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In [1], a family of new convergence tests, the m-th ratio tests, was established. These tests
are stronger than the ordinary ratio test; that is, they succeed in testing many series for
which the ordinary ratio test fails.

The m-th ratio test says that the convergence of the series
∑∞

n=1 an depends upon the val-
ues of the lim inf and the lim sup of the m ratios amn

an
,

amn+1
an

, . . . ,
amn+m−1

an
as n → ∞. In the

special case of series with positive decreasing terms, convergence depends only upon the
value of lim

n→∞
amn
an

. The series converges if lim
n→∞

amn
an

< 1
m , and diverges if lim

n→∞
amn
an

> 1
m .

In this paper we will generalize the case of the m-th ratio test that applies to series with
positive decreasing terms. We will replace the ratio amn

an
with the ratio aϕ(n)

an
, where ϕ :

Z+ → Z+ satisfies 0 < lim
n→∞

n
ϕ(n)

< 1. For any m ∈ Z+, the case ϕ(n) = mn is included

in [1]. For this reason our new test is called, for any such ϕ, the ϕ-ratio test. According
to the main result of this paper, the convergence or divergence of a series

∑∞
n=1 an with

.

Tests für die Konvergenz oder Divergenz von Reihen gehören zum Grundinven-
tar jeder Einführungsvorlesung in Analysis. Quotientenkriterium, Wurzelkriterium,
Vergleichskriterium, Integralkriterium, das Cauchy-Verdichtungskriterium oder das
Leibniz-Kriterium sind bekanntere Varianten. Daneben gibt es zahlreiche weitere Kon-
vergenztests, etwa die Kriterien von Dirichlet, Abel, Raabe oder Kummer. Von Augu-
stus De Morgan stammt eine Hierarchie, welche diese Tests nach ihrer Schärfe klassi-
fiziert. Die Autoren des vorliegenden Artikels untersuchen Reihen mit positiven, mo-
noton fallenden Gliedern und verallgemeinern eine Variante des Quotiententests.
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positive decreasing terms depends upon the value of lim
n→∞

aϕ(n)

n , as long as that value is not

equal to lim
n→∞

n
ϕ(n)

.

In what follows, for ϕ : Z+ → Z+ and for k ∈ Z+, ϕk will denote the k-th iterate of ϕ.
Thus ϕ0 will denote the identity on Z+.

Lemma. Let ϕ : Z+ → Z+ be such that lim
n→∞

n
ϕ(n)

exists. Denote lim
n→∞

n
ϕ(n)

by α and

suppose 0 < α < 1. Then

(A) There is an N ∈ Z+ such that, for any n ≥ N, {ϕk(n)} is a strictly increasing
subsequence (in k) of Z+.

(B) For such N, lim
k→∞

ϕk+1(N)−ϕk (N)

ϕk (N)−ϕk−1(N)
= 1

α
.

Proof . Since 0 < α < 1 and lim
n→∞

n
ϕ(n)

= α, we have lim
n→∞

ϕ(n)
n > 1. Therefore there

exists N ∈ Z+ such that ϕ(n)
n > 1 for all n ≥ N and therefore ϕ(n) > n and ϕ(n) > N

for all n ≥ N . This inequality implies the following two inequalities:

(i) For any n ≥ N and any k ∈ Z+, ϕk(n) > n.

(ii) For any n ≥ N and any k ∈ Z+, ϕk(n) > ϕk−1(n).

Inequality (i) follows by induction on k. Inequality (ii) follows from (i) by replacing n, in
ϕ(n) > n, with ϕk−1(n). This is permissible since, from (i), ϕk−1(n) ≥ n ≥ N . Clearly,
(ii) proves (A).

To prove (B), we observe that (A) implies lim
k→∞ ϕk(n) = ∞ for any n ≥ N , and thus

lim
k→∞ ϕk−1(N) = ∞. Therefore,

lim
k→∞

ϕk+1(N)

ϕk(N)
= lim

k→∞
ϕ(ϕk(N))

ϕk(N)
= lim

n→∞
ϕ(n)

n
= 1

α

and

lim
k→∞

ϕk−1(N)

ϕk(N)
= lim

k→∞
ϕk−1(N)

ϕ(ϕk−1(N))
= lim

n→∞
n

ϕ(n)
= α.

Hence

lim
k→∞

ϕk+1(N) − ϕk(N)

ϕk(N) − ϕk−1(N)
= lim

k→∞

ϕk+1(N)

ϕk (N)
− 1

1 − ϕk−1(N)

ϕk (N)

=
1
α

− 1

1 − α
= 1

α
.

This proves (B). □

Theorem (The ϕ-ratio test). Let ϕ : Z+ → Z+ be such that lim
n→∞

n
ϕ(n)

exists. Denote

lim
n→∞

n
ϕ(n)

by α and suppose 0 < α < 1. Let {an} be a positive decreasing sequence.

Suppose lim
n→∞

aϕ(n)

an
= L. Then:

(i) If L < α,
∑∞

n=1 an converges.

(ii) If L > α,
∑∞

n=1 an diverges.

(iii) If L = α the test is inconclusive.
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Proof . To prove (i), suppose L < α. Let r be such that L < r < α. Since lim
n→∞

aϕ(n)

an
= L,

there is an integer N such that
aϕ(n)

an
< r for all n ≥ N .

Therefore aϕ(n) < ran for all n ≥ N . In particular, aϕ(N) < raN . We may choose N large
enough to satisfy the hypothesis of the lemma, so that {ϕk(N)}k is strictly increasing.
Thus ϕk(N) > ϕk−1(N) ≥ N for all k ∈ Z+. Since ϕk−1(N) ≥ N for all k ∈ Z+,
replacing N with ϕk−1(N) gives aϕk(N) < raϕk−1(N) for all k ∈ Z+. Induction on k gives
aϕk(N) < rkaN for all k ∈ Z+.

Let Sk = aϕk (N) + aϕk(N)+1 + . . . + aϕk+1(N)−1. Since {an} is decreasing and {ϕk(N)}k is
increasing, the largest term in the sum Sk is aϕk (N); also, the number of terms in this sum
is ϕk+1(N) − ϕk(N). Hence

Sk ≤ [ϕk+1(N) − ϕk(N)]aϕk (N).

Therefore
Sk ≤ [ϕk+1(N) − ϕk(N]rkaN

for all k ∈ Z+. Since r < α, by the lemma,

lim
k→∞

ϕk+1(N) − ϕk(N)

ϕk(N) − ϕk−1(N)
= 1

α
<

1

r
.

Let s be such that 1
α

< s < 1
r . Then there is a positive integer M such that ϕk+1(N)−ϕk (N)

ϕk (N)−ϕk−1 (N)
<

s for k ≥ M . Therefore, for k ≥ M , we have

ϕk+1(N) − ϕk(N)

ϕM (N) − ϕM−1(N)

= ϕk+1(N) − ϕk(N)

ϕk(N) − ϕk−1(N)
· ϕk(N) − ϕk−1(N)

ϕk−1(N) − ϕk−2(N)
. . .

ϕM+1(N) − ϕM (N)

ϕM (N) − ϕM−1(N)
< sk+1−M .

Thus for k ≥ M ,

ϕk+1(N) − ϕk(N) < [ϕM(N) − ϕM−1(N)]sk+1−M .

Therefore for k ≥ M ,

Sk ≤ [ϕM(N) − ϕM−1(N)]sk+1−MrkaN = [ϕM (N) − ϕM−1(N)]s1−MaN (sr)k

and therefore

∞∑

n=ϕM (N)

an =
∞∑

k=M

Sk ≤ [ϕM (N) − ϕM−1(N)]s1−MaN

∞∑
k=M

(sr)k .

Since s < 1
r ,

∑∞
k=M (sr)k < ∞, and thus the series

∑∞
n=1 an converges. This proves (i).

To prove (ii), suppose L > α. Let r be such that L > r > α. Since lim
n→∞

aϕ(n)

an
= L, there

is an integer N such that aϕ(n)

an
> r for all n ≥ N . Therefore aϕ(n) > ran for all n ≥ N . In
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particular, aϕ(N) > raN and induction on k gives aϕk(N) > rkaN for all k ∈ Z+. Let s be

such that 1
r < s < 1

α
. As in the proof of (i), by letting

Sk = aϕk (N) + aϕk (N)+1 + . . . + aϕk+1(N)−1,

we can show that there is a positive integer M such that for k ≥ M ,

Sk ≥ [ϕM (N) − ϕM−1(N)]s−MaN (sr)k+1.

Therefore

∞∑

n=ϕM (N)

an =
∞∑

k=M

Sk ≥ [ϕM (N) − ϕM−1(N)]s−MaN

∞∑
k=M

(sr)k+1.

Since s > 1
r ,

∑∞
k=M (sr)k+1 diverges. Hence the series

∑∞
n=1 an diverges.

To prove (iii), use the examples in [1]. □

The following class of examples shows that for every ϕ under consideration here, the ϕ-
ratio test is stronger than the ordinary ratio test.

Example 1. Suppose that ϕ : Z+ → Z+ and α satisfy the hypothesis of the lemma. Then
the ϕ-ratio test works on the p-series, for p �= 1 (although the ordinary ratio test does not).

Proof . For the p-series
∑∞

n=1
1
np , an = 1

np . Then

L = lim
n→∞

aϕ(n)

an
= lim

n→∞
( n

ϕ(n)

)p = α p .

Since α < 1, L = α p < α if p > 1 and L = α p > α if p < 1. So, by the ϕ-ratio test,∑∞
n=1

1
np converges if p > 1 and diverges if p < 1. (Note that for p = 1, the ϕ-ratio test

gives no information, since L = α.) □

We close this paper with another class of examples, which shows that ϕ can be found to
bring α = lim

n→∞
n

ϕ(n)
arbitrarily close to 1. (The mth-ratio tests in [1] show that α = 1

m can

be arbitrarily close to 0.)

Example 2. For any fixed ε > 0, let ϕε : Z+ → Z+ be the function defined by ϕε(n) =
[[(1 + ε)n]], the integral part of (1 + ε)n. Then

(1 + ε)n − 1 < ϕε(n) ≤ (1 + ε)n.

Thus

(1 + ε) − 1

n
<

ϕε(n)

n
≤ 1 + ε.

Therefore lim
n→∞

ϕε(n)
n = 1 + ε. We then have α = lim

n→∞
n

ϕε(n)
= 1

1+ε
< 1. Hence ϕε

satisfies the hypothesis of the theorem and for small enough ε, α is arbitrarily close to 1.
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There are several further areas of investigations that come to mind. First, how does the
ordinary ratio test fit into all of this? It is not a special case, because if it were, we would
have ϕ(n) = n+1, and thus lim

n→∞
n

ϕ(n)
= lim

n→∞
n

n+1 = 1, not less than 1. So are the ϕ-ratio

tests a whole different category, rather than a generalization of the ordinary ratio test?
Perhaps the ordinary ratio test is some kind of limiting case? Second, are some ϕ-ratio
tests stronger than others? Third, are there other tests of this ilk that are not ratio tests?
More specifically, are there other binary functions F on Z+ (besides the quotient/ratio)
for which we can say, analogous to our theorem:

For all positive decreasing sequences {an}, we have:

lim
n→∞ F(aϕ(n), an) < lim

n→∞ F(n, ϕ(n))

implies that
∑∞

n=1 an is convergent, and

lim
n→∞ F(aϕ(n), an) > lim

n→∞ F(n, ϕ(n))

implies that
∑∞

n=1 an is divergent?
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