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.

Die Fourierentwicklung glatter, periodischer Funktionen du¨rfte den meisten Leserin-
nen und Lesern bekannt sein. Das Studium komplexer, doppeltperiodischer Funktionen
führt auf die elegante Theorie der Weierstrass’schen℘ -Funktion. Deren Umkehrfunk-
tionen geben Anlass zu den elliptischen Integralen, welche – historisch gesehen – am
Anfang der Entwicklung standen. Fagnano, Euler, Legendre und Gauss haben wesent-
liche Beiträge dazu geleistet. Erst Abel und Jacobi fu¨hrten – unabha¨ngig voneinander,
wie die Korrespondenz zwischen A.-M. Legendre und C.G.J. Jacobi belegt – die ellip-
tischen Funktionen ein. Der vorliegende Beitrag gibt zuna¨chst einen U¨ berblick über die
Untersuchungen von Euler und Legendre u¨ber elliptische bzw. lemniskatische Integrale
und schliesst mit einer Verallgemeinerung der klassischen Formel von Legendre.jk
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1 Introduction
During the first two decades of the 19th century, Legendre developed the theory of elliptic
integrals. His work [5] appeared in 1811 and his monumental treatise [6] in 1825. Shortly
after that, Abel published his work [1] on the inversion of elliptic integrals and on the
properties of the elliptic functions defined by this procedure. One of Legendre’s most
elegant formulae appears on [5] page 61. This is his famous relation:

∫ 1

0

dx√
(1− x2)(1− k2x2)

×
∫ 1

0

√
1− (k ′)2x2

1− x2
dx+

∫ 1

0

dx√
(1− x2)(1− (k ′)2x2)

×
∫ 1

0

√
1− k2x2

1− x2
dx−

∫ 1

0

dx√
(1− x2)(1− k2x2)

×
∫ 1

0

dx√
(1− x2)(1− (k ′)2x2)

=
π

2
.

(1.1)

The terms in (1.1) are the classical elliptic integrals that made their debut in the calcu-
lation of the length of the ellipse and the lemniscate. The reader is referred to [7] for
details on this topic and to [2] for the history of Legendre’s relation (1.1).

The lemniscatic integral ((1.3), below) appears in the calculation of the arclength of
the lemniscate of equation(x2 + y2)2 = a2(x2 − y2). Siegel [8] makes this example his
starting point in his book on abelian functions. The parametrization of the lemniscate

x =

√
r2 + r4

2
and y =

√
r2 − r4

2
, (1.2)

with r =
√

x2 + y2, yields the expression

L =
∫ 1

0

dx√
1− x4

(1.3)

for the total arclength. This lemniscatic integral was studied by Euler in [4] and is the
special casek =

√
−1 of theelliptic integral of the first kind

K(k) :=
∫ 1

0

dx√
(1− x2)(1− k2x2)

later studied by Legendre in [6]. In this case (1.1) becomes∫ 1

0

dx√
1− x4

×
∫ 1

0

x2

√
1− x4

dx =
π

4
. (1.4)

In this paper we describe Euler’s method to prove (1.4) and establish a generalization
that deals with the elastic curve

fn(x) :=
∫ x

0

tn
√

1− t2n
dt
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for which we prove that

Rn × Ln =
π

2n
,

whereRn = fn(1) is the so-calledmain radius, andLn is the length of the curve from
x = 0 to x = 1. The special casen = 2 yields Euler’s result.

Section 2 recalls a standard proof of (1.1) based on the fact that the Legendre integrals
satisfy a differential equation. Section 3 describes Euler’s original proof, its generalization
and discusses the issue of convergence, a fact that Euler was happy to ignore. Although
Euler did not explicitly address the issue of convergence in [3], his familiarity with
Stirling’s formula dates from at least 1736.

2 Legendre’s proof

The first proof of Legendre’s relation (1.1) is based on a differential equation satisfied
by the elliptic integrals

K(k) =
∫ 1

0

dx√
(1− x2)(1− k2x2)

and E(k) =
∫ 1

0

√
1− k2x2

1− x2
dx.

Among the many identities satisfied by these functions we employ an expression for
their derivatives.

Proposition 2.1 The functions K(k) and E(k) satisfy

k(k ′)2 dK
dk

= E − (k ′)2K

k
dE
dk

= E − K,

(2.1)

where k ′ =
√

1− k2 is the conjugate modulus.

Proof. This follows directly from the definitions. �

Proposition 2.2 Let K ′(k) = K(k ′) and E ′(k) = E(k ′). Then the function KE ′ +
EK ′ − KK ′ is constant.

Proof. Employ Proposition 2.1 to check that the derivative is identically 0. �

Legendre then evaluates the constant at the modulusk = 1
2

√
2−

√
3 and its complement

k ′ = 1
2

√
2 +

√
3. In this paper we complete Legendre’s proof by using the modulus

k =
√
−1. This is explained in the next section.
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3 Euler’s direct proof
In [3] Euler developed his theory of infinite products and used it in [4] to prove the
relation ∫ 1

0

dx√
1− x4

×
∫ 1

0

x2

√
1− x4

dx =
π

4
. (3.1)

In this paper we generalize Euler’s method and prove the following result.

Theorem 3.1 The generalized elastic curve

fn(x) :=
∫ x

0

tn
√

1− t2n
dt (3.2)

satisfies

Rn × Ln =
π

2n
,

Rn is the main radius, the value fn(1), and Ln is the length of the curve from x = 0 to
x = 1.

Proof. We have

Rn =
∫ 1

0

tn
√

1− t2n
dt and Ln =

∫ 1

0

dt√
1− t2n

.

Integrate the relation

d
(

tk
√

1− t2n
)

=
ktk−1 dt − (k + n)t2n+k−1 dt√

1− t2n

from 0 to 1 to produce the recursive formula

∫ 1

0

tk−1

√
1− t2n

dt =
k + n

k

∫ 1

0

t2n+k−1

√
1− t2n

dt. (3.3)

The valuek = n + 1 in (3.3) yields

Rn =
2n + 1
n + 1

∫ 1

0

t3n
√

1− t2n
dt . (3.4)

Then the valuek = 3n + 1 produces

∫ 1

0

t3n
√

1− t2n
dt =

4n + 1
3n + 1

∫ 1

0

t5n
√

1− t2n
dt ,

so (3.4) produces

Rn =
2n + 1
n + 1

× 4n + 1
3n + 1

∫ 1

0

t5n
√

1− t2n
dt.
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Iterating (3.3) we obtain, afterm steps,

Rn =
m∏

j=1

2jn + 1
(2j − 1)n + 1

×
∫ 1

0

t(2m+1)n
√

1− t2n
dt. (3.5)

The next step is to justify the passage to the limit in (3.5) asm → ∞, with n fixed.
Observe that the left hand side isindependent of m, so it remainsRn afterm → ∞. The
difficulty in passing to the limit is that the product in (3.5) diverges. The general term
pj satisfies

1− pj =
−n

(2j − 1)n + 1

and the divergence of the product follows from that of the harmonic series. The diver-
gence is cured by introducing scaling factors both in the integral and the product. The
proof is omitted in Eulerian fashion.

Proposition 3.2 The functions

1
2m + 1

∫ 1

0

t(2m+1)n
√

1− t2n
dt and (2m + 1) ×

m∏
j=1

2jn + 1
(2j − 1)n + 1

have non-zero limits as m → ∞.

Therefore from (3.5) we obtain

Rn = lim
m→∞

2m∏
j=1

( jn + 1)(−1) j ×
∫ 1

0

t(2m+1)n
√

1− t2n
dt

where we have employed

m∏
j=1

2jn + 1
(2j − 1)n + 1

=
2m∏
j=1

( jn + 1)(−1) j

in order to simplify the notation. A similar argument shows that

Ln =
m∏

j=1

(2j − 1)n + 1
2( j − 1)n + 1

∫ 1

0

t2mn
√

1− t2n
dt

= lim
m→∞

2m∏
j=1

( jn + 1)(−1) j+1
∫ 1

0

t2mn
√

1− t2n
dt .

(3.6)

The final step is to introduce the auxiliary quantities

An :=
∫ 1

0

tn−1

√
1− t2n

dt and Bn :=
∫ 1

0

t2n−1

√
1− t2n

dt.
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We now show that the quotientLn/An can be evaluated explicitly and that the value
of An is elementary. This produces an expression forLn. A similar statement holds for
Rn/Bn andBn.

Observe first that

An =
∫ 1

0

tn−1

√
1− t2n

dt =
1
n

∫ 1

0

dx√
1− x2

=
π

2n
(3.7)

and similarly Bn = 1/n. Now consider the recursion (3.3) for odd multiples ofn to
produce

An = lim
m→∞

2m∏
j=1

( jn)(−1) j ×
∫ 1

0

t(2m+1)n−1

√
1− t2n

dt (3.8)

and similarly the even multiples ofn yield

Bn =
1
n

lim
m→∞

2m+1∏
j=1

( jn)(−1) j+1 ×
∫ 1

0

t2(m+1)n−1

√
1− t2n

dt,

in the exact manner as the derivation of (3.5). Therefore using (3.6) and (3.8), and
passing to the limit asm → ∞ so that the integrals disappear, we obtain

Ln

An
=

∞∏
j=1

[
( jn + 1)(−1) j+1 × ( jn)(−1) j+1

]
,

so (3.7) yields

Ln =
π

2n
×

∞∏
j=1

[
( jn + 1)(−1) j+1 × ( jn)(−1) j+1

]
.

Similarly, usingBn = 1/n,

Rn =
∞∏
j=1

[
( jn + 1)(−1) j × ( jn)(−1) j

]
.

The formulaRn × Ln = π/2n follows directly from here. �

4 Conclusions

In this paper we have established that the main radiusRn of the generalized elastic
curve (3.2) and the lengthLn of this curve satisfyRn × Ln = π/2n. The casen = 2
corresponds to the classical Legendre’s formula for elliptic integrals.
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