A short note on the Erdös-Debrunner inequality

Walther Janous*

Walther Janous hat an der Universität in Innsbruck und an der Ohio State University in Columbus (USA) studiert. Seit 1978 arbeitet er als Gymnasialprofessor an einer Mädchenschule in Innsbruck. Neben seiner Lehrtätigkeit ist er auch im Betreuerteam der österreichischen Mathematikolympiade engagiert und mitverantwortlich für die „Wissenschaftlichen Nachrichten“, einem für österreichische Gymnasiallehrer herausgegebenen Organ.

Introduction

Let ABC be an arbitrary triangle and D, E, F arbitrary points on sides BC, CA, AB, resp., all three being different from the vertices of ABC.

Then, triangle ABC is divided into four smaller triangles, a central one DEF, and three corner ones AEF, BDF, CED.

* This research is partially supported by grant 04-39-3265-2/03 (11.XII.2003) of the Federal Ministry of Education and Sciences, Bosnia and Herzegovina.
Let F_1, F_2, F_3 be the areas of the three corner triangles and F_0 be the one of the central triangle. Then the Erdős-Debrunner inequality says

$$F_0 \geq \min(F_1, F_2, F_3),$$

where equality occurs if and only if D, E, F are the midpoints of the respective sides. See [1, p. 81] for an extensive list of references concerning this inequality; furthermore, the appropriate chapters in [3] and [4] report a host of results (and some of their proofs) related to two triangles, one inscribed in the other.

Speaking in the language of power-means, inequality (1) reads

$$F_0 \geq M_{-\infty}(F_1, F_2, F_3),$$

where the p-th power-mean of three positive real numbers x, y, z is defined by

$$M_p(x, y, z) = \begin{cases}
\left(\frac{x^p + y^p + z^p}{3} \right)^{1/p} & p \neq 0, \\
\sqrt[3]{xyz} & p = 0.
\end{cases}$$

Then, $M_p(x, y, z)$ is (weakly) increasing as p increases, and

$$M_{-\infty}(x, y, z) = \lim_{p \to -\infty} M_p(x, y, z) = \min(x, y, z).$$

Therefore, it is natural to ask whether or not there do exist inequalities of the type

$$F_0 \geq M_p(F_1, F_2, F_3),$$

where $p > -\infty$.

Subsequently, we will show that this is indeed so and we will give a bound for the maximum value p_{max} of p. Thereby, we will also falsify a result stated and “proven” in [2]. At the end of this note, we shall state two conjectures for further research.

Bounds for p_{max}

Before stating the announced result, we are going to introduce the method of proof frequently applied in situations as the present one.
Let BC, CA, AB be divided by D, E, F in ratios $t : (1 - t), u : (1 - u), v : (1 - v)$, resp., where $0 < t, u, v < 1$. Then, we have

$$F_1 = (1 - u) \cdot v \cdot F_\Delta, \quad F_2 = (1 - v) \cdot t \cdot F_\Delta, \quad F_3 = (1 - t) \cdot u \cdot F_\Delta,$$

where F_Δ denotes the area of triangle ABC. For this, note for instance for F_1: $AF = v \cdot AB$, and $AE = (1 - u) \cdot AC$. Therefore, $F_0 = F_\Delta - F_1 - F_2 - F_3$ becomes

$$F_0 = (t \cdot u \cdot v + (1 - t) \cdot (1 - u) \cdot (1 - v)) \cdot F_\Delta.$$

Furthermore,

$$\frac{F_0}{F_1} = \frac{1 - t - u - v + tu + tv + uv}{(1 - u)v} = \frac{1 - t}{v} + \frac{t}{1 - u} - 1.$$

Since we get similar expressions for F_0/F_2 and F_0/F_3, we introduce the notation

$$x = \frac{t}{1 - u}, \quad y = \frac{u}{1 - v}, \quad z = \frac{v}{1 - t},$$

yielding

$$\frac{F_0}{F_1} = \frac{1}{z} + x - 1, \quad \frac{F_0}{F_2} = \frac{1}{x} + y - 1, \quad \frac{F_0}{F_3} = \frac{1}{y} + z - 1.$$

We now show that p has to be negative for inequality (2) to hold in general. Indeed, let $p = 0$. Then, for (2) the inequality $F_0/F_1 \cdot F_0/F_2 \cdot F_0/F_3 \geq 1$ had to be valid. But $t = 1/2$, $u = 1/3$ and $v = 2/3$ lead to the contradiction $8/9 \geq 1$.

Therefore, we let $p = -q$, where $q > 0$, and thus, obtain for (2) the equivalent inequality

$$F_1^{-q} + F_2^{-q} + F_3^{-q} \geq 3 \cdot F_0^{-q},$$

i.e.,

$$\left(\frac{F_0}{F_1}\right)^q + \left(\frac{F_0}{F_2}\right)^q + \left(\frac{F_0}{F_3}\right)^q \geq 3,$$

hence,

$$\left(\frac{1}{z} + x - 1\right)^q + \left(\frac{1}{x} + y - 1\right)^q + \left(\frac{1}{y} + z - 1\right)^q \geq 3,$$

where of course $x, y, z > 0$ have to satisfy

$$\frac{1}{z} + x - 1 \geq 0, \quad \frac{1}{x} + y - 1 \geq 0, \quad \frac{1}{y} + z - 1 \geq 0.$$

We are now in the position to state and prove the following

Theorem. The quantity p_{max} in inequality (2) satisfies

$$-1 \leq p_{\text{max}} \leq -\frac{\ln(3/2)}{\ln(2)}.$$
Proof. In order to prove this assertion, we have to show that the minimal value q_{min} such that inequality (3) holds true in general, fulfils $\ln\left(\frac{3}{2}\right)/\ln(2) \leq q_{\text{min}} \leq 1$.

i) Case $q_{\text{min}} \leq 1$: Indeed, inequality (3) becomes for $q = 1$

$$x + \frac{1}{x} + y + \frac{1}{y} + z + \frac{1}{z} \geq 6.$$

But this inequality follows from $t + 1/t \geq 2$, whenever $t > 0$.

ii) Case $q_{\text{min}} \geq \ln\left(\frac{3}{2}\right)/\ln(2)$: We let $t = 1/2$, and $v = 1 - u$ ($0 < u < 1$). Then, we find

$$\frac{F_0}{F_1} = \frac{u}{1-u}, \quad \frac{F_0}{F_2} = \frac{F_0}{F_3} = 2(1-u),$$

whence inequality (3) reads

$$\left(\frac{u}{1-u}\right)^q + 2 \cdot (2(1-u))^q \geq 3$$

with $0 < u < 1$. Since the expression on the left-hand side of this inequality is continuous as $u \to 0$, we arrive at $2 \cdot 2^q \geq 3$, which completes the proof of the theorem. \Box

Remark. In [2] it is "shown" by an erroneous argument that p_{max} equals $-1/3$ contradicting the inequality $p_{\text{max}} \leq -\ln(3/2)/\ln(2) = -0.58\ldots$

Two conjectures

At the end of this note we state two conjectures. (The second of them is very likely to be settled by non elementary means only.)

Conjecture 1. Let x, y and z be positive real numbers such that $1/z + x - 1 \geq 0$, $1/x + y - 1 \geq 0$ and $1/y + z - 1 \geq 0$. Then, for any $q > 0$ the minimum of the left-hand expression in (3) is attained at x, y and z satisfying $x \cdot y \cdot z = 1$.

Conjecture 2. In the above theorem, the equality $p_{\text{max}} = -\ln(3/2)/\ln(2)$ holds true.

References

Walther Janous
Ursulengymnasium
Fürstenweg 86
A–6020 Innsbruck, Austria
e-mail: walther.janous@tirol.com