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1 Introduction

The problem of evaluating a definite integral exactly is as old as calculus itself. For
example Wallis produced the evaluation

∫ ∞
0

dx
(x2 + 1)m+1

=
π

22m+1

(
2m
m

)
. (1.1)

.

Die Bedeutung elliptischer Integrale, z.B. zur Berechnung des Ellipsenumfangs, dürfte
vielen Lesern bekannt sein. Ein solches Integral lässt sich durch iterative Anwendung
der Landen-Transformation mit Hilfe des sogenannten arithmetisch-geometrischen Mit-
tels berechnen. Für Integrale von geraden rationalen Funktionen gibt es analoge Trans-
formationen, deren Iteration zur Bestimmung der entsprechenden Integrale führt. In
der vorliegenden Note wird nun die Frage untersucht, ob sich Integrale von ungera-
den rationalen Funktionen ähnlich behandeln lassen. Dazu wird auf der Menge der
rationalen Funktionen eine gewisse Operation eingeführt und deren Fixpunkte studiert.
Abschliessend wird diese Operation auf eine spezielle Klasse rationaler Funktionen
eingeschränkt und die dazugehörigen Orbits bestimmt, was mit elementaren zahlen-
theoretischen Erkenntnissen zusammenhängt.
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In the study of exact evaluations of definite integrals of rational functions we have
observed that even ones are easier. The example∫ ∞

0

dx
(x4 + 2ax2 + 1)m+1

=
π

2m+3/2(a + 1)m+1/2
Pm(a) , (1.2)

where

Pm(a) = 2−2m
m∑

k=0

2k
(

2m− 2k
m− k

)(
m + k

m

)
(a + 1)k , (1.3)

is described in [2]. Observe that Pm(a) is a polynomial in a of degree m. Apart from
their intrinsic interest, the mathematical questions that arise from the evaluation (1.2)
are fascinating. The reader will find in [2] that (1.2) is essentially the coefficient of the
Taylor expansion of h(c) =

√
a +
√

1 + c at c = 0. There are many open questions
connected to this example. For example, it is not hard to prove that the coefficients
dl(m) of the polynomial Pm(a) can be expressed as

dl(m) =
1

l! m! 2m+l

(
αl(m)

m∏
k=1

(4k − 1)− βl(m)
m∏

k=1

(4k + 1)

)
(1.4)

where the functions αl, βl are polynomials in m. The linear and quadratic terms are
given by

d1(m) =
1

m!2m+1

(
(2m + 1)

m∏
k=1

(4k − 1)−
m∏

k=1

(4k + 1)

)
(1.5)

and

d2(m) =
1

2m!2m+2

(
2(2m2 + 2m + 1)

m∏
k=1

(4k − 1)− 2(2m + 1)
m∏

k=1

(4k + 1)

)
,

respectively. We have conjectured that the polynomials αl and βl have all their roots on
the vertical line Re(m) = −1/2.

In the case of rational functions of degree 6 we have found a surprising connection with
the Landen transformation (a, b) �→ (a1, b1), where

a1 =
a + b

2
and b1 =

√
ab . (1.6)

It is well-known that (1.6) leaves the elliptic integral

G(a, b) =
∫ π/2

0

dt√
a2 sin2 t + b2 cos2 t

(1.7)

invariant, i.e. G(a, b) = G(a1, b1). The transformation (1.6) can be iterated to produce a
double sequence (an, bn) such that 0 ≤ an−bn < 2−n. It follows that an and bn converge
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to a common limit, the so-called arithmetic-geometric mean of a and b, denoted by
AGM(a, b). Passing to the limit in G(a, b) = G(an, bn) produces

π

2 AGM(a, b)
=
∫ π/2

0

dt√
a2 sin2 t + b2 cos2 t

. (1.8)

In this form, the evaluation of the elliptic integral G(a, b) is reduced to an iterative
process.

The same type of transformation exists for the integral

U6(a, b; c, d, e) =
∫ ∞

0

cx4 + dx2 + e
x6 + ax4 + bx2 + 1

dx. (1.9)

We have shown that if the initial values of the parameters are positive and we define

an+1 =
anbn + 5an + 5bn + 9

(an + bn + 2)4/3
,

bn+1 =
an + bn + 6

(an + bn + 2)2/3
,

cn+1 =
cn + dn + en

(an + bn + 2)2/3
,

dn+1 =
(bn + 3)cn + 2dn + (an + 3)en

an + bn + 2
,

en+1 =
cn + en

(an + bn + 2)1/3
, (1.10)

then U6 is invariant under this transformation, i.e.

U6(an, bn; cn, dn, en) = U6(a0, b0; c0, d0, e0) . (1.11)

Moreover, (an, bn) → (3, 3) and there exists a number L such that (cn, dn, en) →
(1, 2, 1) L. Passing to the limit in (1.11) produces

L =
2
π

∫ ∞
0

c0x4 + d0x2 + e0

x6 + a0x4 + b0x2 + 1
dx . (1.12)

Thus, as in the elliptic case, the evaluation of the integral is reduced to an iterative
process. Transformations similar to (1.10) exist for the integral of any even rational
function. The reader can find more general information about these ideas in [4] and [5].

In order to consider the question of the exact integration of a general rational function
R(x), we split it into its even and odd parts R(x) = Re(x) + Ro(x) and integrate to
produce ∫ ∞

0
R(x) dx =

∫ ∞
0

Re(x) dx +
∫ ∞

0
Ro(x) dx . (1.13)
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The integral of the even part can be dealt with by the methods described above, and the
integral of the odd part can be transformed to∫ ∞

0
Ro(x) dx =

1
2

∫ ∞
0

Ro(
√

t)√
t

dt (1.14)

via x =
√

t. Motivated by this identity we define the map

�(R)(x) :=
R(
√

x)− R(−√x)
2
√

x
, (1.15)

which has the property∫ ∞
0

R(x) dx =
∫ ∞

0
Re(x) dx +

1
2

∫ ∞
0

�(R)(x) dx . (1.16)

Naturally the definition (1.15) makes sense, even though the integrals in (1.16) may not
exist.

In this paper we describe some elementary results of the map �.

2 The fixed points of �
The map � transforms the rational function R(x) = P(x)/Q(x) into

�(R)(x) =
P1(x)
Q1(x)

, (2.1)

with

P1(x) =
1

2
√

x
(
P(
√

x)Q(−
√

x)− P(−
√

x)Q(
√

x)
)

(2.2)

and
Q1(x) = Q(

√
x)Q(−

√
x) . (2.3)

The reader can easily check that P1 and Q1 are polynomials in x. Thus � can be
considered as a map from the space of rational functions � into itself, and the explicit
formulas for P1 and Q1 show that the degree of R, defined as the maximum of the
degrees of P and Q, is not increased by �, although it is possible for the degree of R
to decrease under �. For example,

�

(
x2 + 1
x3 + 1

)
=

x2 + x
x3 − 1

(2.4)

and

�

(
x

x4 + 1

)
=

1
x2 + 1

. (2.5)

A more dramatic reduction occurs if R is an even rational function, in which case
�(R)(x) = 0.

The effect of � on the coefficients of the Laurent expansion of R at x = 0 leads to a
classification of its fixed points. Recall that the Laurent expansion of a rational function
has the form

R(x) =
∞∑

k=−N

ak xk (2.6)

with a−N �= 0 and N ∈ N. The function R is said to have a pole of order N if N > 0.
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Lemma 2.1 The expansion (2.6) yields

�(R)(x) =
∞∑

k=−�(N+1)/2�
a2k+1xk . (2.7)

Proof. The details are elementary and are left to the reader. �

Lemma 2.2 The order of a pole at x = 0 for a fixed point of � is at most 1.

Proof. By the previous lemma, a fixed point satisfies

∞∑
k=−N

ak xk =
∞∑

k=−�(N+1)/2�
a2k+1xk . (2.8)

Consideration of the lowest-order terms then yields N = 1. �

The next theorem provides a first description of the fixed points of �.

Theorem 2.3 Let R(x) be a fixed point of �. Then there are parameters {a2t : t =
0, 1, . . .} such that

R(x) = x−2 ×
∞∑

t=0

a2t f(x2t+1) , (2.9)

where

f(x) =
∞∑
j=0

x2 j
. (2.10)

Conversely, any rational function of the form (2.9) is fixed by �.

Proof. The recurrence (2.8) yields ak = a2k+1 for k ≥ 0. It follows that

ak0 = a2 j(k0+1)−1 . (2.11)

Now any n ∈ N can be written uniquely as n = 2 j(2t + 1)− 1 with t, j ≥ 0. Thus any
fixed point of � must be of the form

R(x) =
∞∑

t=0

∞∑
j=0

a2 j(2t+1)−1x2 j(2t+1)−2 =
∞∑

t=0

a2t

∞∑
j=0

x2 j(2t+1)−2 .

�

Note. The function f above is a classic example of an analytic function with the unit
circle as a natural boundary.

We now provide an example that shows that it is possible to choose parameters {a2t :
t = 0, 1, 2, . . .} so that R defined by (2.9) is a rational function. It turns out that every
fixed point of � can be constructed from this example.
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Example. Let m be an odd integer and define

a2 j =
{−1 if m divides 2 j + 1,

0 otherwise.

Then

R(x) =
1
x

∞∑
t=0

a2t f(x2t+1) = −1
x

∞∑
k=0

∞∑
j=0

x2 j(2k+1)m

= −1
x

∞∑
r=0

xrm =
1

x(xm − 1)
.

The reader can check directly that R is fixed by �.

Note. Let R be a fixed point of �. Then, for any odd positive integer m, the function

Bm(R(x)) = xm−1R(xm) (2.12)

is also fixed by �. For example, R(x) = 1/(x − 1) is fixed by �, and so

Bm(R(x)) =
xm−1

xm − 1
(2.13)

is also fixed by �. The reader is referred to [3] for a complete classification of fixed
points.

3 The dynamics of a specific rational function
The remainder of this paper deals with properties of the specific function

Rj,m(x) =
xj

xm − 1
for m odd and j ∈ Z (3.1)

under the transformation �. This example has been chosen for two reasons: first, the
special cases R−1,m and Rm−1,m have already appeared as fixed points of �, and second,
all the poles of Rj,m are on the unit circle and this prevents the growth of the coefficients
of the iterates �(i)(Rj,m). Indeed, the possible poles of �(R) are among the squares of
those of R. Thus the poles of �(i)(x) remain of modulus 1.

Lemma 3.1 The transformation � gives

�

(
xj

xm − 1

)
=

xγm( j)

xm − 1
,

where

γm( j) = m
⌊

j
2

⌋
− 1

2
(m− 1)( j − 1) =

{
(m− 1 + j)/2 if j is even,
( j − 1)/2 if j is odd.

(3.2)
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Proof. The details are elementary. �

The dynamical properties of the iterates �(k)(R) are thus reduced to those of γm.

Note. The example xj/(xm + 1), more natural in view of its integrability, satisfies

�

(
xj

xm + 1

)
=

(−1) jxγm( j)

xm − 1
,

so it leads to the same family of iterates.

We next characterize the fixed points of γm.

Lemma 3.2 The only fixed points of γm are j = −1 and j = m− 1. This confirms the
fact that the functions

R−1,m(x) =
x−1

xm − 1
and Rm−1,m(x) =

xm−1

xm − 1

are fixed by �.

Proof. If j is even, the equation γm( j) = j becomes mj− (m− 1)( j − 1) = 2 j, and this
is satisfied by j = m− 1, which is even. Similarly, j odd yields j = −1. �

The next result establishes the existence of a bounded invariant set for γm.

Proposition 3.3 The iterates {γ(n)
m ( j) : n = 0, 1, 2, . . .} reach the set

�m := {0, 1, 2, . . . ,m− 2} (3.3)

in a finite number of steps. Moreover, �m is invariant under the action of γm.

Proof. If j > m− 1 then γm( j) < j. Indeed, the inequality

γm( j) = m� j/2 − (m− 1)( j − 1)/2 < j (3.4)

is always valid if j is odd, and for j = 2t it becomes

mt − (2t − 1)(m− 1)/2 < 2t ,

which is satisfied by j > m− 1. The case j < 0 is similar. Finally, if 0 ≤ j ≤ m− 2, it
follows directly that 0 ≤ γm( j) ≤ m− 2. �

The action of � on �m yields a partition into orbits � of the form

� = { j, γm( j), γ(2)
m ( j), . . . , γ(n−1)

m ( j)} . (3.5)

Example. For m = 9 the set �9 consists of two orbits

0 �→ 4 �→ 6 �→ 7 �→ 3 �→ 1 �→ 0 and 2 �→ 5 �→ 2 ,

and for m = 11 we have the single orbit

0 �→ 5 �→ 2 �→ 6 �→ 8 �→ 9 �→ 4 �→ 7 �→ 3 �→ 1 �→ 0 .

For special values of m, it is possible to predict the presence of some orbits. The form
of the orbits discussed below motivated the results of Section 4.
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Lemma 3.4 Suppose m = 2n − 1 for some n ∈ N. Then γm has at least two orbits of
length n.

Proof. Observe that γ( j)
m (0) = 2n− j − 1 is always odd, so the orbit of 0 is

0 �→ 2n−1 − 1 �→ 2n−2 − 1 �→ . . . �→ 22 − 1 �→ 1 �→ 0 .

Similarly, the orbit of j = 2 is

2 �→ 2n−1 �→ 2n−1 + 2n−2 − 1 �→ 2n−2 + 2n−3 − 1 �→ . . . �→ 11 �→ 5 �→ 2 ,

which is also of length n and is disjoint from the orbit of 0. Indeed, the existence of a
common term yields 2n−k0 +2n−k0−1−1 = 2n−k1−1, which implies 3×2n−k0−1 = 2n−k1 ,
a contradiction. �

4 The inverse function

In this section we show that the dynamics of the function γm become clear if we consider
the inverse function.

Theorem 4.1 Let

δm(k) :=
{

2k + 1 if 0 ≤ k ≤ m−2
2 ,

2k + 1−m if m−1
2 ≤ k ≤ m− 2 .

(4.1)

Then δm = γ−1
m .

Proof. Both functions map �m into itself, so it suffices to check that γm ◦ δm = Id. If
0 ≤ k ≤ (m − 3)/2 then δm(k) = 2k + 1 is odd, so γm(δm(k)) = k . The calculation
for (m− 1)/2 ≤ k ≤ m− 2 is similar. �

Now observe that, as sets, the orbits of k ∈ �m under γm and δm are the same. In
particular, the number of orbits and their sizes are the same.

Theorem 4.2 Let k ∈ �m. Then its orbit under δm is given by

�δ(k) = {2 j k + 2 j − 1 (mod m) : j = 0, 1, . . .} . (4.2)

The length of the orbit containing k is

L(�δ(k)) = Ord(2; m/gcd(k + 1,m)), (4.3)

where Ord(2; h) denotes the multiplicative order of 2 modulo h, that is, the smallest
solution of 2x ≡ 1 mod h.
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Proof. The form of the orbit of k is easy to check. Indeed,

δm(2 j k + 2 j − 1) = 2(2 j k + 2 j − 1) + 1 = 2 j+1 k + 2 j+1 − 1 .

Now this orbit closes at the first value of j such that

2 j k + 2 j − 1 ≡ k mod m .

This is equivalent to
(2 j − 1)(k + 1) ≡ 0 mod m . (4.4)

Write k + 1 = vK and m = vM with v = gcd(k + 1,m). Then (4.4) yields

(2 j − 1)K ≡ 0 mod M . (4.5)

But gcd(K,M) = 1, so
2 j ≡ 1 mod M . (4.6)

�

Corollary 4.3 The orbit containing 0 has length Ord(2; m). It is the largest orbit and
the length of any other divides Ord(2; m).

Proof. This is clear. �

Theorem 4.4 Suppose m is prime. Then every orbit of δm, and hence of γm, has length
equal to Ord(2; m). The total number of orbits is N(m) = (m− 1)/Ord(2; m).

Proof. The result follows from Theorem 4.2. Every point k ∈ �m satisfies gcd(k +
1,m) = 1. �

Corollary 4.5 Suppose m is prime. Then γm has a single orbit if and only if 2 is a
generator of U(m), that is, if 2 is a primitive root modulo m.

Note. The primes m ≤ 100 for which 2 is a primitive root are

{3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83}.

Artin [1] conjectured that this occurs for infinitely many primes. See [6] for an update
on this conjecture.

Corollary 4.6 Suppose m = p2 with p prime. Then the orbits of γm have lengths
Ord(2; p) or Ord(2; p2) = p× Ord(2; p).

Proof. Take as initial point k ∈ �m such that k + 1 �≡ 0 mod p. Then the orbit of k
has length Ord(2; p2). On the other hand, if k + 1 = pt, then the orbit of k has length
Ord(2; p). �

Note. If m = p2 with p prime and if γp has N orbits of length Ord(2; p), then γp2 has
2N orbits, N of them of length Ord(2; p) and the remaining N of length Ord(2; p2).
Similar results hold for higher powers.
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5 An alternative approach
This section contains an alternative approach to the dynamics of γm. Define

bk ( j) := γ(k)( j)− 2� 1
2γ

(k)( j) , (5.1)

the parity of γ(k)
m ( j).

The next result is useful in the study of the arithmetic properties of the map γm.

Theorem 5.1 Suppose γm has an orbit of length n with initial point j. Then

(2n − 1)( j + 1) = m×
n−1∑
k=0

(1− bk ( j)) 2k . (5.2)

Proof. Define qk = m(bk−1)+1. Then j = 2� j/2+b0 yields j = 2γm( j)+q0. Iterating
this procedure gives

j = 2kγ(k)
m ( j) + 2k−1qk−1 + · · ·+ 2q1 + q0 .

Thus γ(n)
m ( j) = j yields (5.2). �

Proposition 5.2 Suppose m is a Sophie Germain prime, that is, a prime of the form
m = 2q + 1 with q prime. Then there are at most two orbits. In the case of two orbits,
both have the same length.

Proof. Let n1, . . . ,nt be the lengths of the orbits. Then we have that n1 + · · ·+ nt = 2q
and also that Ord(2; m) > 2 divides each ni. Thus Ord(2; m) = 2q or q. The first case
is covered by Corollary 4.5, and in the second case we must have n1 = n2 = q. �

Note. Both alternatives do occur: m = 11 has a single orbit and m = 23 has two orbits
of length 11 each.

Some of the orbits are restricted by the parity of their elements.

Lemma 5.3 Let � be an orbit that consists of elements of a fixed parity. Then �
reduces to one of the fixed points of �.

Proof. Let j ∈ � and assume j is odd. Then every bk in (5.2) is 1, so j = −1. Similarly,
if j is even, then j = m− 1. �

Theorem 5.4 Suppose γm has an orbit of length n and Mn := 2n − 1 is a Mersenne
prime. Then m is an odd multiple of Mn.

Proof. The strict inequality

n−1∑
k=0

(1− bk )2k <
n−1∑
k=0

2k = Mn

follows from 0 ≤ bk ≤ 1 and Proposition 5.3. Thus (5.2) shows that m must divide Mn.
�

Note. The reader is invited to prove this result by using the form of the orbit given in
Theorem 4.2.
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