{2} A$. If we denote $\measuredangle G_{1} G_{2} C=\alpha$ then $\measuredangle P G_{2} G_{1}=\alpha$. On the one hand, $\measuredangle A G_{2} P=\measuredangle A G_{2} C-\measuredangle P G_{2} C=120^{\circ}-\measuredangle P G_{2} C=120^{\circ}-\left(\measuredangle P G_{2} G_{1}+\right.$ $\left.\measuredangle G_{1} G_{2} C\right)=120^{\circ}-2 \alpha$. On the other hand, $\measuredangle G_{3} G_{2} P=\measuredangle G_{3} G_{2} G_{1}-\measuredangle P G_{2} G_{1}=$ $60^{\circ}-\alpha$. Therefore, $\measuredangle A G_{2} G_{3}=\measuredangle A G_{2} P-\measuredangle G_{3} G_{2} P=120^{\circ}-2 \alpha-\left(60^{\circ}-\alpha\right)=$ $60^{\circ}-\alpha$. Since $G_{2} P=G_{2} A$ and $\measuredangle A G_{2} G_{3}=\measuredangle G_{3} G_{2} P=60^{\circ}-\alpha$, the line $G_{2} G_{3}$ is the bisector of $\measuredangle A G_{2} P$ in the isosceles triangle $\triangle A G_{2} P$, and hence it is the perpendicular

Fig. 4 Constructions in the proof of Napoleon's theorem.
bisector of the segment $A P$. Therefore, P is the reflection image of A with respect to $G_{2} G_{3}$ and $\triangle G_{2} G_{3} A \cong \triangle G_{2} G_{3} P$. Analogously, we can show that the reflection of B with respect to $G_{3} G_{1}$ is again P and $\Delta G_{3} G_{1} B \cong \triangle G_{3} G_{1} P$. All of the arguments above lead to the conclusion that $\operatorname{Area}\left(\triangle G_{1} G_{2} G_{3}\right)=\operatorname{Area}\left(\triangle G_{1} G_{2} P\right)+\operatorname{Area}\left(\triangle G_{2} G_{3} P\right)+$ $\operatorname{Area}\left(\triangle G_{3} G_{1} P\right)=\operatorname{Area}\left(\triangle G_{1} G_{2} C\right)+\operatorname{Area}\left(\triangle G_{2} G_{3} A\right)+\operatorname{Area}\left(\triangle G_{3} G_{1} B\right)$, so

$$
\operatorname{Area}\left(\triangle G_{1} G_{2} G_{3}\right)=\frac{1}{2} \operatorname{Area}\left(A G_{3} B G_{1} C G_{2}\right)
$$

Notice that $\operatorname{Area}\left(A G_{3} B G_{1} C G_{2}\right)=\operatorname{Area}(\triangle A B C)+\operatorname{Area}\left(\triangle A G_{3} B\right)+\operatorname{Area}\left(\triangle B G_{1} C\right)+$ $\operatorname{Area}\left(\triangle C B_{2} A\right)=\operatorname{Area}(\triangle A B C)+\frac{1}{3}\left(\operatorname{Area}\left(\triangle A_{1} B C\right)+\operatorname{Area}\left(\triangle A B_{1} C\right)+\operatorname{Area}\left(\triangle A B C_{1}\right)\right)$. It follows from here that $\operatorname{Area}\left(\triangle G_{1} G_{2} G_{3}\right)=\frac{1}{2} \operatorname{Area}(\triangle A B C)+\frac{1}{6}\left(\operatorname{Area}\left(\triangle A_{1} B C\right)+\right.$ $\left.\operatorname{Area}\left(\triangle A B_{1} C\right)+\operatorname{Area}\left(\triangle A B C_{1}\right)\right)$.
Using analogous arguments, one can show that $\operatorname{Area}\left(\triangle G_{1}^{\prime} G_{2}^{\prime} G_{3}^{\prime}\right)=\frac{1}{2} \operatorname{Area}(\triangle A B C)-$ $\frac{1}{6}\left(\operatorname{Area}\left(\triangle A_{1}^{\prime} B C\right)+\operatorname{Area}\left(\triangle A B_{1}^{\prime} C\right)+\operatorname{Area}\left(\triangle A B C_{1}^{\prime}\right)\right)$. Now, we can deduce that

$$
\operatorname{Area}\left(\triangle G_{1} G_{2} G_{3}\right)+\operatorname{Area}\left(\triangle G_{1}^{\prime} G_{2}^{\prime} G_{3}^{\prime}\right)=\operatorname{Area}(\triangle A B C)
$$

An additional observation is that $G_{1} P=G_{1} B=G_{1} C=G_{1} A_{1}$ and therefore P lies on the circle K_{1}, circumscribed around $\triangle A_{1} B C$ (see Lemma 1 and Figure 2). Similarly, P lies on the circles K_{2} and K_{3} circumscribed around $\triangle A B_{1} C$ and $\triangle A B C_{1}$ respectively. That implies that P is the intersection point of K_{1}, K_{2} and K_{3}, which was already denoted by J, i.e., $P \equiv J$.

4 Proof of Theorem 1

This section contains the proof of the main result, namely Theorem 1. To prove this statement we are going to use several lemmas and corollaries which together will give us the desired result.
The next lemma is essentially the proof of fact 1 from Theorem 1.

Fig. 5 Constructions in the proof of Lemma 2.

Lemma 2. In the setting of Theorem 1, the points A_{2}, B_{2} and C form an equilateral triangle (see Figure 5).

Proof. Consider a 60° rotation R_{C} around the point C in counterclockwise direction. The point B_{1} maps to A. Denote by C_{1}^{*} the image of the point C_{1} (Figure 5). Then, $B_{1} C_{1}$ maps to $A C_{1}^{*}$. We are going to show that the point B_{2} is the image of A_{2} under the rotation R_{C}. Since the midpoint A_{2} of $B_{1} C_{1}$ maps to the midpoint of the image $A C_{1}^{*}$, we need to prove that B_{2} lies on $A C_{1}^{*}$ and is the midpoint of that segment.
By the properties of the rotation R_{C}, we have that $C C_{1}=C C_{1}^{*}$ and $\measuredangle C_{1} C C_{1}^{*}=60^{\circ}$. Therefore triangle $\triangle C C_{1} C_{1}^{*}$ is equilateral and so by Lemma 1 we can deduce that $C_{1} C_{1}^{*}=$ $C C_{1}=A A_{1}$.
Notice that the point A_{1} is the image of B under the rotation R_{C}. Since C_{1} maps to C_{1}^{*} we have that $B C_{1}$ maps to $A_{1} C_{1}^{*}$. Thus, $A_{1} C_{1}^{*}=B C_{1}=A C_{1}$.
The facts that $C C_{1}=A A_{1}$ and $A_{1} C_{1}^{*}=A C_{1}$ imply that the quadrilateral $A A_{1} C_{1}^{*} C_{1}$ is a parallelogram. For any parallelogram, the intersection point of the diagonals is the midpoint for both diagonals. That means that the midpoint B_{2} of the diagonal $C_{1} A_{1}$ lies
on the diagonal $A C_{1}^{*}$ and is the midpoint of $A C_{1}^{*}$. Therefore, B_{2} is the image of A_{2} under the rotation R_{C}. Hence, $C A_{2}=C B_{2}$ and $\measuredangle A_{2} C B_{2}=60^{\circ}$, i.e., the triangle $\triangle A_{2} B_{2} C$ is equilateral.

We are going to need the following intermediate statement.
Lemma 3. Consider the equilateral triangle $\triangle A B C_{1}^{\prime}$, overlapping $\triangle A B C$. Then, the midpoint C_{2} of the segment $A_{1} B_{1}$ is also the midpoint of $C C_{1}^{\prime}$ (see Figure 6).

Fig. 6 Constructions in the proof of Lemma 3.

Proof. Consider a 60° degree clockwise rotation around the point A. Then B maps to C_{1}^{\prime} and C maps to B_{1}. Therefore the segment $B C$ maps to the segment $C_{1}^{\prime} B_{1}$, so $B C=C_{1}^{\prime} B_{1}$. Now consider a 60° degree counter-clockwise rotation around the point B. In this case A maps to C_{1}^{\prime} and C maps to A_{1}. Thus, the segment $A C$ maps to $C_{1}^{\prime} A_{1}$, so $A C=C_{1}^{\prime} A_{1}$.
From the two identities $B C=C_{1}^{\prime} B_{1}$ and $A C=C_{1}^{\prime} A_{1}$ it can be concluded that the quadrilateral $B_{1} C_{1}^{\prime} A_{1} C$ is a parallelogram. Therefore, the midpoint C_{2} of the diagonal $A_{1} B_{1}$ is also the midpoint of the diagonal $C C_{1}^{\prime}$.

Next, we are going to locate the centroids of $\triangle A_{1} B_{1} C_{1}$ and $\triangle A_{2} B_{2} C_{2}$.
Lemma 4. The centroids of $\triangle A_{1} B_{1} C_{1}$ and $\triangle A_{2} B_{2} C_{2}$ coincide with the centroid G of $\triangle A B C$ (see Figure 7).

Fig. 7 Constructions in the proof of Lemma 4.

Proof. Let M_{2} be the midpoint of $A C$. Then $M_{2} C_{2}$ is a mid-segment of the triangle $\triangle A C_{1}^{\prime} C$. Therefore, $M_{2} C_{2}$ is parallel to $A C_{1}^{\prime}$ and $2 M_{2} C_{2}=A C_{1}^{\prime}$. Since triangles $\triangle A B C_{1}$ and $\triangle A B C_{1}^{\prime}$ are equilateral, the quadrilateral $A C_{1} B C_{1}^{\prime}$ is a rhombus, so $A C_{1}^{\prime}=C_{1} B$ and $A C_{1}^{\prime}$ is parallel to $C_{1} B$. Hence $M_{2} C_{2}$ is parallel to $C_{1} B$ and $2 M_{2} C_{2}=C_{1} B$. Let G^{\prime} be the intersection point of $B M_{2}$ and $C_{1} C_{2}$. From here we can deduce that $B G^{\prime}: G^{\prime} M_{2}=$ $C_{1} G^{\prime}: G^{\prime} C_{2}=B C_{1}: C_{2} M_{2}=2: 1$. But for the centroid G of $\triangle A B C$ it is true that $B G: G M_{2}=2: 1$, so $G \equiv G^{\prime}$ and G is the centroid of $\triangle A_{1} B_{1} C_{1}$. Since the triangles $\triangle A_{1} B_{1} C_{1}$ and $\triangle A_{2} B_{2} C_{2}$ have a common centroid, the statement is proved.

The following corollary proves statements 1 and 2 from Theorem 1.
Corollary 1. The points A, B and C form an overlapping Napoleon configuration for $\triangle A_{2} B_{2} C_{2}$. Moreover, the centroids A^{*}, B^{*}, C^{*} of the equilateral triangles $\triangle A B_{2} C_{2}$, $\triangle A_{2} B C_{2}$ and $\triangle A_{2} B_{2} C$ respectively form an equilateral triangle, whose centroid coincides with the centroid G of $\triangle A B C$.

Proof. By Lemma 2, first applied to the triple A, B_{2}, C_{2}, then to the triple A_{2}, B, C_{2}, and finally to the triple A_{2}, B_{2}, C, we obtain the first statement of Corollary 1. Thus, the points A, B and C form an overlapping Napoleon configuration for $\triangle A_{2} B_{2} C_{2}$. By the classical Napoleon's theorem for overlapping configurations, it follows that the centroids A^{*}, B^{*}, C^{*} of $\triangle A B_{2} C_{2}, \triangle A_{2} B C_{2}$ and $\triangle A_{2} B_{2} C$ respectively form an equilateral triangle
whose centroid coincides with the centroid of $\triangle A_{2} B_{2} C_{2}$. By Lemma 4, the centroid of $\triangle A_{2} B_{2} C_{2}$ coincides with the centroid G of $\triangle A B C$. The corollary is proved.

Notice that the proof of the statements 3 and 4 from Theorem 1 is absolutely analogous to the proof of the statements 1 and 2 . All we have to do is to follow more or less the same arguments, just changing the notation appropriately. What is left is the verification of the last three claims from Theorem 1. We proceed with the following lemma:

Lemma 5. Consider the centroids C^{*} and G_{3}^{\prime} of the equilateral triangles $\triangle A_{2} B_{2} C$ and $\triangle A B C_{1}^{\prime}$ respectively. Then G_{3}^{\prime} maps to C^{*} under a homothetic transformation of dilation factor $-1 / 2$ with respect to the centroid G of $\triangle A B C$ (see Figure 8).

Fig. 8 Constructions in the proof of Lemma 5.

Proof. Perform a homothetic transformation of dilation factor $-1 / 2$ with respect to the centroid G of $\triangle A B C$. By Lemma 4 the point G is also the centroid of $\triangle A_{1} B_{1} C_{1}$. Then $A_{1} B_{1}$ maps to $A_{2} B_{2}$ and so the midpoint C_{2} of $A_{1} B_{1}$ maps to the midpoint C_{3} of $A_{2} B_{2}$. Also, the vertex C maps to the midpoint M_{3} of $A B$ because G is the centroid of $\triangle A B C$ (see Figure 8). From here we can conclude that $C_{3} G: G C_{2}=1: 2$ and $M_{3} G: G C=$ $1: 2$ which transforms into $C_{3} G: C_{3} C_{2}=1: 3$ and $M_{3} G: M_{3} C=1: 3$. As C^{*} is the centroid of $\triangle A_{2} B_{2} C$, we can see that $C_{3} C^{*}: C_{3} C=C_{3} G: C_{3} C_{2}=C^{*} G: C C_{2}=1: 3$ and $C^{*} G$ is parallel to $C C_{2}$. Similarly, G_{3}^{\prime} is the centroid of $\triangle A B C_{1}^{\prime}$, so $M_{3} G_{3}^{\prime}: M_{3} C_{1}^{\prime}=$
$M_{3} G: M_{3} C=G_{3}^{\prime} G: C_{1}^{\prime} C=1: 3$ and $G_{3}^{\prime} G$ is parallel to $C_{1}^{\prime} C$. By Lemma $3, C_{2}$ is the midpoint of $C C_{1}^{\prime}$ which means that both $G C^{*}$ and $G G_{3}^{\prime}$ are parallel to the same line $C C_{2}$. Therefore G belongs to $C^{*} G_{3}^{\prime}$. Moreover, $C^{*} G=\frac{1}{3} C C_{2}=\frac{1}{6} C C_{1}^{\prime}$ and $G_{3}^{\prime} G=\frac{1}{3} C C_{1}^{\prime}$. Hence $C^{*} G: G G_{3}^{\prime}=1: 2$, so the point C^{*} is the image of the point G_{3}^{\prime} under the homothetic transformation of factor $-1 / 2$ with respect to G.

After establishing the previous result, we are ready to confirm the validity of statements 5, 6 and 7 from Theorem 1.

Corollary 2. In the setting of Theorem 1, triangle $\triangle A^{*} B^{*} C^{*}$ is homothetic to the triangle $\triangle G_{1}^{\prime} G_{2}^{\prime} G_{3}^{\prime}$ with a homothetic center G and a coefficient of similarity $-1 / 2$. Similarly, triangle $\triangle A^{* *} B^{* *} C^{* *}$ is homothetic to the triangle $\triangle G_{1} G_{2} G_{3}$ with a homothetic center G and a coefficient of similarity $-1 / 2$. Moreover, the area of $\triangle A B C$ equals four times the algebraic sum of the areas of $\triangle A^{*} B^{*} C^{*}$ and $\triangle A^{* *} B^{* *} C^{* *}$.

Proof. Applying Lemma 5 first to the pair of centroids C^{*} and G_{3}^{\prime} of the equilateral triangles $\triangle A_{2} B_{2} C$ and $\triangle A B C_{1}^{\prime}$, then to the centroids A^{*} and G_{1}^{\prime} of the equilateral triangles $\triangle A B_{2} C_{2}$ and $\triangle A_{1}^{\prime} B C$, and finally to the centroids B^{*} and G_{2}^{\prime} of the equilateral triangles $\triangle A_{2} B C_{2}$ and $\triangle A B_{1}^{\prime} C$, we conclude that triangle $\triangle A^{*} B^{*} C^{*}$ is homothetic to the triangle $\triangle G_{1}^{\prime} G_{2}^{\prime} G_{3}^{\prime}$ with respect to G and a dilation coefficient $-1 / 2$. Analogously, the same is true for the equilateral triangles $\triangle A^{* *} B^{* *} C^{* *}$ and $\triangle G_{1} G_{2} G_{3}$. Finally, due to the homothety, the area of $\triangle A^{*} B^{*} C^{*}$ is $1 / 4$ of the area of $\triangle G_{1}^{\prime} G_{2}^{\prime} G_{3}^{\prime}$ and the area of $\triangle A^{* *} B^{* *} C^{* *}$ is $1 / 4$ of the area of $\triangle G_{1} G_{2} G_{3}$. Since by Napoleon's theorem the area of $\triangle A B C$ equals the algebraic sum of the areas of $\triangle G_{1} G_{2} G_{3}$ and $\triangle G_{1}^{\prime} G_{2}^{\prime} G_{3}^{\prime}$, we conclude that the area of $\triangle A B C$ equals four times the algebraic sum of the areas of $\triangle A^{*} B^{*} C^{*}$ and $\triangle A^{* *} B^{* *} C^{* *}$. This completes the proof of the corollary.

References

[1] B. Grünbaum, A relative of "Napoleon's theorem", Geombinatorics, 10, (2001), pp. 116-121.

Nikolay Dimitrov
Department of Mathematics and Statistics
McGill University
805 Sherbrooke Street West
Montreal, Quebec H3A 0B9, Canada
e-mail: dimitrov@math.mcgill.ca

