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1 Introduction
Goniometry, literally the science of measuring angles, is defined in [8] as “the part of
trigonometry determined by trigonometric functions and their relations” (vol. 4, p. 287),

.

Bei der Lagebestimmung von Satelliten geht es darum, die räumliche Orientierung
eines Satelliten aus Sensordaten zu ermitteln, bei denen es sich in der Regel um Rich-
tungsmessungen handelt. In der gängigen Praxis werden diese Richtungen in Form von
Vektorkoordinaten codiert, was eine gewisse Redundanz an Information mit sich bringt,
insbesondere dann, wenn nicht absolute Richtungen, sondern nur relative Unterschiede
zwischen verschiedenen Richtungen von Bedeutung sind. Wie in dem vorliegenden Ar-
tikel gezeigt wird, lassen sich manche Lagebestimmungsalgorithmen enorm verbessern,
indem statt der Benutzung von Vektoren eine Beschreibung der auftretenden Konstella-
tionen von Richtungen durch gewisse Winkelgrößen gewählt wird. Interessanterweise
wird aber die hier beschriebene Vorgehensweise erst durch die Verallgemeinerung auf
Sphären beliebiger Dimension wirklich klar. Die Anwendung dieser allgemeinen Er-
gebnisse auf das Ausgangsproblem der Lagebestimmung von Satelliten erweist dann
deren praktische Nützlichkeit.
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encompassing plane trigonometry and spherical trigonometry. From a broader point of
view, goniometry can be seen as the study of relations between various angles in geomet-
ric configurations on arbitrary Riemannian manifolds. The term is also used in application
areas such as orthopedics (see [14]) and crystallography (see [3], [15]). In this paper we
apply methods from goniometry to a problem in spacecraft attitude determination, which
is the discipline dealing with the task of exploiting directional information derived from
sensors to determine the orientation of a satellite in space.
In this discipline it has become customary to indiscriminately code all available direc-
tional information in terms of vector coordinates which are then processed in the attitude
determination software; spherical trigonometry, to the detriment of the solution, is often
insufficiently considered. (This seems to reflect the nearly complete elimination of spher-
ical trigonometry from typical curricula in which it appears, if at all, as an application
of vector algebra.) It struck us that this way a dead weight of redundant information is
carried through the calculations which is not really needed and often even blurs the real
problem. In particular, vector coordinates always carry absolute information whereas
quite often only relative information on the mutual relations between different direc-
tions is relevant. Treating directions not as vectors, but as objects in their own right
(which can be simply thought of as points on the unit sphere) will allow us to deal with
sets of directions modulo orthogonal transformations and hence process only relevant
information.
While all that is needed to satisfactorily treat attitude determination problems is a judi-
cious use of spherical trigonometry, we found it beneficial in the course of our work to
extend spherical trigonometry to arbitrary finite dimensions. (Such an approach is quite
natural from the point of view of classical geometry; see Chapter 18, Section 6 in [1] and
Book 2, Chapter 5 in [4].) Thus we develop a theory of spherical trigonometry in an arbi-
trary (real or complex) vector space of finite dimension which is equipped with an inner
product (which allows us to compute lengths and angles) and with a determinant func-
tion (which allows us to distinguish between different orientations). Our driving theme
is the translation of statements about geometric directions from the language of vectors
into the language of angles and vice versa. The generalization to arbitrary dimensions
provides the conceptual clarity which not only helped us to find an effective solution to
the specific problem at hand, but also extends the field of potential applications; we feel
that our approach may be useful to tackle problems in other areas (such as pattern recog-
nition) which can be cast as problems of identifying constellations of direction vectors.
Moreover, should we wake up one morning and find out that the world’s dimension has
changed over night, we shall find ourselves all the better prepared (cf. [16], p. 393).

2 Attitude determination using GPS data
The Global Positioning System (GPS) is a constellation of currently 29 earth-orbiting
satellites (with a minimum of 24 in regular operation) transmitting signals which allow
users to perform highly accurate position measurements on earth, for example for navi-
gation and surveying tasks. GPS measurements can also be used to determine the orbital
position of a spacecraft (called host spacecraft) receiving signals from GPS satellites.
Moreover, GPS measurements have been increasingly used to determine the spatial ori-
entation (attitude) of the host spacecraft (see [2] and [12]), and this is the problem we
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want to study in this paper. We only deal with static (instantaneous) attitude determi-
nation and do not make use of kinematical relations which lead to more reliable but
initially delayed results. The host spacecraft, whose attitude is to be determined, carries
two or more receiving antennas all handling the same GPS signals; the antenna baselines
are defined to be the direction vectors between any two of these antennas. The angle
of incidence βi j from the i-th GPS satellite with respect to the j-th antenna baseline
can be computed from the phase difference of the plane wave from the GPS satellite
with respect to the two antennas. This phase difference, however, is only known up to
a multiple of the wavelength, and this ambiguity needs to be resolved for each separate
GPS satellite signal received by each separate baseline. In fact, as depicted in Fig. 1, we
have for each GPS satellite in the direction vi and each separate baseline direction uj

with known baseline length Uj a measurement Φi j and an unknown trigonometric angle
βi j given by the formula

Uj cos βi j = Φi j + mi jλ

where the known wavelength of the GPS signals is denoted by λ and where mi j is an
unknown number of wavelength cycles. The wavelength λ is either 19 cm or 24 cm
(according to which of the two GPS transmission frequencies is received); typical values
for the baseline lengths Uj are in the range between 1 m and 2 m. We shall denote by
k the number of GPS directions and by � the number of antenna baselines.
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Fig. 1 Reception of a GPS signal by two antennas mounted on a host spacecraft

We are in the fortunate situation that the GPS signal contains the position coordinates of
the GPS satellite in a known reference system. Hence all GPS directions vj are known on
board, and all angles αi j between them can be computed directly via cos αi j = 〈vi , vj〉.
The existing vector-based approaches do not make use of the fact that the constella-
tion of antenna baselines and the constellation of GPS directions are both known and
that only the link between these two constellations needs to be determined. Instead, the
above measurement equations are written in the form 〈vi, uj〉 = mi j(λ/Uj) + Φi j/Uj

where the unknowns are the integers mi j and the coordinates of the vectors uj ; i.e.,
there are altogether k� scalar equations for 3�+ k� unknowns. This system of equations
is underdetermined, and some best-fit approach has to be taken by scanning through
an often astronomical number of potential combinations of integers mi j . Those existing
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algorithms which do not make use of kinematical considerations look for unlikely com-
binations and computational simplifications which reduce the work per single scan to a
minimum. Nevertheless, there is always a need to go through many thousand cases per
determination. This is where the goniometric approach we are going to present leads to
a significant reduction of the computational load.

3 Preliminaries

In this section we introduce the basic ingredients which are needed to extend spherical
trigonometry to arbitrary dimensions: vector products, covectors, and Gramians. The
setting is a vector space V of finite dimension n over K = R or C, equipped with an inner
product 〈·, ·〉 (which allows us to measure lengths and angles) and a determinant function
(which allows us to distinguish between different orientations). Here an inner product
is a mapping V × V → K which is skew-symmetric in the sense that 〈w, v〉 = 〈v, w〉
for all v, w ∈ V, sesquilinear in the sense that 〈

∑
i rivi,

∑
j s jwj〉 =

∑
i, j risj〈vi, wj〉

for all ri , sj ∈ K and all vi, wj ∈ V and positive definite in the sense that 〈v, v〉 > 0
for all v ∈ V \ {0}, whereas a determinant function is a mapping det: Vn → K which
is not identically zero and which is alternating in the sense that det(vσ(1), . . . , vσ(n)) =
sign(σ) det(v1, . . . , vn) for all vi ∈ V and all elements σ ∈ Symn of the symmetric group
on n elements. We start with a short discussion of vector products (cf. [5]).

Definition 3.1 Let V be an n-dimensional vector space over K with an inner product
〈·, ·〉 and a determinant function det. The vector product of n−1 vectors v1, . . . , vn−1 ∈ V
is defined to be the unique vector v1 × · · · × vn−1 such that for all u ∈ V the equation
〈u, v1 × · · · × vn−1〉 = det(u, v1, . . . , vn−1) holds.

The basic properties of the vector product are given in the following proposition. (Recall
that the classical adjoint adj(A) of an (n × n)-matrix A is the (n × n)-matrix whose
i j-entry is (−1)i+ j det Aji where Aji is obtained from A by striking out the j-th row
and the i-th column.)

Proposition 3.2 Let V be an n-dimensional vector space over K with an inner product
〈·, ·〉 and a determinant function det and let v1, . . . , vn−1 ∈ V.

(a) The vector product v1 × · · · × vn−1 is orthogonal to each of the vectors vi and
depends skew-linearly on each of its arguments.

(b) We have v1 × · · · × vn−1 = 0 if and only if v1, . . . , vn−1 are linearly dependent.

(c) We have 〈v1, v2 × · · · × vn〉 = (−1)n−1〈vn, v1 × · · · × vn−1〉 for all vectors vn.

(d) If σ ∈ Symn−1 then vσ(1) × · · · × vσ(n−1) = sign(σ) (v1 × · · · × vn−1).

(e) If T : V → V is an endomorphism of V and if adj denotes the formation of the
classical adjoint then (Tv1) × · · · × (Tvn−1) = adj(T
)(v1 × · · · × vn−1).

(f) If T : V → V is unitary then T(v1 × · · · × vn−1) = (det T) · (Tv1)× · · ·× (Tvn−1).
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Proof . Parts (a) through (d) are mere restatements of properties of the determinant
function. To prove (e) we note that, since both sides of the desired equation depend
continuously on T and since every endomorphism of V can be obtained as a limit of
isomorphisms, we may assume that T is invertible. For all u ∈ V we then have

〈u, (Tv1) × · · · × (Tvn−1)〉 = det(u, Tv1, . . . , Tvn−1)

= (det T) · det(T−1u, v1, . . . , vn−1) = (det T) · 〈T−1u, v1 × · · · × vn−1〉
= (det T) · 〈u, (T−1)
(v1 × · · · × vn−1)〉 = 〈u, (det T) · (T−1)
(v1 × · · · × vn−1)〉
= 〈u, (det T
)(T
)−1(v1 × · · · × vn−1)〉 = 〈u, adj(T
)(v1 × · · · × vn−1)〉 ,

which gives the claim. If T is unitary then adj(T
) = (det T
)(T
)−1 = (det T)−1T;
hence (f) is an immediate consequence of (e). �

We now define, for any ordered family of n vectors in V, an ordered set of covectors or
dual vectors which, in the case of a vector space basis, represents a consistently oriented
family of normal vectors of the hyperplanes spanned by any n − 1 of the n original
vectors.

Definition 3.3 Let V be an n-dimensional vector space over K with an inner product 〈·, ·〉
and a vector product. Given (v1, . . . , vn) ∈ Vn we define the covectors (w1, . . . , wn) ∈
Vn of (v1, . . . , vn) via wi := (−1)i−1 v1 × · · · × [vi] × · · · × vn where the bracket [·]
denotes the omission of the element enclosed.

The basic properties of covectors are given in the following proposition. (By the rank
of a family of vectors we mean the dimension of the vector space spanned by these
vectors.)

Proposition 3.4

(a) We have 〈vi, wj〉 = δi j · det(v1, . . . , vn) for all 1 ≤ i, j ≤ n.

(b) If (v1, . . . , vn) is a basis of V and if (v̂1, . . . , v̂n) is the dual basis with respect
to the given inner product in the sense that 〈vi , v̂j〉 = δi j for all i, j, then v̂i =
wi/det(v1, . . . , vn) for 1 ≤ i ≤ n.

(c) The rank of (w1, . . . , wn) is given by

rank(w1, . . . , wn) =


n if rank(v1, . . . , vn) = n,

1 if rank(v1, . . . , vn) = n − 1,

0 if rank(v1, . . . , vn) < n − 1.

(d) We have w1 × · · · × [wi] × · · · × wn = (−1)i−1 det(v1, . . . , vn)n−2 · vi .

Proof . (a) If i �= j then 〈vi, wj〉 = 0 by Proposition 3.2(a). Moreover, the definition
of the vectors wi shows that 〈vi, wi〉 = (−1)i−1 det(vi, v1, . . . , vi−1, vi+1, . . . , vn) =
det(v1, . . . , vn).
(b) If we take v̂i := wi/det(v1, . . . , vn) as a definition of v̂i , then part (a) implies that
〈vi, v̂j〉 = 〈vi, wj〉/ det(v1, . . . , vn) = δi j ; this yields the claim.
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(c) Let r := rank(v1, . . . , vn). If r = n the claim follows from part (b). If r < n we
may assume without loss of generality that a maximal independent set of the vectors vi
is contained in {v1, . . . , vn−1}; then Proposition 3.2(b) shows that wn �= 0 if r = n − 1
whereas wn = 0 if r < n − 1. Now there is an equation of the form vn =

∑n−1
j=1 λ jvj ,

which implies that

wi = (−1)i−1v1 × · · · × [vi] × · · · × vn

=
n−1∑
j=1

λ j(−1)i−1v1 × · · · × [vi] × · · · × vj

= λi(−1)i−1v1 × · · · × [vi] × · · · × vi

= λi(−1)i−1(−1)n−1−iv1 × · · · × vi × · · · × vn−1

= λi(−1)nv1 × · · · × vi × · · · × vn−1 = −λiwn

for 1 ≤ i ≤ n − 1. This shows that a maximal independent subset of the vectors wi is
given by {wn} if r = n − 1 and by the empty set if r < n − 1.

(d) The claim is an immediate consequence of part (c) and Proposition 3.2(b) if v1, . . . , vn

are linearly dependent. If v1, . . . , vn are linearly independent, we use parts (a) and (b)
and the fact that taking the dual basis twice gives back the original basis to see that

vi = ̂̂vi =
(−1)i−1v̂1 × · · · × [v̂i] × · · · × v̂n

det(v̂1, . . . , v̂n)

= (−1)i−1 det(v1, . . . , vn) v̂1 × · · · × [v̂i] × · · · × v̂n

= (−1)i−1 det(v1, . . . , vn)
det(v1, . . . , vn)n−1

w1 × · · · × [wi] × · · · × wn

where we used the skew-linearity of the vector product in each of its arguments and the
fact that det(v1, . . . , vn)det(v̂1, . . . , v̂n) = 1. �

The last prerequisite for our discussion of goniometry is the formation of Gramians.

Definition 3.5 Let V be an n-dimensional vector space over K with an inner product
〈·, ·〉. The Gramian of n vectors v1, . . . , vn ∈ V is the (n × n)-matrix

G(v1, . . . , vn) :=

 〈v1, v1〉 · · · 〈v1, vn〉
...

...
〈vn, v1〉 · · · 〈vn, vn〉

 .

It is easy to establish (and well-known; see [9], pp. 406–408) that a matrix G ∈ Kn×n is
a Gramian if and only if it is self-adjoint and positive semidefinite. It is positive definite
(i.e., invertible) if and only if the underlying vectors v1, . . . , vn are linearly independent.
The basic properties of Gramians are summarized in the following proposition.
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Proposition 3.6 Let V be an n-dimensional vector space over K with an inner product
〈·, ·〉 and a determinant function det, let v1, . . . , vn ∈ V be arbitrary vectors and let
(w1, . . . , wn) be the covectors of (v1, . . . , vn). Then the following conditions hold:

(a) G(λv1, . . . , λvn) = |λ|2G(v1, . . . , vn) for all λ ∈ K;

(b) G(Tv1, . . . , Tvn) = G(v1, . . . , vn) whenever T : V → V is unitary;

(c) rank G(v1, . . . , vn) = rank (v1, . . . , vn);
(d) det G(v1, . . . , vn) = | det(v1, . . . , vn)|2;

(e) G(w1, . . . , wn) = adj
(
G(v1, . . . , vn)

)
;

(f) if v1, . . . , vn are linearly independent then G(v1, . . . , vn)−1 = G(v̂1, . . . , v̂n)
 where
v̂i = wi/det(v1, . . . , vn).

Proof . Parts (a) and (b) follow immediately from the definition of a Gramian; for (c)
we refer to [9], Theorem 7.2.10. To prove (d) we express v1, . . . , vn in coordinates with
respect to any orthonormal basis of V, form the matrix A whose columns are these
coordinate representations, and observe that G = G(v1, . . . , vn) equals A
A; hence
det G = det(AA
) = (det A)(det A) = | det A|2 = | det(v1, . . . , vn)|2. To prove (e) we
observe that both sides of the desired equation depend continuously on v1, . . . , vn; hence,
since an arbitrary n-tuple of vectors can be obtained as a limit of linearly independent n-
tuples, we may assume without loss of generality that v1, . . . , vn are linearly independent.
In this case A
 = det(v1, . . . , vn)B−1 where B is the matrix with columns w1, . . . , wn,
because A
B =

(
〈vi, wj〉

)
i, j = det(v1, . . . , vn)1 by Proposition 3.4(a). Consequently,

(A
A)−1 = | det(v1, . . . , vn)|−2B
B, i.e.,

G(v1, . . . , vn)−1 = | det(v1, . . . , vn)|−2G(w1, . . . , wn) . (
)

Together with part (d) this shows that

G(w1, . . . , wn) = det G(v1, . . . , vn) G(v1, . . . , vn)−1 = adj
(
G(v1, . . . , vn)

)
.

Finally, using part (a) and formula (
), we find that

G(v1, . . . , vn)−1 = G
( w1

det(v1, . . . , vn)
, . . . ,

wn

det(v1, . . . , vn)

)
= G(v̂1, . . . , v̂n) .

�

4 Goniometry
In this section we start discussing goniometry proper. We define goniometric sine and
cosine functions and derive the higher-dimensional analogues of the well-known formulas
of spherical trigonometry.

Definition 4.1 A goniometric cosine is a pair (gcos, A) where A ⊆ K is a subset of
K selected such that gcos is a bijection from A onto U := {z ∈ K | |z| ≤ 1}. The
corresponding goniometric sine is the nonnegative real-valued function gsin defined by
gsin α :=

√
1 − | gcos α|2. A goniometric space is a finite-dimensional vector space over

K equipped with an inner product and a goniometric cosine. An oriented goniometric
space is a goniometric space equipped with a determinant function.
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Formally, a goniometric space is a quadruplet (V, 〈·, ·〉, gcos, A) whereas an oriented go-
niometric space is a quintuplet (V, 〈·, ·〉, det, gcos, A). We simply speak of a goniometric
space V or an oriented goniometric space V, assuming the other data as being given.

Definition 4.2 Let v1, . . . , vk be vectors in a goniometric space over K. The goniometric
angles αi j , αi j and αi (where 1 ≤ i, j ≤ k ) associated with these vectors, which will
be referred to as subscript angles, superscript angles and normal arcs, respectively, are
defined by the equations

〈vi , vj〉 =‖ vi ‖ ‖ vj ‖ gcos αi j ,

〈wi, wj〉 =‖ wi ‖ ‖ wj ‖ gcos αi j ,

〈vi, wi〉 =‖ vi ‖ ‖ wi ‖ gcos αi

where the covectors wi are formed within the subspace spanned by v1, . . . , vk .

Remark 4.3 For V = R3 the goniometric subscript angles αi j correspond to arcs
on the unit sphere whereas the goniometric superscript angles αi j correspond to the
usual dihedral angles of spherical trigonometry if gcos is taken as the conventional
cosine function. The goniometric angles αi are normally not considered in spherical
trigonometry; we call them normal arcs because, given v1, v2, v3 with covectors w1 =
v2 × v3, w2 = v3 × v1 and w3 = v1 × v2, the angle αi represents an arc connecting the
unit vector vi/‖ vi ‖ with a unit normal of the plane spanned by vj and vk . As will be
discussed later, the sign convention adopted in Definition 3.3 will lead to differences in
sign between our goniometric functions and the trigonometric functions usually used in
spherical trigonometry.

In the next theorem we essentially show that the goniometric angles and norms of
the covectors associated with an n-tuple of vectors are geometric invariants, where the
geometry is the one derived from the inner product.

Theorem 4.4 Let αi j , αi j and αi be the goniometric angles associated with an n-tuple
(v1, . . . , vn) of vectors. Then the angles αi j and αi j are invariant under arbitrary unitary
transformations whereas the angles αi are invariant under unitary transformations of
determinant 1.

Proof . Given the vectors v1, . . . , vn and their covectors wi = (−1)i−1 v1 × · · · × [vi] ×
· · · × vn and a unitary transformation T : V → V, we have to show that the vec-
tors v


i := Tvi yield the same goniometric angles as the original vectors vi . Clearly,
〈v


i , v

j 〉 = 〈Tvi, Tvj〉 = 〈vi, vj〉 for all i, j which shows that the subscript angles are

geometric invariants. Moreover, w

i = (−1)i−1v


1 ×· · ·× [v

i ]×· · ·×v


n = (det T)−1Twi

due to Proposition 3.2(f) which implies that 〈w

i , w


j 〉 = | det T|−2〈Twi, Twj〉 = 〈wi, wj〉
so that, in particular, lengths of covectors are preserved. Finally, also according to Propo-
sition 3.2(f), we have 〈v


i , w

i 〉 = 〈Tvi , (det T)−1Twi〉 = (det T)〈vi , wi〉. �

The following result generalizes the well-known trigonometric formulas for spherical
triangles.
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Theorem 4.5 Let v1, . . . , vn be linearly independent unit vectors and let (w1, . . . , wn)
be the corresponding set of covectors. Moreover, let G := G(v1, . . . , vn) = (gcos αi j)i, j
and H := G(w1/‖w1‖, . . . , wn/‖wn‖) = (gcos αi j)i, j . Then the following goniometric
formulas hold:

(a) gcos αi j √det Gii
√

det G j j = (−1)i+ j det G ji (cosine rule for superscript angles);

(b)

√
det H11√
det G11

=
√

det H22√
det G22

= · · · =
√

det Hnn√
det Gnn

(sine rule);

(c) gcos αi j
√

det Hii
√

det Hj j = (−1)i+ j det Hji (cosine rule for subscript angles);

(d) gcos αi
√

det Gii = det(v1, . . . , vn) (normal arc equations).

Proof . If we let ri := (−1)i−1w̃1 × · · · × [w̃i] × · · · × w̃n where w̃i := wi/‖ wi ‖, then
Proposition 3.6(e) yields the equations

〈wi, wj〉 = (−1)i+ j det G ji (1)

and

〈ri, rj〉 = (−1)i+ j det Hji (2)

which will be used in the proof. Part (a) follows immediately from the equation gcosαi j =
〈wi,wj〉/(‖wi ‖‖wj ‖) by using Formula (1) and the fact that ‖ wi ‖=

√
det Gii for all

i which, in turn, follows from Formula (1) by choosing j = i. For part (b) we use
Proposition 3.4(d) to find that

‖ ri ‖ =
∥∥∥ w1

‖ w1 ‖ × · · · ×
[ wi

‖ wi ‖
]
× · · · × wn

‖ wn ‖

∥∥∥
=

‖ w1 × · · · × [wi] × · · · × wn ‖
‖ w1 ‖ · · · [‖ wi ‖] · · · ‖ wn ‖

=
| det(v1, . . . , vn)|n−2

‖ w1 ‖ · · · ‖ wn ‖ · ‖ wi ‖ ;

hence ‖ ri ‖ / ‖ wi ‖= ‖ rj ‖ / ‖ wj ‖ for all i, j. Now the claim follows from the
facts that ‖ wi ‖=

√
det Gii and ‖ ri ‖=

√
det Hii for all i. To prove part (c) we use

Proposition 3.4(b) and Equation (2) above to find that

gcos αi j =
〈vi , vj〉

‖ vi ‖‖ vj ‖
=

〈ri , rj〉
‖ ri ‖‖ rj ‖

=
(−1)i+ j det Hji√
det Hii

√
det Hj j

.

Finally, using Proposition 3.4(a) and Equation (1) above we find that det(v1, . . . , vn) =
〈vi, wi〉 =‖ wi ‖ gcos αi =

√
det Gii gcos αi , which is part (d). �

Remark 4.6 For n = 3 the cosine rule for superscript angles gives rise to the formulas

gcos α12 gsin α13 gsin α23 = − gcos α12 + gcos α13 gcos α32 ,

gcos α13 gsin α12 gsin α23 = + gcos α12 gcos α23 − gcos α13 ,

gcos α23 gsin α13 gsin α12 = − gcos α23 + gcos α21 gcos α13 ,

(
)
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while the cosine rule for subscript angles yields exactly the same formulas with su-
perscript and subscript angles exchanged. To compare these equations with the usual
formulas of spherical trigonometry we note that, in view of our sign conventions in
Definition 3.3, the trigonometric dihedral angles βi j differ from the corresponding go-
niometric angles αi j in such a way that gcos αi j = − cos βi j . Using the conventional
cosine function as our goniometric cosine, this means that βi j = π − αi j for all indices
i, j. As a consequence, the above equations are the same as the ones used in spherical
trigonometry. The same holds true for the sine rule, which takes the form

gsin α12

gsin α12
=

gsin α13

gsin α13
=

gsin α23

gsin α23
.

The normal arc equations are best considered in connection with the sine rule; they yield
the formulas

gcos α1

gcos α2
=

gsin α13

gsin α23
=

gsin α13

gsin α23
and

gcos α1

gcos α3
=

gsin α12

gsin α23
=

gsin α12

gsin α23
.

We also remark that – contrary to conventional wisdom – spherical trigonometry over R

defined by the usual cosine and sine rules applies to angles between 0 and 2π, as is clearly
stated by Darboux ([4], Book 2, pp. 203–208). This feature of spherical trigonometry
is not inherent to the rules (
). It is, however, possible to derive spherical trigonometry
from goniometry for n = 3 over R by consistently endowing selected goniometric
function values in the goniometric sine and cosine rules with minus signs. Such sign
endowments are possible as long as we maintain equation integrity with respect to the
original equations (in which all gsines are bound to be positive). Keeping the signs
of gcos α12, gcos α13, gcos α23 fixed, all signs of other goniometric functions can be
selected within the limits set by the cosine rule for superscript angles on the one hand,
implying sign{gcos αi j gsin αi k gsin α j k} = fixed, and by the sine rule on the other hand,
namely sign{gsin α12/ gsin α12} = sign{gsin α13/ gsin α13} = sign{gsin α23/ gsin α23}.
One can check that in the 16 possible valid sign combinations the integrity of the cosine
rule for subscript angles remains unaffected each time. As an arbitrary example we select
gsin α12 < 0 and gsin α12 > 0, which still leaves four possibilities to satisfy the sine rule.
We select, again arbitrarily, gsin α13 > 0 and gsin α23 > 0; the remaining two gsines are
then negative. Hence, the sign of the left-hand side of the cosine rule just given is kept
constant by leaving gcos α12 as it is, and replacing gcos α13 and gcos α23 by − gcos α13

and − gcos α23, respectively.

5 Goniometric families and constellations
In this section we present the goniometric facts on which our approach to the above
attitude determination problem will be based. Our driving theme is the translation of
statements about geometric directions from the language of vectors into the language
of angles and vice versa. Specifically, we propose certain minimal sets of goniometric
angles as particularly suitable data to parametrize sets of direction vectors modulo unitary
transformations.
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Definition 5.1 Let V be an inner product space. A frame of order k (or simply k -frame)
in V is a k -tuple (v1, . . . , vk ) of unit vectors in V. The rank r of such a frame is the
dimension of the vector space spanned by v1, . . . , vk , and any r of these vectors which
are linearly independent are said to form a skeleton of the frame. A constellation of
order k in V is an equivalence class of k -frames where two frames (v1, . . . , vk ) and
(v′

1, . . . , v′
k ) are declared to be equivalent if there is a unitary transformation T : V → V

such that Tvi = v′
i for 1 ≤ i ≤ k . If V is oriented then an oriented constellation of order

k in V is an equivalence class of k -frames in V where two such frames (v1, . . . , vk ) and
(v′

1, . . . , v′
k ) are declared to be equivalent if there is a unitary transformation T : V → V

of determinant 1 such that Tvi = v′
i for 1 ≤ i ≤ k . If � is the (oriented) constellation

of a frame F , then F is said to represent or to underly �. The rank of a constellation or
an oriented constellation is the rank of any of its underlying frames.

Note that for r < n the notions of constellations and oriented constellations coincide,
as any unitary transformation defined on a proper subspace of V can be extended to a
unitary transformation of all of V having determinant 1. Hence the concept of oriented
constellations makes sense only for sets of unit directions which have full rank.

v1

v2

v3

v4

v1

v2

v3

v4

Fig. 2 Two 4-tuples of directions in R
3 which represent the same constellation but different oriented con-

stellations

Definition 5.2 A collection � of k(k −1)/2 angles αi j (with 1 ≤ i < j ≤ k ) is called a
goniometric family of rank r and order k for a goniometric space V if there is a k -tuple
of unit vectors (v1, . . . , vk ) of rank r in V such that gcos αi j = 〈vi, vj〉 for all i < j. We
say that � is a goniometric family for the k -tuple (v1, . . . , vk ) and that this k -tuple is
underlying the goniometric family �.

It will be convenient to also use the angles αi j where i ≥ j, which are given by
gcos αi j = gcos α ji and gcos αii = 1. Note that we defined goniometric families in terms
of subscript angles. We could have chosen superscript angles as well, as the cosine rules
assure us that we can determine the subscript angles of a family of unit vectors from
their superscript angles and vice versa. It would also be possible to deal with goniometric
families in which one subscript angle is replaced by the corresponding superscript angle
and vice versa, but no good use can be made of “mixed” goniometric families (consisting
of both subscript and superscript angles) in reasonable generality. Moreover, in view of
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the application we have in mind, the use of subscript angles is the most natural choice.
We first show that there is a simple criterion to establish whether or not a family of
angles is a goniometric family.

Theorem 5.3 A family � = {αi j | 1 ≤ i < j ≤ k} of k(k−1)/2 angles is a goniometric
family of rank r if and only if the matrix

C :=


1 gcos α12 · · · gcos α1k

gcos α12 1 · · · gcos α2k
...

...
. . .

...
gcos α1k gcos α2k · · · 1


(which we call the characteristic matrix of �) is positive semidefinite and has rank r.

Proof . This is a basic textbook fact about Gram matrices; see [9], Theorem 7.2.10 and
Corollary 7.2.11. �

Next we establish that a goniometric family uniquely determines the underlying frame
modulo a unitary transformation. (This is not very surprising from a geometric point of
view, because a frame with all angles specified can be visualized as a rigid body, and
unitary transformations represent rigid motions.) As a consequence, goniometric families
can serve as data which unambiguously characterize constellations.

Theorem 5.4 Two frames (of the same order) in an inner product space V underly the
same goniometric family if and only if they represent the same constellation.

Proof . Let (u1, . . . , uk ) and (w1, . . . , wk ) be the two frames in question and represent
all ui’s and wi’s in coordinates with respect to an arbitrary orthonormal basis of V.
Denoting by U = (u1 | · · · | uk ) ∈ Kn×k and W = (w1 | · · · | wk) ∈ Kn×k the matrices
whose columns are these coordinate representations, the statement of the theorem is that
U
U = W 
W if and only if there is a unitary matrix T ∈ Kn×n such that W = TU.
Clearly, if such a T exists then W 
W = U
T
TU = U
U. Assume conversely that
W 
W = U
U; then r := rank U = rank U
U = rank W 
W = rank W . After re-
indexing we may assume that (u1, . . . , ur) forms a skeleton of (u1, . . . , uk ). Write U =
(U1 | U2) and W = (W1 | W2) where U1, W1 ∈ Kn×r and U2, W2 ∈ Kn×(k−r). Each
vector u� with � > r can be uniquely written as u� = λ

(�)
1 u1+· · ·+λ

(�)
r ur. These equations

can be combined to the matrix equation U2 = U1Λ where Λ := (λ(�)
i )1≤i≤r, r+1≤�≤k . Then[

U

1 U1 U


1 U1Λ
Λ
U


1 U1 Λ
U

1 U1Λ

]
= U
U = W 
W =

[
W 


1 W1 W 

1 W2

W 

2 W1 W 


2 W2

]
which implies that W 


1 W1 = U

1 U1 and hence rank W1 = rank W 


1 W1 = rank U

1 U1 =

rank U1 = r. This shows that (w1, . . . , wr) forms a skeleton of (w1, . . . , wk ). Hence,
in analogy to the decomposition U1 = U1Λ, there is a decomposition W1 = W1Σ for
some Σ ∈ Kr×(k−r). But then (U


1 U1)Λ = W 

1 W2 = W 


1 W1Σ = (U

1 U1)Σ and thus

Σ = Λ. (This is just a slick way of saying that the vectors wr+1, . . . , wk form the same
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linear combinations in terms of w1, . . . , wr as the ones which vr+1, . . . , vk form in terms
of v1, . . . , vr.) Now apply the Gram-Schmidt orthonormalization procedure to both U1

and W1; this yields decompositions U1 = P0R and W1 = Q0R where P0, Q0 ∈ Kn×r

have orthonormal columns and where R ∈ Kr×r is upper triangular. (The same matrix
R occurs in both equations because the entries of R are obtained in the course of the
Gram-Schmidt procedure by computing certain inner products which, by hypothesis, are
the same for the ui’s and the wi’s.) Extend P0 and Q0 to unitary matrices P, Q ∈ Kn×n

in any way you wish and let T := QP−1 = QP
; then TU = (QP
)(P0R | P0RΛ) =
(Q0R | Q0RΛ) = W . �

The basic fact expressed in Theorem 5.4 has a long history and many interesting ap-
plications. (See Theorem 3.1 in [10]; this paper also gives a historical survey and a
bibliography.) Some further analysis of the proof is necessary to examine how many
(and which) of the entries of U
U (i.e., which goniometric angles) are necessary to
reconstruct U up to unitary transformations. First, we have

Λ = (U

1 U1)−1U


1 U2 =

 1 · · · gcos α1r
...

. . .
...

gcos α1r · · · 1


−1  gcos α1,r+1 · · · gcos α1k

...
...

gcos αr,r+1 · · · gcos αrk


which, as is implied by Cramer’s Rule, means that we have representations

λ
(�)
j =

d1 j gcos α1� + · · · + drj gcos αr�

d
(3)

where d is the determinant of the coefficient matrix and where di j is a polynomial of
first degree in each of those expressions gcos αpq and gcos αpq with 1 ≤ p < q ≤ r for
which p �= i and q �= j. Next, the equation U


2 U2 = Λ
U

1 U1Λ = U


2 U1(U

1 U1)−1U


1 U2

yields gcos α�1�2 =
∑r

i, j=1 λ
(�1)
i λ

(�2)
j gcos αi j for �1, �2 > r which, after plugging in (3)

and multiplying by dd, reads

dd · gcos α�1�2 =
r∑

i, j,p,q=1

dpi dqj gcos αp�1 gcos αq�2 gcos αi j (�1, �2 > r) . (4)

Thus the angles αi j with 1 ≤ i < j ≤ r and the angles αm� with 1 ≤ m ≤ r and � > r
determine already all the other angles. However, these angles are not independent; a
relation between them is found by letting �1 = �2 =: � in (4), which yields

dd =
r∑

i, j,p,q=1

dpi dqj gcos αp� gcos αq� gcos αi j (� > r) ; (5)

this equation can be solved for any of the terms gcos αρ� for any fixed choice ρ = ρ(�).
Note that both sides of (4) depend linearly on each of the occurring goniometric cosines
and conjugate geometric cosines, so that the equation can be unambiguously solved for
each of these terms. On the other hand, solving (5) for the expressions gcos αρ� requires
the extraction of square roots. To interpret these results, we introduce the following
terminology. (We refer to [11], pp. 151–152 for the concept of algebraic dependence.)
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Definition 5.5 Let � be a goniometric family. For any element α ∈ � and any subset
S ⊆ � we write α � S (read “α depends on S”) if gcos α and gcos α are algebraically
dependent over Q on {gcos s, gcos s | s ∈ S}, where each of the elements gcos s and
gcos s is considered as an indeterminate, i.e., a transcendental over Q. A subset S ⊆ �
is called

(a) independent if no element α ∈ S depends on S \ {α};
(b) generating if every element α ∈ � depends on S;
(c) a basis if it is both independent and generating.

It is readily checked that, given a goniometric family �, the relation � is a depen-
dence relation in the general sense of Jacobson (see [11], p. 153), which means that the
following axioms are satisfied:

(1) if α ∈ S then α � S;
(2) if α � S then α � S0 for some finite subset S0 ⊆ S;
(3) if α � S and s � T for each s ∈ S then α � T;
(4) if α � S and α �� S \ {s0} then s0 � (S \ {s0}) ∪ {α} (exchange axiom).

Therefore ([11], p. 154), a basis of � necessarily exists (as a basis is the same as
a maximal independent subset or a minimal generating subset where maximality and
minimality refer to set-theoretical inclusion), and any two bases have the same cardinality
(which is just the maximal number of independent angles in �). We are now going to
calculate this number.

Theorem 5.6 The maximal number of independent angles within a goniometric family
� = {αi j | 1 ≤ i < j ≤ k} of rank r is

Σ(k , r) := r(r − 1)/2 + (r − 1)(k − r) = (r − 1)(2k − r)/2 .

More precisely, if the angles are indexed in such a way that the matrix (gcos αi j)1≤i, j≤r

has maximal rank r as a submatrix of (gcos αi j)1≤i, j≤k and if we choose for each � > r
an arbitrary element ρ(�) ∈ {1, . . . , r}, then the set S := {αi j | 1 ≤ i < j ≤ r}∪{α�m |
� > r, 1 ≤ m ≤ r, m �= ρ(�)} is a maximal independent subset of �.

Proof . The discussion leading up to Definition 5.5 shows that S is a generating subset
of �. To prove that, on the other hand, S is also independent we show that for an
arbitrary prescription of the angles in S (with the only restriction that these angles
qualify at all as goniometric angles) an underlying frame can indeed be constructed.
The construction, which can be seen as a Gram-Schmidt procedure in reverse, consists
in choosing arbitrary elements ε1, . . . , εk ∈ U = {ε ∈ K | |ε| = 1} and letting vm :=(

f (m)
1 , . . . , f (m)

m , 0, . . . , 0
)T ∈ Kr for 1 ≤ m ≤ r where

f (1)
1 := ε1 ; f (m)

� :=

(
gcos α�m −

�−1∑
i=1

f (�)
i f (m)

i

)
/ f (�)

� (1 ≤ � ≤ m−1) ,

f (m)
m := εm

√√√√1 −
m−1∑
i=1

| f (m)
i |2 .

(
)
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Next, for � > r, we choose ρ(�) := r for simplicity and define v� :=
(

f (�)
1 , . . . , f (�)

r
)T ∈

Kr where

f (�)
m :=

gcos αm� −
∑m−1

i=1 f (m)
i f (�)

i

f (m)
m

(1 ≤ m ≤ r−1) , f (�)
r := ε�

√√√√1 −
r−1∑
i=1

| f (�)
i |2 . (

)

�

Comment 5.7 As a consequence of Theorem 5.4, any choices for ε1, . . . , εr ∈ U in
step (
) will result in frames (v1, . . . , vr) which represent the same constellation; thus
there is no ambiguity in constructing the skeleton of a constellation, and we may as well
choose εi := 1 for 1 ≤ i ≤ r. This can be interpreted geometrically by saying that as
long as there is a free dimension in which the next unit vector to be constructed can
move, all possible choices for this unit vector are equivalent.

For all steps in (

) except for the last one there was no choice; to ensure that gcos αm� =
〈vm, v�〉 we had to choose f (�)

m the way we did. The last entry must be chosen to make
v� into a unit vector, and this determines the last entry up to an element ε� ∈ U, but here
different choices for ε� lead to inequivalent frames, i.e., different constellations. Hence
once a skeleton is constructed, each new unit vector to be added is only determined up
to a factor of absolute value 1. For K = R and n = 3 this can be easily visualized: given
a skeleton (v1, v2, v3), the specification of α14 and α24 forces v4 to lie in the intersection
of two cones around v1 and v2, which generically consists of two different rays.

The fact that a maximal independent subset of goniometric angles does not fully de-
termine a constellation causes no problem for our application to attitude determination,
because for K = R the unit group U = {±1} consists of only two elements, which
implies that a maximal independent set of goniometric angles determines a constellation
up to a finite number of ambiguities which can easily be dealt with.

Example 5.8 Consider the example in R3 depicted in Fig. 3 in which the angles α12,
α13, α23, α24 and α34 are given. Two different values for α14 are possible; choosing one
of them fixes the constellation up to an orthogonal transformation.

The following remark puts Theorem 5.6 into a more general perspective by interpreting
the above result in terms of differential geometry in the case K = R.

Remark 5.9 Let K = R. Given an r-dimensional subspace U ⊆ V, we denote by
SU := {v ∈ U |‖ v ‖= 1} the unit sphere in U (which is an embedded submanifold of
dimension r−1). Then MU := {(v1, . . . , vk ) | vi ∈ U, ‖ vi ‖= 1, rank (v1, . . . , vk ) = r}
⊆ V × · · · × V is an open submanifold of the k -fold product of SU with itself, hence is
an embedded submanifold of dimension k(r − 1). Let O(V) be the orthogonal group of
V. The group GU := {g ∈ O(V) | g ≡ 1 on U⊥}

(
which can be identified with O(U)

and hence is a Lie group of dimension r(r − 1)/2
)

acts on MU via T 
 (v1, . . . , vk ) :=
(Tv1, . . . , Tvk ). Since GU is compact, this action is automatically proper; moreover, it is
obvious that no element T �= 1 in GU has a fixed point, which means that the action of
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v1
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v3

v4
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v2
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24α

34α

12α

13α

23α

24α

34α

Fig. 3 The two different constellations determined by the angles α12, α13, α23, α24 and α34

GU on MU is free. Therefore ([7], p. 32, Thm. 1.95) the quotient space MU/GU (which is
nothing but the space of all constellations which can be realized by vectors in U) carries
a natural manifold structure for which the canonical projection π : MU → MU/GU is a
submersion. The dimension of MU/GU is

dim(MU/GU) = dim MU − dim GU = k(r − 1) − r(r − 1)
2

=
1
2
(r − 1)(2k − r) .

What Theorem 5.6 essentially does is identify a subset of goniometric angles which can
be used as local coordinates to parametrize the manifold MU/GU.

For the application we have in mind it will be important to find out how many supple-
mentary angles are needed to determine a constellation from two subconstellations; this
will be done in the next theorem.

Theorem 5.10 Let (v1, . . . , vk ) and (u1, . . . , u�) be two families of unit vectors in V.
Assume that rank (v1, . . . , vk ) = r1 and rank (u1, . . . , u�) = r2. Given maximal inde-
pendent sets of goniometric angles for the two families separately, one has to add an
additional number of

(r1 + r2)(r3 − 1) −
3∑

i=1

ri(ri − 1)/2

angles to obtain a maximal independent set of goniometric angles for the (k + �)-tuple
(v1, . . . , vk , u1, . . . , u�), whose rank is denoted by r3.

Proof . The number of additional angles required is Σ(r1 + r2, r3)−Σ(r1, r1)−Σ(r2, r2)
which, in view of Theorem 5.6, equals (r1 + r2)(r3 − 1) −

∑3
i=1 ri(ri − 1)/2. �

Up to this point orientations have played no role in our discussion. However, as alert
readers may have expected, we did not include the definition of an oriented constellation
in Definition 5.1 for no reason. The reason is that the result of a spacecraft attitude
determination is usually not only a constellation, but an oriented constellation. A typical
situation is described in the following remark.
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Remark 5.11 Consider a spin-stabilized spacecraft whose spin-axis direction is repre-
sented by a unit vector N. Optical sensors mounted on such a spacecraft measure the
angles θ and β between the spin-axis and the sun direction S on the one hand and
between the spin-axis and the earth direction E (also called nadir) on the other hand (so
that 〈S, N〉 = cos θ and 〈E, N〉 = cos β). The vectors S and E are known in inertial
space; consequently, the angle γ defined by 〈S, E〉 = cos γ is also known. The triangle
formed by N, S and E (thought of as points on the unit sphere) is then fully determined
by the three arcs θ, β and γ. However, there are two possible unit vectors N which are
consistent with these arcs, which can be distinguished by the sign of the determinant
of the triplet (S, E, N). From the early 1970s on, sensor systems have been upgraded
as to also measure the dihedral angle α indicated in Fig. 4 below. (We refer to [17],
Chapter 10 for general background and to [13], Section 2.1 for one of the earlier im-
plementations on a satellite launched in November 1972.) Knowing α provides us with
sin α sin θ sin β = 〈S × E, N〉 = det(S, E, N), thus lifting the ambiguity by fixing the
determinant of the triplet (S, E, N). The expression sin α sin θ sin β (which has no im-
mediate physical significance and can be measured only indirectly) is a typical example
for the right-hand side of a normal arc equation.

S

E

N

β

γ

α

θ

Fig. 4 Representation of spin axis direction N, sun direction S and nadir E on the unit sphere

We now show that a goniometric family needs to be augmented by a single normal
arc in order to unambiguously represent an oriented constellation. The specification of
such a normal arc is equivalent to specifying the determinant of a basis of unit vectors
underlying the given goniometric family.

Definition 5.12 A normal goniometric family is a family of angles of the form �∪{α∗}
where � is a goniometric family and where α∗ is a normal arc associated with a family
of maximal rank within �.

Theorem 5.13 Two k -tuples (v1, . . . , vk ) ∈ Vk and (v′
1, . . . , v′

k ) ∈ Vk of unit vectors
of full rank n are underlying the same normal goniometric family if and only if they
represent the same oriented constellation.
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Proof . After re-indexing we may assume that (v1, . . . , vn) is a basis of V. In view of
Theorem 5.4, we only have to show that the unique unitary transformation T : V → V
satisfying Tvi = v′

i for 1 ≤ i ≤ n preserves one normal arc (hence all normal arcs) if
and only if det T = 1. Now v′

i = Tvi for all i implies u′
i = Tui for all i and hence w′

i =
det(v′

1, . . . , v′
n)u

′
i = det(Tv1, . . . , Tvn) Tui = (det T) det(v1, . . . , vn) Tui = (det T)Twi

which is easily seen to imply gcos α′
i = (det T) gcos αi . This gives the claim. �

6 Application to attitude determination

We now return to the situation described in Section 2. The GPS-directions form a k -tuple
(v1, . . . , vk ) which can be assumed to have the full rank 3, as there are usually enough
GPS satellites whose signals can be received by the host spacecraft at any time. The �
unit vectors representing the baselines are known in the body reference system of the
host satellite, but not in the reference system in which the directions vi are given. The
rank r of the �-tuple (u1, . . . , u�) can be 1, 2 or 3, because the number of antennas on
board is normally limited. What is unknown is the link between the k -tuple and the
�-tuple which, according to Theorem 5.10, requires a number of supplementary angles
which is given by

2r − r(r − 1)
2

=

{
2 if r = 1,
3 if r = 2,
3 if r = 3.

Now let us explain our approach by means of the example depicted in Fig. 5. (We ignore
all technicalities and refer to [6] for details.)

12v1

v2

v3

α

13α 23α

1β

1β

2β

2β

3β

3β

( )a

( )a

( )b

u

( )bu

Fig. 5 Typical situation in which the proposed attitude determination algorithm can be applied.

We assume just one baseline u1 (so that r = � = 1) and four GPS directions v1, . . . , v4

also called Lines Of Sight (LOS). To simplify the notation we write U := U1, v5 := u1

and also mi := mi1 and Φi := Φi1 for 1 ≤ i ≤ 4; then the measurement equations read

U cos αi5 = Φi + miλ (where 1 ≤ i ≤ 4) .
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Since the measurements Φi take values in the interval [0, λ), this yields the estimates
−(1 + U/λ) < mi ≤ U/λ. (With the typical values of 1 m for U and 19 cm for λ
this means mi ∈ {−6, . . . , 5} for 1 ≤ i ≤ 4.) All angles α15, . . . , α45 are unknown, but,
in accordance with Theorem 5.10, any two of them determine the others up to a single
ambiguity. For example, if α15 and α25 are known, then the cosine rule for subscript
angles implies

cos αi5 − cos α1i cos α15

sin α1i sin α15
= cos αi5

(1) = ± cos αi5
(2) = ±cos αi5 − cos α2i cos α25

sin α2i sin α25

for i = 3, 4, where the sign ambiguity occurring in the calculation of cos αi5 arises
from the fact that (v1, v5, vi) and (v2, v5, vi) may or may not have the same orientation.
Solving for cos αi5 yields

cos αi5 =
sin α1i cos α2i sin α15 cos α25 ∓ cos α1i sin α2i cos α15 sin α25

sin α1i sin α15 ∓ sin α2i sin α25
,

which gives two potential values for the angle αi5. It is thus sufficient to go through the
combinations of m1 (outer loop) and m2 (inner loop) only. For each combination we can
compute the two potential values of the angle α35 and check for each whether it fits into
the measurement equation for the phase difference Φ3 with a valid integer (or a number
very close to an integer, allowing for measurement errors). If the fit is satisfactory, the
same can be verified for Φ4. If no (near) integer is found one proceeds to the next
combination of m1 and m2. In the absence of outlier measurements one arrives at the
result after all combinations of m1 and m2 have been searched, which amounts to a
maximum of 144 cases for the typical configuration of a baseline length of 1 m and a
signal wavelength of 19 cm. Due to measurement errors one can end up with more than
one potential solution, just as with vector-based methods. This can be easily resolved if
there is more than one baseline, for then solutions can be obtained for every baseline
separately, and these solutions can be tested against the known angles amongst the
baselines. Let us now compare our method with the brute-force vector approach which
is typically used. Writing the known GPS-directions in the form vi = (xi, yi, zi)T and the
unknown base-line direction in the form u = (x, y, z)T , the measurement equations take
the form xix +yiy+ziz−miλ/U = Φi/U where 1 ≤ i ≤ 4. Typically, one goes through
all 124 = 20736 possible choices for (m1, m2, m3, m4), solves for each such choice the
overdetermined system


x1 y1 z1

x2 y2 z2

x3 y3 z3

x4 y4 z4


 x

y
z

 =


(Φ1 + m1λ)/U
(Φ2 + m2λ)/U
(Φ3 + m3λ)/U
(Φ4 + m4λ)/U


in the least-squares sense and checks each time whether or not the solution vector
(x, y, z)T thus obtained is a unit vector. Despite certain possible simplifications, too
technical to be described here, this is a terribly inefficient algorithm. A more sensible
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approach would be to go through all possible choices for (m2, m3, m4), solve for each
such choice the system

x1 y1 z1 −λ/U
x2 y2 z2 0
x3 y3 z3 0
x4 y4 z4 0




x
y
z

m1

 =


Φ1/U

(Φ2 + m2λ)/U
(Φ3 + m3λ)/U
(Φ4 + m4λ)/U


and check whether the solution satisfies the conditions x2+y2+z2 = 1 and m1 ∈ Z; how-
ever, this still means going through 123 = 1728 possible cases. Thus the typically used
vector-based approaches are seen to be very inefficient, even in this simplified example.
In general, the computing time of our goniometric approach is negligible compared to
the computing time of vector-based methods. We emphasize that the superiority of our
solution to existing ones stems from the treatment of directions not as vectors, but as
entities in their own right.
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