Note from the Editorial Board
 Note on rectangles with vertices on prescribed circles

Christian Blatter and Gerhard Wanner

Inspired by [2], Ionascu and Stanica considered the following problem: The four subsequent vertices of a rectangle R in the plane are at distances $r_{1}, r_{2}, r_{3}, r_{4}$ from the origin. Given these data, what can be said about the area A of R ? In a recent paper [1] they proved

Theorem 1. (a) For given $r_{i} \geq 0$, rectangles R of the described kind exist iff

$$
\begin{equation*}
r_{1}^{2}+r_{3}^{2}=r_{2}^{2}+r_{4}^{2} \tag{1}
\end{equation*}
$$

(b) The areas of these rectangles lie between the bounds

$$
A_{\min }=\left|r_{2} r_{4}-r_{1} r_{3}\right|, \quad A_{\max }=r_{2} r_{4}+r_{1} r_{3} .
$$

The authors call their problem "unusual because of its surprisingly simple answer in spite of our rather laborious solution" (which takes 10 pages). In this note we shall prove Theorem 1 in a simple way, making use of no more than the Pythagorean theorem and the formula for the derivative of a product.
After cyclic reordering, and neglecting special or degenerate cases, we may assume that $0<r_{1}<r_{i}(2 \leq i \leq 4)$. We may also assume that the sides of the rectangle are parallel to the axes and that the point $P_{1}=(x, y)$ on the circle of radius r_{1} is the lower lefthand vertex of R (Fig. 1). From P_{1} we draw a horizontal to the right and obtain the vertex $P_{2}=(\bar{x}, y)$ on the circle of radius r_{2}; in a similar way, going from P_{1} vertically upwards, we obtain the vertex $P_{4}=(x, \bar{y})$ on the circle of radius r_{4}. So far we have

$$
\begin{array}{rlrl}
x^{2}+y^{2} & =r_{1}^{2}, & \\
\bar{x}^{2}+y^{2} & =r_{2}^{2}, & \bar{x}>0, \tag{2}\\
x^{2}+\bar{y}^{2} & =r_{4}^{2}, & & \bar{y}>0 .
\end{array}
$$

The upper righthand vertex of R is $P_{3}=(\bar{x}, \bar{y})$, and it lies on the circle of radius r_{3} iff

$$
r_{3}^{2}=\bar{x}^{2}+\bar{y}^{2}=r_{2}^{2}-y^{2}+r_{4}^{2}-x^{2}=r_{2}^{2}+r_{4}^{2}-r_{1}^{2},
$$

Figure 1
i.e., iff (1) holds. Since the above construction is always possible, part (a) of the theorem follows.
Remark. The midpoint of R bisects both diagonals. It follows that (1) can be seen as an instance of the so-called Pappus-Fagnano-Legendre formula $a^{2}+b^{2}=\left(c^{2}+z^{2}\right) / 2$ where $z / 2$ is the length of the median through C of a triangle with sides a, b, c.

For our extremal problem we have to consider admissible variations $d x, d y, d \bar{x}, d \bar{y}$ of the quantities x, y, \bar{x}, \bar{y}. To this end we differentiate the equations (2) and obtain

$$
\begin{equation*}
x d x+y d y=0, \quad \bar{x} d \bar{x}+y d y=0, \quad x d x+\bar{y} d \bar{y}=0 \tag{3}
\end{equation*}
$$

from which we easily infer

$$
\begin{equation*}
d \bar{x}=\frac{x}{\bar{x}} d x, \quad d \bar{y}=\frac{y}{\bar{y}} d y . \tag{4}
\end{equation*}
$$

The area of R is $A=(\bar{x}-x)(\bar{y}-y)$; it is maximal or minimal iff

$$
d A=(d \bar{x}-d x)(\bar{y}-y)+(\bar{x}-x)(d \bar{y}-d y)=0 .
$$

Using (4) we get

$$
d A=\frac{x-\bar{x}}{\bar{x}}(\bar{y}-y) d x+(\bar{x}-x) \frac{y-\bar{y}}{\bar{y}} d y=-\frac{A}{\bar{x} \bar{y}}(\bar{y} d x+\bar{x} d y) .
$$

So the condition $d A=0$ reduces to $\bar{y} d x+\bar{x} d y=0$. Combined with the first equation (3) this shows that in the stationary situation we necessarily have

$$
\begin{equation*}
\frac{y}{x}=\frac{\bar{x}}{\bar{y}} . \tag{5}
\end{equation*}
$$

In order to determine the maximal and minimal areas of the rectangle we argue as follows: From (5) and (2) we get

$$
\frac{\bar{x}^{2}}{\bar{y}^{2}}=\frac{y^{2}}{x^{2}}=\frac{r_{2}^{2}-\bar{x}^{2}}{r_{4}^{2}-\bar{y}^{2}}, \quad \text { whence } \quad \bar{x}^{2}\left(r_{4}^{2}-\bar{y}^{2}\right)=\bar{y}^{2}\left(r_{2}^{2}-\bar{x}^{2}\right),
$$

and after cancelling terms we see that

$$
\frac{\bar{y}}{\bar{x}}=\frac{r_{4}}{r_{2}}, \quad \frac{y}{x}=\frac{r_{2}}{r_{4}},
$$

the latter using (5) again.
We now know the ratios of these coordinates as well as their Pythagorean sums, whence they must be

$$
x= \pm \frac{r_{4}}{\sqrt{r_{2}^{2}+r_{4}^{2}}} r_{1}, \quad y= \pm \frac{r_{2}}{\sqrt{r_{2}^{2}+r_{4}^{2}}} r_{1}, \quad \bar{x}=\frac{r_{2}}{\sqrt{r_{2}^{2}+r_{4}^{2}}} r_{3}, \quad \bar{y}=\frac{r_{4}}{\sqrt{r_{2}^{2}+r_{4}^{2}}} r_{3} .
$$

Inserting these values into the formula for A we obtain, using (1):

$$
A=\frac{\left(r_{2} r_{3} \mp r_{4} r_{1}\right)\left(r_{4} r_{3} \mp r_{2} r_{1}\right)}{r_{2}^{2}+r_{4}^{2}}=\frac{r_{1}^{2}+r_{3}^{2}}{r_{2}^{2}+r_{4}^{2}} r_{2} r_{4} \mp r_{1} r_{3}=r_{2} r_{4} \mp r_{1} r_{3}
$$

This leads to

$$
A_{\min }=r_{2} r_{4}-r_{1} r_{3}, \quad A_{\max }=r_{2} r_{4}+r_{1} r_{3}
$$

as stated. It is easily seen that for the maximum the origin lies in the interior of R whereas for the minimum it is in the exterior.

References

[1] Ionascu, E.J.; Stanica, P.: Extremal values for the area of rectangles with vertices on concentrical circles. Elem. Math. 62 (2007), 30-39.
[2] Zahlreich Problems Group: Problem 11057. Amer. Math. Monthly 111 (2004), 64. Solution: ibid. 113 (2006), 82.

Christian Blatter
Albertus-Walder-Weg 16
CH-8606 Greifensee, Switzerland
e-mail: christian.blatter@math.ethz.ch
Gerhard Wanner
Université/Mathématiques
Case postale 64
CH-1211 Génève 4, Switzerland
e-mail: Gerhard.Wanner@math.unige.ch

