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1 Introduction

A set S of positive integers is said to have a Diophantine property, and called a Dio-
phantine set, if xy + 1 is a perfect square for any x �= y ∈ S. The task of finding
integer Diophantine quadruples {a, b, c, d}, where a < b < c < d, involves several open
problems.

An integer Diophantine quadruple {a, b, c, d} is called regular if (a + b − c − d)2 =
4(ab + 1)(cd + 1). No non-regular Diophantine quadruple has been found, and it has
been conjectured that all Diophantine quadruples are regular.

In this paper we solve the following problem:

Problem. Characterize the regular Diophantine quadruples of the form {1, b, c, d}, with
positive integers 1 < b < c < d, and give an algorithm for constructing them.

.

Das Lösen diophantischer Probleme stellt immer eine besondere Herausforderung dar.
So verhält es sich zum Beipsiel auch mit der Frage nach dem Auffinden sogenannter
diophantischer Mengen. Dies sind Mengen S natürlicher Zahlen mit der Eigenschaft,
dass x · y + 1 für alle x, y ∈ S, x �= y, eine Quadratzahl ist. Soll S jeweils nur
zwei natürliche Zahlen enthalten, so erkennen wir beispielsweise sofort die Paare {n−
1,n + 1}, wobei n eine positive natürliche Zahl ist, als zweielementige diophantische
Mengen. Im nachfolgenden Beitrag erhalten wir nun Auskunft über das Auffinden
diophantischer Mengen, welche jeweils aus vier Elementen bestehen sollen. jk
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2 A brief historical account
The Diophantine problem was originally posed by Diophantus (3rd century [3]) and
reads: find four rational numbers {r1, r2, r3, r4} such that rirj+1 is the square of a rational
number for any 1 ≤ i �= j ≤ 4. Diophantus provided the example { 1

16 ,
33
16 ,

17
4 ,

105
16 }.

Fermat (17th century) dealt with integer Diophantine quadruples. He asked whether
a fifth integer can be added to the Diophantine quadruple {1, 3, 8, 120} and make it
a Diophantine 5-tuple. The answer to this problem is still unknown. Furthermore, no
Diophantine 5-tuple has ever been found, and nobody has proved that such 5-tuples do
not exist. On the other hand, it is known that there are infinitely many Diophantine
quadruples, and it was probably Euler (18th century) who first demonstrated this by
looking at the family of quadruples

{a, b, a + b + 2
√

ab + 1, 4(a +
√

ab + 1)(b +
√

ab + 1)
√

ab + 1} (1)

for a and b such that ab + 1 is a perfect square. Special cases of Euler’s solution yield
several interesting infinite sub-families of Diophantine quadruples. Two examples are

{F2n,F2n+2,F2n+4, 4F2n+1F2n+2F2n+3} (2)

where Fn (F1 = F2 = 1) denotes the n-th Fibonacci number (see [5]), and the infinite
family {n,n + 2, 4n + 4, 4(n + 1)(2n + 1)(2n + 3)}.

It is interesting to point out that although there are infinitely many Diophantine quadru-
ples, no algorithm for generating all of them has been found. For more details see
[13, 4].

Upgrading a Diophantine triplet

The problem of upgrading a Diophantine triplet deals with searching (all the) integers
d that can be added to a given Diophantine triplet {a, b, c} (a < b < c) and make it a
Diophantine quadruple with a < b < c < d. This problem is still unsolved, and only a
few partial results, on which we report here, have been established.

Upgrading a triplet is always possible. Upgrading a given Diophantine triplet {a, b, c}
is always possible. One way, proposed by Montgomery (see [4]), is to choose

d = d+ = a + b + c + 2abc + 2
√

(ab + 1)(ac + 1)(bc + 1) > c . (3)

Note that the value d− = a + b + c + 2abc − 2
√

(ab + 1)(ac + 1)(bc + 1) also gives
a Diophantine quadruple but d− < c. Although it has not been proved that d+ is the
only upgrading possibility, nobody has found a quadruple for which a < b < c < d and
d �= d+.

Unique upgrading. There are only few examples where a certain value of d can be
shown to be the only possible upgrading value.

Davenport and Baker (1969, [2]) proved that 120 is the only integer that upgrades the
triplet {1, 3, 8}. The proof of this result is not elementary. The problem can be reduced
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to finding a solution to the system of Pell equations 3x2 − 2 = y2, and 8x2 − 7 = z2.
Using Baker’s theorem on linear forms in the logarithms of algebraic numbers, it can be
shown that this system has only finitely many solutions, an upper bound can be fixed,
and numerical verification shows that 120 is the only one greater than 8.

Analogously, Veluppillai (1980, [11]) showed that 420 is the only fourth integer that
upgrades the Diophantine triplet {2, 4, 12}. This was done by reducing the problem to
that of solving the system of Pell equations z2 − 3y2 = −2, z2 − 6x2 = −5.

The problem of regular Diophantine quadruples

A quadruple of integers {a, b, c, d} is called regular if it satisfies the quadratic relation
(a + b − c − d)2 = 4(ab + 1)(cd + 1). Such quadruples turn out to have various special
properties (see [13, 4]).

Gibbs [4] proved that the value d+ in (3) is the only fourth integer that upgrades the
Diophantine triplet {a, b, c} to a regular Diophantine quadruple.

A non-regular quadruple has never been found and Gibbs, Arkin, Hoggatt and Strauss
conjectured that all the Diophantine quadruples are regular (see [4]). This conjecture is
still open.

In this paper we solve the problem of finding all regular Diophantine quadruples of the
form {1, b, c, d}, where 1 < b < c < d. We characterize quadruples and provide two
algorithms for generating all of them.

We shall use hereafter some well-known facts about Pell equations. To make the
paper self contained, we provide a brief summary of facts, concerning the unit Pell
equation, in the Appendix. We also include a paragraph describing how the general
case can be treated when solutions exist.

3 An infinite family of regular Diophantine quadruples
We start with constructing one infinite family of regular Diophantine quadruples of the
form {1, b, c, d}, where 1 < b < c < d.

We write b = m2 − 1 for some 2 ≤ m ∈ N. To generate the next number, c, we observe
that c must be of the form c = t2 − 1 for some t = tm = t(m) such that 3 ≤ tm ∈ N
(t ≥ 3 because for t = 2 we have b > c). Further, we must have

(m2 − 1)(t2 − 1) = s2 − 1 (4)

for some s = sm = s(m) such that 5 ≤ s ∈ N. Rearranging (4), we obtain the following
Pell equation for the unknowns t and s

s2 − (m2 − 1)t2 = 2 − m2 . (5)

For any choice of m, Equation (5) has infinitely many positive integer solutions, and our
goal is to find all of them. We start with finding one family of positive integer solutions,
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which we denote by tm,n and sm,n, n = 0, 1, 2, . . . where the smallest one in the chain is
sm,0 = tm,0 = 1. To find tm,n and sm,n, we first solve the related unit Pell equation

u2 − (m2 − 1)v2 = 1 . (6)

The smallest positive integer solution of (6) is u = m, v = 1. Therefore, all of its positive
integer solutions are obtained as the rational and irrational coefficients of the expansion
(m +

√
m2 − 1)n, for n = 1, 2, . . . Consequently, an infinite family of solutions to (5) is

generated by the rational and irrational coefficients of the expansion

sm,n +
√

m2 − 1tm,n = (1 +
√

m2 − 1)(m +
√

m2 − 1)n, n = 1, 2, . . . (7)

To compute this family explicitly, we write the recurrence relations

sm,n +
√

m2−1tm,n = (m +
√

m2−1)(sm,n−1 +
√

m2−1tm,n−1)

= msm,n−1 + (m2−1)tm,n−1 + (sm,n−1 + mtm,n−1)
√

m2−1
(8)

which lead to

tm,n = sm,n−1 + mtm,n−1, sm,n = msm,n−1 + (m2 − 1)tm,n−1 . (9)

After some algebraic manipulations this reduces to

tm,0 = 1, tm,1 = m + 1, tm,n = 2mtm,n−1 − tm,n−2 ,

sm,0 = 1, sm,1 = m2 + m − 1, sm,n = 2msm,n−1 − sm,n−2 .
(10)

The second order linear recurrence relation (10) yields the following explicit form of
tm,n

tm,n =
1

2
√

m2−1

(
(
√

m2−1 +1)(m +
√

m2−1)n + (
√

m2−1 −1)(m −
√

m2−1)n
)
.

(11)
From the latter result, we conclude that an infinite family of Diophantine quadruples of
the form {1, b, c, d}, sorted in ascending lexicographic order, can be generated by

{1, b, c, d} = {1,m2−1, tm,n
2−1,m2 + tm,n

2 + 2sm,n
2 + 2mtm,nsm,n−3}

= {1,m2−1, tm,n
2−1, (sm,n+mtm,n)2+sm,n

2−(m2−1)tmn
2+m2−3}.

(12)

Using (5), and (9), this solution can be summarized by

Result. A family of regular Diophantine quadruples of the form {1, b, c, d} is given by

{a, b, c, d} = {1,m2 − 1, tm,n
2 − 1, tm,n+1

2 − 1} (13)

where m ≥ 2 and n ≥ 1, and the values of tm,n are determined by (11).
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Remarks

A. Non Eulerian Diophantine quadruples. The infinite family (13) is not generated by
Euler’s solution (1). In fact, Euler’s solution is obtained if we substitute n = 1 in (13).

B. Other possible families emanating from 1. The family (13) is not the only infinite
family of regular Diophantine quadruples emanating from 1. The reason is that the Pell
equation (5) has other positive integer solutions in addition to the set (sm,n, tm,n) defined
above. For example, consider the case m = 3. We have a = 1, b = m2 − 1 = 8 and the
resulting Pell equation is

s2 − 8t2 = −7 . (14)

Equation (14) has two fundamental solutions, (1, 1) and (5, 2), and each of them gener-
ates a different infinite family of positive integer solutions, namely:

t3,n =
√

2
8

(
(1 +

√
8)(3 +

√
8)n + (−1 +

√
8)(3 −

√
8)n

)
(15)

which yields (1, 8, 15, 528), (1, 8, 528, 17955), . . ., and

u3,n =
1
8

(
(8 + 5

√
2)(3 +

√
8)n + (8 − 5

√
2)(3 −

√
8)n

)
(16)

which yields (1, 8, 120, 4095), (1, 8, 4095, 139128), . . .

In the next section we find all the positive solutions of (5).

4 Generating all the regular Diophantine quadruples emanating from 1
In order to generate all regular Diophantine quadruples emanating from 1, i.e., {1, b, c, d},
where 1 < b < c < d, we need to solve some non-unit Pell equations which, in our
case, have several infinite families of solutions. Lemma 1 shows how this general case
can be treated.

Lemma 1 Let L be an integer and d be a positive integer which is not a perfect square.
Consider the Pell equation

x2 − dy2 = L (17)

and the related unit Pell equation

x2 − dy2 = 1 . (18)

Suppose that (α1, β1) is the minimal positive integer solution of (17), and define P1 =
α1 +

√
dβ1. Let (µ1, ν1) be the minimal positive integer solution of (18) and define

S1 = µ1 +
√

dν1. Suppose that (α2, β2) is another integer solution of (17) such that
P2 = α2 +

√
dβ2 is not of the form P1S k

1 . Then, Equation (17) has an integer solution
(α∗, β∗) with S∗ = α∗ +

√
dβ∗, generating P2 and satisfying

P1 < S∗ < P1S1 . (19)
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The proof of Lemma 1 is given in the Appendix. Lemma 1 provides an algorithm for gen-
erating all the regular Diophantine quadruples of the form {1, b, c, d}, in a lexicographic
order, as detailed below.

Algorithm 1
Step 1: Using the solution (13), obtain an infinite family emanating from the fundamental
solution (1, 1) of the Pell equation (5). This gives P1 = 1 +

√
m2 − 1. Denote S1 = m +√

m2 − 1, and the resulting infinite family of solutions is therefore S1Pn
1 , n = 0, 1, 2, . . .

Step 2: Use Lemma 1 to search for other solutions. Any other family of solutions must
have one member, S2, that satisfies the inequality P1 < S2 < P1S1. This gives

1 +
√

m2 − 1 < α + β
√

m2 − 1 < m2 + m − 1 + (m + 1)
√

m2 − 1 (20)
where α, and β are positive integers. Therefore, all the solutions of (5) can be tracked
down by going over at most m − 1 cases, namely β = 2, 3, . . . ,m, and checking if α
is a positive integer. Each additional solution of (5) that emerges in this search yields
a new infinite family of solutions tm,n of (5), which provides a new set of Diophantine
quadruples defined by (13).

Example. In the above example where m = 3, we have P1 = 1 +
√

8 and S1 = 3 +
√

8.
To find other solutions, we need only to check the two cases β = 2, 3. Verification shows
that the only additional solution is generated by (5, 2), as explained in (16). Therefore
the solutions for m = 3 emanate only from the above two families.

Additional solutions

It is easy to verify that for any value of m ≥ 3, there are at least two fundamental
solutions, namely (1, 1), and (m − 1,m2 + m − 1). These give at least two infinite
families of solutions.
There exist values of m > 3 for which additional families appear. If m = k 2+(k+1)2−2
for some k , there are at least four fundamental solutions (1, 1), (m − 1,m2 − m − 1),
(k , 2k 3+2k 2−2k−1), (k+1, 2k 3+4k 2−1). The first such value is m = 11 = 22+32−2,
which has the fundamental solutions (1, 1), (2, 19), (3, 31), (10, 109). Further, there are
values of m which are not of the form m = k 2 +(k + 1)2 −2 but give four fundamental
solutions. The smallest such example is obtained for m = 41.

We point out that using Algorithm 1 for 1 ≤ m ≤ 20, 000 did not reveal any value of m
for which there are six or more fundamental solutions.

5 Characterizing the regular Diophantine quadruples emanating from 1
The solution proposed in the previous section is an O(m) complexity algorithm, but
the result depends on a number of numerical tests. Here, we provide a closed form
characterization. We start with the following lemma:

Lemma 2 Let {1, t2 − 1,m2 − 1} be a Diophantine triplet with 1 < t < m, and denote
(m2 − 1)(t2 − 1) = s2 − 1. Then, the following triplets are also Diophantine triplets:

{1, t2 − 1,(mt − s)2 − 1}, {1,m2 − 1,(mt − s)2 − 1},
{1, t2 − 1,(mt + s)2 − 1}, {1,m2 − 1,(mt + s)2 − 1} .

(21)

Further, we have mt − s < m < mt + s.
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{1,2}

{1,4} {3,4} {2,11} {3,11}

{2,3}{1,3}

{3,64} {11,64}{1,5} {4,5} {3,23} {4,23} {2,41} {11,41}

Fig. 1 Applying Algorithm 2.
Each couple generates two new couples (m, t) −→ (m,mt + s) and (t,mt + s).
Each couple (t,m) corresponds to the Diophantine triplet (1, t2 − 1,m2 − 1).

Proof. We only need to verify that if we multiply the second and third elements of the
above triplets, and add 1, we obtain a perfect square. Indeed,

(t2 − 1)((mt − s)2 − 1) + 1 =
(
ts − m(t2 − 1)

)2
,

(m2 − 1)((mt − s)2 − 1) + 1 =
(
ms − t(m2 − 1)

)2
,

(t2 − 1)((mt + s)2 − 1) + 1 =
(
ts + m(t2 − 1)

)2
,

(m2 − 1)((mt + s)2 − 1) + 1 =
(
ms + t(m2 − 1)

)2
.

(22)

Verifying that mt − s < m < mt + s is straightforward. This completes the proof of the
lemma. �

We now define a recursive algorithm for generating all Diophantine triplets of the form
{1, b, c}.

Algorithm 2 First, seek a method that gives all the generating couples {t,m} for which
{1, t2 − 1,m2 − 1} is a Diophantine triplet. The first couple (in lexicographic order) is
{1, 1} and the related Diophantine triplet is {1, 0, 0}. Using Lemma 2, obtain another
couple {1, 2} (note that we require m, t > 0). The triplet generated by {1, 2} is {1, 0, 3}.
The value of s in the couple is s = 1, and it follows from Lemma 2 that {1, 3} and
{2, 3} are also Diophantine couples. These generate the Diophantine triplets {1, 0, 8}
and {1, 3, 8}. Continue this recursive procedure to obtain two new couples (m,mt + s)
and (t,mt + s) from each couple (m, t). Upgrade each triplet to a regular Diophantine
quadruple using the value of d+ in (3).

Figure 1 illustrates the procedure of Algorithm 2.

We now prove the following theorem.

Theorem 1 Algorithm 2 generates all Diophantine triplets of the form {1, b, c}.

Proof. Suppose that this is not the case, and consider the minimal positive integer
m for which the Diophantine triplet {1, t2 − 1,m2 − 1}, with t < m, is not ob-
tained by the algorithm. From Lemma 2, it follows that {1, t2 − 1, (mt − s)2 − 1}
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is also a Diophantine triplet. Since mt − s < m, it follows from the definition of m
that the latter triplet is obtained by our algorithm. We now write m′ = mt − s, and
s′ =

√
(m′2 − 1)(t2 − 1) + 1 = ts − m(t2 − 1), and use our algorithm to produce the

triplet {1, t2 − 1, (m′t − s′)2 − 1}. But since we have

m′t − s′ = (mt − s)t − (ts − m(t2 − 1)) = m (23)

we obtain a contradiction. Consequently, the algorithm described above generates all the
diophantine triplets of the form {1, b, c}. �

6 Concluding remarks
Comparison between Algorithms 1 and 2. Although both Algorithms 1 and 2 give all
the regular Diophantine quadruples of the form {1, b, c, d}, they differ in two important
aspects: Algorithm 1 is a practical mean for generating a lexicographically sorted list of
the regular Diophantine quadruples, but depends on several manual verifications per step.
On the other hand, Algorithm 2 gives a recursive construction of all regular Diophantine
quadruples, and thus a closed form mathematical characterization. However, it yields an
unsorted list of results.

A note on general Diophantine quadruples. The technique we used for quadruples
of the form {1, b, c, d} does not apply to the general case, at least not directly. For
general quadruples {a, b, c, d}, we have b = m2−1

a , and c = t2−1
a for some positive

integers m, t with a |m2 − 1 and a | t2 − 1. Since bc + 1 = s2 for some s, we write
(m2 − 1)(t2 − 1) + a2 = a2s2. This yields

a2s2 − (m2 − 1)t2 = a2 + 1 − m2, s.t. a | l . (24)

It is easy to see that (s, t) = (1, 1) is a solution to (24). Unfortunately, the idea of
generating all the solutions of (24) by solving the related unit Pell does not work. Since
a | a2s2 − (m2 − 1)t2 = 1, the related unit Pell equation a2s2 − (m2 − 1)t2 = 1 has no
integer solutions if a �= 1.

Appendix: a quick review on Pell equations
We summarize here a few standard results concerning Pell equations. Additional infor-
mation can be found, for example, in the references [1, 3, 6, 8, 9, 10, 12].

The quadratic Diophantine equation in the unknowns x, y,

x2 − dy2 = L, (A.1)

where the positive integer d has no square factors, and L is an integer, is called Pell’s
equation. When L = 1, (A.1) is called a unit Pell equation (sometimes the unit Pell
equation is identified as Pell equation).
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The unit Pell equation

The unit Pell equation
x2 − dy2 = 1 (A.2)

has the trivial solution x = 1, y = 0, which we ignore hereafter. The case where d = µ2

(ruled out above) is a square admits no nontrivial solutions since it leads to x2−(µy)2 = 1
and the difference between two nonzero squares is greater than 1. Further, without loss
of generality, one can assume that d is square free because any square factor of d can
be absorbed into the unknown y.

We now associate each solution (p, q) of the unit Pell equation (A.2) with the number
p +

√
dq of the ring Z +

√
d Z , and treat these two representations interchangeably.

Since 1 = p2 − dq2 = (p +
√

dq)(p −
√

dq), it follows that the product and quotient
of two solutions of (A.2) is also a solution. Therefore, each solution (p, q) produces an
infinite family of solutions. This family can be found by observing that for any positive
integer n, (p2 − dq2)n = 1, and by factoring

(x +
√

dy)(x −
√

dy) = (p +
√

dq)n(p −
√

dq)n . (A.3)

This leads to the solutions

x +
√

dy = (p +
√

dq)n, x −
√

dy = (p −
√

dq)n, (A.4)

in the Z +
√

d Z ring representation, or in explicit notations

x =
1
2

(
(p + q

√
d)n + (p − q

√
d)n

)
y =

1

2
√

d

(
(p + q

√
d)n − (p − q

√
d)n

)
. (A.5)

Note that if the solution (p, q) is positive, then p+
√

dq > 1 and also 0 < p−
√

dq < 1. We
show now that if p0+

√
dq0 is the smallest positive solution of the unit Pell equation (A.2),

then all of the solutions are given by x+
√

dy = (p0+
√

dq0)n and x−
√

dy = (p0−
√

dq0)n

where n = 1, 2, . . . To prove this claim, suppose that the number g+
√

dh > 1 is a solution
of (A.2), and that it is not a power of (p0 +

√
dq0). We can therefore bound it between

two consecutive such powers, i.e.,

(p0 +
√

dq0)m < g +
√

dh < (p0 +
√

dq0)m+1 (A.6)

for some positive integer m. After multiplying (A.6) by (p0 −
√

dq0)−m, we get

1 < (p0 −
√

dq0)m(g +
√

dh) < (p0 +
√

dq0) . (A.7)

Since the product of two solutions of the unit Pell equation is also a solution, and from
(A.7) we have (p0 −

√
dq0)m(g +

√
dh) > 1, we obtained another positive solution

which is smaller than the presumably smallest positive solution p0 +
√

dq0. This is a
contradiction.
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From the above discussion we see that in order to solve the unit Pell equation completely,
one needs only to find the smallest positive solution. One can either guess this solution by
a trial and error process, or find it by computing the continued fraction [a0, a1, . . .] of

√
d.

We briefly describe the continued fraction method (which works also for the minus-unit
equation, i.e., L = −1 in (A.1)). Suppose that pn/qn is the n-th convergent [a0, a1, . . . , an]
of the continued fraction of

√
d. We seek a convergent satisfying p2

n − dq2
n = (−1)n+1.

This is possible since
√

d = [a0, a1, . . . , ar, 2a0] for some r, that is, the continued fraction
is periodic with ar+1 = 2a0. Suppose that pr/qr is the r-th convergent. If r is odd, then
(−1)r−1 > 0 and the smallest integer solution is x = pr and y = qr. If r is even, then
(−1)r−1 < 0 and p2

2r+1 − dq2
2r+1 = 1. Thus, the smallest integer solution is x = p2r+1,

y = q2r+1.

The general Pell equation

The general Pell equation (A.1) with L �= 1, may have several infinite families of
solutions or have no solution at all (e.g., x2 − 3y2 = 11 which is impossible modulo 4).
Lemma 1 shows how the general case can be treated when solutions do exist.

Lemma 1 Let L be an integer and d be a positive integer which is not a perfect square.
Consider the Pell equation

x2 − dy2 = L (A.8)

and the related unit Pell equation

x2 − dy2 = 1 . (A.9)

Suppose that (α1, β1) is the minimal positive integer solution of (A.8), and define P1 =
α1 +

√
dβ1. Let (µ1, ν1) be the minimal positive integer solution of (A.9) and define

S1 = µ1 +
√

dν1. Suppose that (α2, β2) is another integer solution of (A.8) such that
P2 = α2 +

√
dβ2 is not of the form P1S k

1 . Then, Equation (A.8) has an integer solution
(α∗, β∗) with S∗ = α∗ +

√
dβ∗, generating P2 and satisfying

P1 < S∗ < P1S1 . (A.10)

Proof. As P2 is not generated by the sequence P1S k
1 , k = 0, 1, . . ., there exists some

positive integer n such that
P1Sn

1 < P2 < P1Sn+1
1 . (A.11)

If we multiply (A.11) by S̄n
1 , where S̄1 = µ1 −

√
dν1, we get

P1 < P2S̄n
1 < P1S1 . (A.12)

Since S̄n
1 corresponds to a solution of (A.9), it follows that P2S̄n

1 corresponds to a solution
of (A.8), and this completes the proof. �
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