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1 Introduction
1.1 D elw ri klvwrub
Suppose someone intends to send a message to someone else and wants to make sure an
intermediary cannot intercept and read the message, intercept and modify the message,
or build a realistic-looking substitute message. The receiver, on the other hand, wants to

.

Die Sicherheit von elektronischen Daten und deren Übermittlung beruht heutzutage
auf ausgeklügelten kryptographischen Methoden, die z.B. im e-Banking Verwendung
finden. Im gleichen Maße, wie immer sicherere mathematische Methoden entwickelt
wurden, um vertrauliche elektronische Kommunikation zu schützen, sind auch immer
raffiniertere Techniken entstanden, um diese Codes mit Hilfe immer leistungsfähigerer
Computer zu brechen. Moderne Verschlüsselungsmethoden basieren unter anderem auf
zahlentheoretischen Grundlagen, auf der Theorie kommutativer Gruppen und auf alge-
braischer Geometrie. Die als besonders sicher geltenden Protokolle von Diffie und Hell-
man und das RSA-Public Key Verfahren scheinen in nicht allzu ferner Zukunft durch
Faktorisierungsmethoden auf Quantencomputern bedroht. Als Abhilfe werden Chiffrie-
rungsmethoden erprobt, die ihrerseits Quanteneffekte ausnützen. Im Unterschied dazu
beruht die Sicherheit des hier vorgestellten Public Key Verfahrens auf dem zweiten
Hauptsatz der Thermodynamik. Dabei wird benutzt, dass die Wärmeleitungsgleichung
nur in einer Zeitrichtung lösbar ist.
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be sure that the message is really from this sender and not from (or modified by) a third
party. This is the general problem cryptography has to solve. Another way to describe
the scenario is the following: How can two people talk in public, such that everybody
can listen to their conversation, and such that in the end the two people have exchanged
a certain amount of information, but no other listener has gained this information.

The answer is surprisingly simple: The two people who want to exchange information
have to use a language, which nobody else understands. In order to have tap-proof radio
communication, the little known native Indian language of the Navajo was actually used
by the US in World War II, especially in the battle of Iwo Jima. The method works as
long as no third party understands the language or is in possession of a dictionary.

The classical cryptographic approach is that the sender and the receiver of a message
have, in advance, to agree on a cipher: A cipher consists of two functions, an injective
function e (called encoding) and its inverse d (called decoding) such that every cleartext
message M can be encrypted into a ciphertext C = e(M) to hide its substance, and by
the receiver decrypted using d(e(M)) = M. So, a cipher can be interpreted as a bilingual
dictionary. Fig. 1 shows the situation schematically.

Cleartext

encoding decoding

Ciphertext = ( )

M Cleartext M

MC Ciphertext CCe

= ( )C d

transmission of

over insecure channel

Sender Receiver

Fig. 1

A very simple example is Caesar’s cipher (used by Julius Caesar during the Gallic wars
to communicate with his generals), where encryption consists of replacing every letter
in M by the letter which is located (cyclically) three places ahead in the used alphabet:

e−−−→A D←−−−−
d

e−−−→B E←−−−−
d

...
...

...

e−−−→Z C←−−−−
d

So, e.g., e(CAESAR) = FDHVDU. The title of Section 1.1 is encoded this way. Caesar’s
cipher is the forefather of all shift cipher systems.
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Since the Spartan army used the stick cipher method1), the development of cryptography
was dominated by its use in military organizations and secret services (and still much
of the terminology used in cryptography has military origin). In World War II, a group
of mathematicians, working in Bletchley Park and lead by Alan M. Turing, succeeded
to break the German Enigma cryptosystem. This was a crucial advantage for the Allied
forces in the further process of war. (For the full story see, e.g., [25], [26] or [16].)
Reminiscent of these days, import, export and domestic use of cryptographic techniques
was tightly controlled in many countries. For example, export of so-called strong cryp-
tographic technology was prohibited in the United States until 2000, and in France until
early 1999 it was not allowed to encode personal documents. Today, most countries have
signed the Wassenaar Arrangement, which regulates these questions in a more liberal
way. With the dawn of electronic data transmission, cryptography is no longer only a
concern of the army: Whenever sensitive or personal data are electronically transferred
over the world wide web, cryptosystems are used. Cryptographic systems are the mathe-
matical guard dogs that keep credit card numbers safe, medical information secure, and
your on-line banking transactions confidential.

That we should not blindly trust cryptographic methods was drastically shown in October
2000: Then a team lead by Fredrik Almgren succeeded to break a 512-bit RSA code
(see Section 1.3) which was considered secure until a few years ago and in use even
these days (today 1024 bits are recommended). To break this code was the hardest
part in Simon Singh’s “Cipher Challenge”, a competition announced in his book [25].
The challenge consisted in decrypting a set of ten messages that were encyphered by
ten different methods whose complexity increased from stage to stage. The competition
began in September 1999 and Singh offered £1000 to the cryptanalyst (or the team)
leading after one year. He also offered £10’000 to the first person or team to crack all
ten codes. On October 1, 2000, Jim Gillogly, John Palagyi and the EFF team (Electronic
Frontier Foundation) received the £1000 for having succeeded in the first nine problems.
Only one week later, Almgren’s team solved the tenth problem, encrypted with RSA
and DES. In particular, they were able to adapt the so-called General Number Field
Sieve (GNFS) algorithm in such an efficient way that not even a Cray supercomputer
or a vector computer was necessary to break the code2). The full solution of the Cipher
Challenge can be found in [2].

1.2 Cryptosystems with keys
Traditionally, in cryptography the sender is called Alice, the receiver Bob and the oppo-
nent Oscar (or Eve from eavesdropper). The general assumption is that Eve knows the
cryptosystem being used. This is usually referred to as Kerckhoff’s principle. Of course,
if Eve does not know the cryptosystem, that will make her task, namely to break the

1) The Spartans enciphered and concealed a message by using a scytale, a special stick and belt. The
encipherer would wrap the belt around the stick and write a message lengthwise on it. The belt was then
unwound from the stick and sent to another person. Using a stick of similar size, the decipherer would
wrap the belt around the stick to watch the secret message appear. If a stick of the wrong size was used,
the message would be scrambled. This is an example of a permutation cipher.

2) Actually, a 512-bit number was factorized already in spring 2000 by a group at the CWI, the Centrum
voor Wiskunde en Informatica in Amsterdam, on a 16-processor Cray C90.



52 Elem. Math. 58 (2003)

cipher, more difficult. However, one does not want to base the security of a code on this
premise.

Obviously, a shift cipher is very easy to break, even if the shift itself is not known
(just try all shifts of the used alphabet). More sophisticated cryptographic methods are
substitution cipher, affine cipher, Vigenère cipher, Hill cipher, permutation cipher etc. For
a description of the mentioned cryptosystems, and many more, see [25], [7], [19], [14],
[15], [17], [18], [20], [23], [27], [28], and [29]. In the mentioned references, also the
corresponding cryptanalysis (i.e. the art to break these codes) is exhaustively described.

The idea to make it harder to break a code is to use a key κ such that encryption eκ and
decryption dκ depend on κ3). To break the cryptosystem, Eve would have to find out the
value of the key, either by guessing or exhaustive search (which is hopeless if the key
space is large enough), or by analyzing the structure of the encrypted data and try to
find a clue on the cleartext or the key. Suppose, for example, that we want to encrypt a
text M of length n, written with the 26 letters of the English alphabet, each represented
by a number between 0 and 25. We may encrypt M = (m1, . . . ,mn) in the following
way: We choose a key κ = (κ1, . . . , κn) and define C = eκ(M) = (c1, . . . , cn) by

ci = mi + κi in Z26.

Decryption is given by
mi = ci − κi in Z26.

Since the key κ is used only once, for the particular message M, this system is called
one-time pad. G.S. Vernam proposed in 1926 to use for κ a random sequence of the
elements of {0, . . . , 25}, each with the probability 1

26 and chosen independently. The
resulting cipher is an example of an unconditionally secure cryptosystem, since the data
stream of C does not possess any structure reminiscent of M and can therefore not be
broken, even with unlimited computational resources. In spite of its security, the system
has two major drawbacks: There is no mathematical way of generating independent
random numbers, and (more serious from a practical point of view) Alice and Bob have
first to meet to agree on κ. This may be workable on a limited number of occasions,
but becomes virtually impracticable for large-scale application of cryptography like in
e-banking or for use in the army. This difficulty of sharing keys is referred to as the key
distribution problem.

1.3 Public key cryptosystems
Public key cryptography tries to overcome the previously mentioned difficulty and to
find a way that Alice and Bob can agree on a key over an insecure channel or even in
public without any prior secrets. To illustrate the general idea, consider the following
situation: Alice wants to send a secret message to Bob. Before sending the message,
enclosed in a metal box, she receives from Bob an open lock (representing Bob’s public
key) which she uses to seal the box. Only Bob knows the combination (representing
Bob’s secret key) to unlock it, i.e., even Alice cannot reopen the box with her message

3) In asymmetric systems, the keys for encryption and decryption are different.
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which she then sends to Bob. In particular, Alice’s message can consist of a key κ to
use for a future transmission.

A mathematical version of the described procedure was first proposed 1976 by Diffie and
Hellman in [11] (see also [10]): The system has two public parameters, a prime number
p and a primitive element α which generates the finite field GF(p) in the sense that for
every number n ∈ {1, . . . , p − 1} there exists a unique k ∈ {1, . . . , p − 1} such that
n ≡ αk mod p. If Alice and Bob now want to agree on a key over an insecure channel
or in public, they proceed as follows:

1. First Alice chooses a private (random) value xA ∈ {2, . . . , p−2}4) and Bob chooses
a value xB ∈ {2, . . . , p− 2}. Both, Alice and Bob, keep their values secret.

2. Then Alice and Bob publish the values

yA = αxA mod p and yB = αxB mod p.

3. Finally Alice and Bob compute yxA
B mod p and yxB

A mod p, respectively. Since

κ := yxA
B ≡ αxB xA ≡ αxAxB ≡ yxB

A mod p,

Alice and Bob have now the shared secret key κ.

This protocol depends on the practical infeasibility to compute the discrete logarithm
in GF(p). In other words, if an eavesdropper knows p, α, yA and yB , it is difficult or
virtually impossible for him to compute xA or xB (and hence κ) if p is a large prime.
Today, a length of 1024 bits for the prime p is considered to guarantee a good level of
security.

Notice however, that the public values yA and yB have to be published in a trusted
directory or in a certified document that associates a person with a specific public key.
Differently stated: if the values yA and yB are exchanged over an insecure channel, then
the procedure is vulnerable to a so-called man-in-the-middle attack, where an intruder
intercepts yA and yB and replaces them by his own values yA′ and yB′ .

Using a similar idea as Diffie and Hellman, Rivest, Shamir and Adleman developed
1977 the RSA cryptosystem (see [1]), which offers both, encryption and digital signature
(authentication). RSA uses computation in Zn, where n is the product of two distinct
large primes p and q and is based upon the following lemma:

Lemma 1 Let n = pq for two primes p �= q. Then for all x ∈ Zn and all positive
integers k , we have

x1+kϕ(n) ≡ x mod n.

Here ϕ denotes the Euler function, i.e. the cardinality of {i : 0 < i < n, gcd (n, i) = 1},
hence ϕ(n) = (p− 1)(q− 1).

4) p− 1 is to be excluded because of Fermat’s little theorem.
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The RSA system for Alice and Bob consists of the following steps:

1. Bob chooses two distinct large primes p and q. He defines n = pq, chooses a
random integer a and computes the integer b such that ab ≡ 1 modϕ(n), using the
extended Euclid algorithm.

2. Bob publishes the values n and a in a directory. The values of p, q and b are kept
secret.

3. When Alice wants to send a message x ∈ Zn to Bob5), she reads the values n and
a and calculates y = xa mod n and sends y to Bob.

4. To decrypt the message y, Bob uses the secret value b and calculates (using the
previous lemma) yb ≡ xab ≡ x1+kϕ(n) ≡ x mod n.

For large p and q it is difficult to calculate the private key b from n and a, since it
is difficult to find the factors of a large number n. It is currently possible to factor
integers of about 150 digits. Most RSA implementations use numbers of 1024 bits cor-
responding to about 308 digits (see [22]) which seems to guarantee security at least for
the next few years (see the figure below). The best general factoring algorithm today
is the number field sieve (NFS) which, for a given number n, runs in time approxi-
mately O(e1.9(log n)1/3(log log n)1/2

) (see [21] or [8]). Nevertheless, Peter Shor proposed in
[24] polynomial time factorization and discrete logarithm algorithms for so-called quan-
tum computers (see Section 1.5). To the present day, no real quantum computer exists, but
in the future such a machine may break cryptosystems which are based on factorization
or discrete logarithms.

Actually, for no presently used cryptosystem it is proven, that it is difficult (i.e. not
possible in polynomial time) to break it.

The graphics in Fig. 2 summarizes the history of the records for the factorization of
integers between 1970 and 1999.

It is possible to use the same idea as above to implement a digital signature, used, e.g.,
to sign legal documents electronically or in electronic voting systems: Suppose Alice
wants to send a message x to Bob in such a way that Bob is assured the message is both
authentic, has not been tempered with, and from Alice. Alice creates a digital signature
s by exponentiation: s = xb mod n, where b is Alice’s private key. She sends x and s
(encrypted) to Bob. To verify the signature, Bob checks if the equality x ≡ sa mod n
holds, where n and a are Alice’s public keys. Therefore, if Bob can verify the last equality,
then the only person who could have send x and s is Alice. In order to have shorter
signatures, so-called hash functions are used to compute the hash value or message digest
h(x). This value is then used by Alice to generate the signature s = h(x)b mod n (see
e.g. [20]).

Notice, that in the RSA system, no previous key agreement is necessary. However,
cryptosystems as described in Section 1.2 have the advantage to be faster than RSA
by a factor between 100 and 10’000 (depending on the implementation). Therefore a

5) We can associate to a text for example its ASCII code and interpret it as a number. A longer text is
segmented into blocks of adequate length.
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commonly used technique is to first agree on a session key (e.g. via the described Diffie-
Hellman protocol) and then to use one of the fast algorithms, like DES (Data Encryption
Standard), IDEA (International Data Encryption Algorithm) or the new AES Rijndael
algorithm (Advanced Encryption Standard).

1.4 One-way functions
Public key cryptosystems are based on so-called one-way functions. A one-way function
is a map c : A→ B between two finite sets A and B such that c(x) is easy to compute,
but for virtually all y ∈ c(A), it is computationally infeasible to find an x such that
y = c(x). The prototype example is the discrete exponentiation used in the Diffie-
Hellman key exchange protocol with a hard to compute discrete logarithm as inverse.
The RSA system is based on a trapdoor one-way function, i.e., a one-way function for
which the inverse is easy to compute, given a certain piece of information (the trapdoor),
but difficult otherwise. In the RSA case, the trapdoor is the factorization of n.

How can such cryptographic methods be challenged by quantum computers?

1.5 Quantum computer
A quantum computer is a device that processes information stored on quantum variables
such as spins, photons, or atoms. The discrete character of quantum variables makes
them natural candidates for storing digital information: a spin can point “up” or “down”
representing one bit of information. Unlike a bit of classical information, which can only
register 0 or 1, a quantum bit (“qubit”) can in some sense register 0 and 1 at once: a spin
can be in a superposition of two states a (spin up) and b (spin down), where a and b are
complex numbers that can vary continuously. That is, quantum information possesses
both digital and analog qualities.

The original quantum computer proposed by Benioff [4] stored digital information on
quantum bits, but performed computations that were essentially classical: bits were not
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put in superpositions. Benioff offered a classical Turing machine which used quantum
mechanics in its workings, thus showing that theoretically a quantum computer was at
least as powerful as a classical computer.

In 1982 Richard Feynman [13] showed that a classical Turing Machine (and hence any
classical computer) could not simulate a quantum mechanical system without suffering
exponential slowdown. He asked whether quantum computers might be more efficient
than classical computers for providing analog simulations of other quantum systems.

David Deutsch and Richard Jozsa presented in [9] an algorithm that could be run in
poly-log time on a quantum computer, but required linear time on a deterministic Turing
machine. This may have been the first example of a quantum computer being shown
to be exponentially faster than a deterministic Turing machine. However, the problem
could also be solved in poly-log time on a probabilistic Turing machine.

Shor’s algorithm for factoring exploits both digital and analog properties of quantum
computers: interference between quantum bits in superpositions of different logical states
plays a key role. A quantum computer is not speedier (in terms of clock speed) than
its classical rival. The difference, e.g. in the factorization problem, is rather in how
it goes about factoring numbers. Whereas the classical computer factors sequentially,
sampling different combinations of numbers one after another in lockstep until finished,
the quantum computer does it all at once in a process known as quantum parallelism.

One day, quantum computers may factor numbers of the size currently used for RSA in
seconds. And we cannot just use larger numbers (e.g. generated on quantum computers)
to regain security. Therefore, quantum computing may make RSA obsolete in the future.

1.6 Quantum cryptography
While classical cryptography employs various mathematical techniques to restrict eaves-
droppers from learning the contents of encrypted messages, in quantum cryptography
the information is protected by the laws of physics: Quantum cryptography provides
means for two parties to exchange a key over a channel with any desired security of
communication.

There are at least three main types of quantum cryptosystems for the key exchange, these
are:

(A) Cryptosystems with encoding based on two non-commuting observables, proposed
by S. Wiesner [30], and by C.H. Bennett and G. Brassard [5].

(B) Cryptosystems with encoding built upon quantum entanglement and the Bell theo-
rem, proposed by A.K. Ekert [12].

(C) Cryptosystems with encoding based on two non-orthogonal state vectors, proposed
by C.H. Bennett [6].

Quantum cryptosystem (A) can be explained with the following simple example. The
system includes a transmitter and a receiver. A sender may use the transmitter to send
photons in one of four polarizations: 0, 45, 90, or 135 degrees. A recipient at the other
end uses the receiver to measure the polarization. According to the laws of quantum
mechanics, the receiver can distinguish between rectilinear polarizations (0 and 90),
or it can quickly be reconfigured to discriminate between diagonal polarizations (45
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and 135); it cannot, however, distinguish both types. The key distribution requires the
following steps. The sender sends photons with one of the four polarizations which are
chosen at random. For each incoming photon, the receiver chooses at random the type
of measurement: either the rectilinear type or the diagonal type. The receiver records the
results of the measurements but keeps them secret. Subsequently the receiver publicly
announces the type of measurement (but not the results) and the sender tells the receiver
which measurements were of the correct type. The two parties (the sender and the
receiver) keep all cases in which the receiver’s measurements were of the correct type.
These cases are then translated into bits (1’s and 0’s) and thereby become the key. An
eavesdropper is bound to introduce errors to this transmission because he does not know
in advance the type of polarization of each photon and quantum mechanics does not
allow him to acquire sharp values of two non-commuting observables (here rectilinear
and diagonal polarizations). The two legitimate users of the quantum channel test for
eavesdropping by revealing a random subset of the key bits and checking (in public) the
error rate. Whenever they are not happy with the security of the channel they can try to
set up the key distribution again.

Recently quantum cryptology has been tested to work successfully for a transmission
over 10 km of fiber optic cable.

2 A cryptographic system based on the second principle
of thermodynamics

In this section we propose the heat flow as a cryptographic system that may resist attacks
even by quantum computers.

2.1 A one-way function
Consider the heat equation

ut −∆u = 0 on R+ × Rn (1)

with initial data
u(0, x) = a(x) for x ∈ Rn (2)

at time t = 0. Mathematically speaking, the evolution problem for (1) in the forward
time direction is a well-posed initial-value problem, whose solution can be modelled
with extreme accuracy also numerically. In contrast, the evolution problem in backward
time is ill-posed, and numerical algorithms for solving equation (1), (2) for t < 0 are
inherently unstable. Physically, this observed impossibility of reversing the arrow of time
is a consequence of the second principle of thermodynamics. Therefore the forward heat
flow seems a promising candidate for a one-way function.

Denoting as Γ the fundamental solution to the heat equation, given by

Γ(t, x) =
1

(4πt)n/2
exp
(
−|x|

2

4t

)

for t > 0, the unique solution of (1), (2) is given by

u(x, t) =
∫
Rn

Γ(t, x − y)a(y)dy.
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In particular, at time t = 1, letting

γ(x) = Γ(1, x)

we have

α(x) := u(1, x) =
∫
Rn
γ(x − y)a(y)dy

or
α = γ ∗ a

for short, where

( f ∗ g)(x) =
∫
Rn

f(x − y)g(y)dy

denotes the convolution of any two suitable functions f and g on Rn. Note that f∗g = g∗ f .
Moreover, for f ∈ Lp(Rn), g ∈ Lq(Rn) with 1

p + 1
q ≥ 1 we have f ∗ g ∈ Lr(Rn) if

1
p + 1

q = 1 + 1
r . In this case, the inequality

‖ f ∗ g‖Lr ≤ ‖ f‖Lp‖g‖Lq

holds. Since γ ∈ L1(Rn) with ‖γ‖L1 = 1, for a ∈ Lp(Rn), letting α = γ ∗ a as above,
we have α ∈ Lp(Rn) with

‖α‖Lp ≤ ‖a‖Lp , 1 ≤ p ≤ ∞.

In the following we fix p = 1 for convenience, because in this case ∗ generates an
associative and symmetric operation on L1(Rn). As is well-known, for any Lebesgue-
integrable function a the function α = γ ∗ a is well-defined and real analytic. Moreover,
for a �= b ∈ L1(Rn) with corresponding α = γ ∗ a and β = γ ∗ b, it follows that α−β =
γ ∗ (a− b) �= 0. Otherwise, by the Cauchy-Kowalewski theorem, Γ(t, ·) ∗ a = Γ(t, ·) ∗ b
for all t > 0. Letting t ↘ 0, we then obtain

a = lim
t↘0

Γ(t, ·) ∗ a = b

contrary to the assumption. Thus, the map

� : L1(Rn)→ L1(Rn)
a �→ α = γ ∗ a

is well-defined, continuous and injective, but not onto. This is, basically, our one-way
map. Inverting � on its range im (�) is “difficult” as a consequence of the second
principle of thermodynamics. In Section 3 we illustrate this fact in the case of periodic
functions defined on a lattice, corresponding to discretizing (1), (2) on a spatially periodic
domain.
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2.2 Applications
In cryptography the above function � might be applied in various ways. We illustrate
here two possible applications: Public key cryptography (where we indicate an analogue
to the Diffie-Hellman key agreement protocol in Section 2.2.1) and password verification
(in Section 2.2.2.A and B).

2.2.1 Key exchange over an insecure channel. Alice and Bob choose secret passwords a
and b respectively. Their corresponding public keys will be α = γ ∗ a and β = γ ∗ b. If
Alice wants to send a message M to Bob, she encrypts M using as key

κ = β ∗ a

with a standard symmetric key method and sends the ciphertext C = eκ(M) to Bob.
She tells Bob openly that she is the sender of this message. Bob, upon receiving the
message supposedly from Alice, looks up Alices’ public-key α in a trusted directory and
generates

κ′ = α ∗ b

using his private key b. By symmetry and associativity of the convolution product we
have

κ′ = α ∗ b = (γ ∗ a) ∗ b = γ ∗ (a ∗ b) = γ ∗ (b ∗ a) = (γ ∗ b) ∗ a = β ∗ a = κ

and therefore Bob can easily decrypt M = dκ(C). Moreover, at the same time the
message is authenticated. Indeed, Eve, imposing as Alice, in order to generate

κ = γ ∗ (a ∗ b) = α ∗ b = β ∗ a

from knowledge of the public data α, β and γ would have to be in possession of either
a, b or a ∗ b.

2.2.2 Password verification
(A) Simple password verification. In the simplest case, a new user, say Alice, of a
computer system chooses a secret password p and enters it into the system. The system
stores only the encrypted password π = γ ∗ p in a (world readable) file. Each time a
password p′, supposedly from Alice, has to be verified, the value π′ = γ ∗p′ is compared
to π. If the values agree, the authentication is granted.

(B) One-time passwords. If a user, again Alice, has to be authenticated over an insecure
channel, an adversary may put himself between Alice and the computer system and
intercept the password Alice sends. Even if the password was encrypted, the adversary
may send it later on himself, claiming he is Alice. The following protocol avoids this
man-in-the-middle attack: Alice chooses, as above, a secret password p. In contrast to
Section (A),

πN = γ ∗N p = γ ∗ γ ∗ · · · ∗ γ︸ ︷︷ ︸
N times

∗p = Γ(N, ·) ∗ p
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is now stored by the computer system in a (world readable) file. Here, N > 1 is a fixed
natural number. If Alice wants to login remotely for the n-th time, the computer system
tells her to use πN−n = γ ∗N−n p as one-time password. Alice computes the value of
πN−n and sends it to the computer who compares γ ∗n πN−n with πN . Again, if the
values agree, the authentication is successful. Since every password πN−n is valid for
only one login, it is of no use for a potential adversary, since it is “impossible” to deduce
πi from π j for i < j. Of course, after the last number n = N is consumed, during the last
session, Alice has to agree with the computer system on a new password π′N = γ ∗N p′.

3 A toy model
To have a simple model on which we can test our theoretical predictions, let us choose
n = 1 and, for further convenience, let us restrict our attention to initial data that are
periodic on the real line with period 2π. Moreover, for our purposes it is advantageous to
let (1) act on the set of M-band limited functions, i.e. functions f with the property that
f̂(λ) = 0 whenever |λ| ≥M: This space VM of Fourier-polynomials of order M−1 then
is a finite dimensional real vector space of dimension 2M− 1, and � acts bijectively on
this space. Moreover, M-band limited functions are real analytic and they are subject to
Shannon’s sampling theorem. The trapezoidal rule then integrates such functions exactly
(i.e. without discretization error) provided the step size is chosen sufficiently small. For
the reader’s convenience, we include the following classical result on the trapezoidal
rule:

Lemma 2 For f ∈ VM and a natural number m ≥M we have∫ 2π

0
f(x)dx =

2π
m

m∑
l=1

f
(2πl

m

)
.

By trigonometric interpolation, for N = 2M − 1, the mapping

ϕ : VM → R
N , a �→ ϕ(a) = (ak )k=1,...,N , ak = a

(2πk
N

)
,

is an isomorphism of vector spaces. Two immediate consequences of Lemma 2 are:

Corollary 3 If a ∈ VM, ϕ(a) = (ak )k=1,...,N , N = 2M − 1, the Fourier-transform is
given by

âk =
1

2π

∫ 2π

0
e−i kxa(x)dx =

1
N

N∑
l=1

e−
2πi k l

N al

for k = −M + 1, . . . ,M − 1 (and of course âk = 0 for |k | ≥M).

Corollary 4 If a, b ∈ VM, ak = a( 2πk
N ), bk = b( 2πk

N ), N = 2M − 1, the convolution

c(·) = (a ∗ b)(·) =
∫ 2π

0 a(· − y)b(y)dy belongs to VM, and ϕ(c) = (ck )k=1,...,N is given
by

ck =
2π
N

N∑
l=1

ak−lbl.
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For 2π-periodic functions, the heat equation (1) transforms into the ordinary differential
equation for âk = âk (t)

d
dt

âk + |k |2âk = 0, k ∈ Z.

Hence, we conclude that âk is given by

âk (t) = e−k2tâk (0), k ∈ Z.
In particular, at time t = 1, we obtain

âk (1) = α̂k = e−k2

âk (0).

Thus, for initial values a ∈ VM, we conclude that the solution α at time t = 1 also
belongs to VM and that, for xm = 2πm

N ,

αm = α(xm)

=
M−1∑

k=−M+1

âk (1)ei kxm

=
M−1∑

k=−M+1

âk (0)ei kxm−k2

Cor. 3=
1
N

M−1∑
k=−M+1

N∑
l=1

e
2πi k(m−l)

N −k2

al.

In other words, the linear map A : (ak )k=1,...,N �→ (αk )k=1,...,N , is represented by the
symmetric matrix (Alm)1≤l,m≤N with

Aml = γ(m− l) =
1
N

M−1∑
k=−M+1

e
2πi k(m−l)

N −k2

=
1
N

(
1 + 2

M−1∑
k=1

e−k2

cos
(2πk(m− l)

N

))
.

(3)
Conversely, the inverse map A−1 is given by

am = a(xm)

=
M−1∑

k=−M+1

âk (0)ei kxm

=
M−1∑

k=−M+1

âk (1)ei kxm+k2

Cor. 3=
1
N

M−1∑
k=−M+1

N∑
l=1

e
2πi k(m−l)

N +k2

αl

with exponentially diverging coefficients

Aml =
1
N

M−1∑
k=−M+1

e
2πi k(m−l)

N +k2

=
1
N

(
1 + 2

M−1∑
k=1

ek2

cos
(2πk(m− l)

N

))
. (4)

We may summarize the preceding calculation as follows:
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Proposition 5 The solution α = �(a) at time t = 1 of the heat flow problem (1) with
initial data a ∈ VM is given by

α = ϕ−1(Aϕ(a)) ∈ VM,

where A is given by (3).

By the isomorphism ϕ, we may identify VM with RN , N = 2M − 1. This also suggests
to use the linear map

A : RN → R
N

(ak )k=1,...,N �→ (αk )k=1,...,N , αm =
N∑

l=1

Amlal

for a concrete implementation of the proposed cryptosystem and to take KN = {0, 1}N ⊂
R

N as our secret key space for sufficiently large N = 2M − 1.

If we attempt to implement this scheme numerically, however, we are faced with two
difficulties. First, it is not clear that for any k ∈ KN the image Ak can be uniquely
rounded to machine-size precision. Moreover, once the first problem is overcome we can
certainly use the explicit formula (4) to compute k from Ak , using double precision, if
necessary.

The solution to both these problems in the toy model that we have in mind appears to
be quite simple. In fact, the eigenvalues of A are {1, e−1, e−1, e−4, e−4, . . ., e−(M+1)2

,
e−(M+1)2}. Therefore, the condition number of A is

cond (A) =
max{|λ| : λ ∈ σ(A)}
min{|λ| : λ ∈ σ(A)} = e(M−1)2

.

This indicates that if we substitute the matrix A, for instance, by the matrix A′ =
roundδA, where roundδ(x) is the closest machine size real number to x of a chosen
precision δ > 0, here acting on the coefficients of A, then it will be numerically infeasible
to compute the inverse of the matrix A′. Benchmark tests with Mathematica indicate
that the computational effort to solve the linear system A′a = α for δ ∼ e−(M−1)2

grows
exponentially with M.

Observe that the rounding operation preserves the “convolution structure” A′ml = γ′(m−
l). Moreover, for any k ∈ KN the “encrypted” key A′ k will be of machine size. The
methods described above for password verification and key exchange over an insecure
channel can therefore be carried over without any change to the discrete model.

4 Implementation on a quantum computer
Since Shor’s proposal, a considerable amount of effort has been expended to find other
problems that quantum computers might solve more easily than classical computers. As
proposed by Feynman, quantum computers might be used to simulate certain contin-
uous problems, like the heat equation, and therefore to solve these problems without
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discretization error. Such a technique might be used to implement the thermodynamic
one-way function introduced in Section 2 directly, without prior discretization. Then,
quantum teleportation might be the way to transmit the public key α = γ ∗ a. This
method would thus offer an alternative to the current quantum cryptography.
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