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Abstract
Not many of the famous triangle centers, or other central objects, are associated with
rhombi, or even squares. In this paper four examples of such centers are given. They are
related to well-known central objects in a triangle.

1 Introduction
Triangle geometry usually is about triangles, lines, circles, conic sections and cubic
curves. Quadrilaterals do not to come into the picture very often. We can use rhombi
however quite well to define pleasant triangle centers.

In the representation of triangle centers, we will make use ofhomogeneous barycentric
coordinates, or shortlybarycentrics, with respect to a fixed reference triangleABC. The
notion of these coordinates goes back to Mo¨bius. Traditionally the point with coordinates
(ξ, η, ζ) is considered as the center of mass (barycenter) of�ABC when located in

.

Wer glaubt, die Dreiecksgeometrie sei ein abgeschlossenes Gebiet, den lehrt dieser
Beitrag, dass auch heute noch Neues und dabei auch Interessantes in der Elementar-
geometrie entdeckt werden kann – und das in der traditionellen Art und Weise, also
ohne Einsatz eines Computers, d.h. ohne dynamische Geometriesoftware.

Im Falle ausgezeichneter Punkte eines Dreiecks haben wir den Umkreis- und Inkreis-
mittelpunkt, den Ho¨henschnittpunkt (Orthozentrum) und den Schwerpunkt (Baryzen-
trum) noch aus der Schule in Erinnerung. In dem vorliegenden Beitrag nutzt F. van
Lamoen die von A.F. Mo¨bius eingefu¨hrten baryzentrischen Koordinaten bzw. trilinea-
ren Koordinaten und sto¨sst dabei auf interessante Rhomben und Quadrate, die sich so
als ausgezeichnete Figuren des Dreiecks erweisen.jk



Elem. Math.55 (2000) 103

A, B and C are ‘weights’ of magnitudesξ, η and ζ respectively (and the rest of the
triangle is weightless).

More conveniently the equivalent definition is used, that(ξ, η, ζ) denotes the pointP such
that Area(PBC) : Area(APC) : Area(ABP) = ξ : η : ζ. Here, we takeArea(PQR) to
be zero whenP, Q andR are collinear, positive when the orientation of the vertices of
�PQR is counter-clockwise, and negative when the orientation is clockwise.

Barycentric coordinates are homogeneous in the sense that for any nonzero real number
t the coordinates(ξ, η, ζ) and(tξ, tη, tζ) refer to the same point. For this reason we will
write (ξ : η : ζ).
All coordinates in this paper will be barycentrics, unless mentioned otherwise.

Rather similar to barycentric coordinates is the notion oftrilinear coordinates (trilinears).
Trilinear coordinates(ξ : η : ζ) denote the pointP with ratio of distances to the sidelines
d(P, �BC) : d(P, �AC) : d(P, �AB) = ξ : η : ζ (�XY denotes the line throughX andY). We
give sign to, for instance,d(P, �AB) in the same way as toArea(ABP) in barycentric
coordinates. Trilinear coordinates are homogeneous in the same sense as barycentrics.
They are used and explained extensively in [2].

A simple relation between barycentric coordinates(ξb : ηb : ζb) and trilinear coordinates
(ξt : ηt : ζt) for the same pointP is

ξb : ηb : ζb = aξt : bηt : cζt = ξt sinα : ηt sinβ : ζt sinγ, (1)

wherea = |BC|, b = |AC|, c = |AB|, α = � A, β = � B andγ = � C.

In both coordinate systems a line� is given by the equationlx+my+nz = 0. We usually
write this as� = [l : m : n], and observe that theseline coordinates are homogeneous.
Treating lines, as well as points, as vectors we find the line�P1P2 as external product
� = P1×P2. Dually, the point of intersectionP of lines�1 and�2 is found byP = �1×�2.

A notion from triangle geometry that we will use several times in this paper isisogonal
conjugacy. Two pointsP andQ are calledisogonal conjugates when � BAP = � QAC,
� CBP = � QBA and � ACP = � QCB. Algebraicly the isogonal conjugate ofP = (ξ :
η : ζ), not on the sidelines of�ABC, is Q = (a2/ξ : b2/η : c2/ζ).

In this paper four ways will be presented to define triangle centers associated with
rhombi. Points�ψ, �ψ, �ψ and �ψ will be (triangle) centers following the definition
by Clark Kimberling in [2].

Kimberling’s notion ofcenter depends on the definition ofcenter functions. Let f(a, b, c)
be a nonzero continuous function defined on triples(a, b, c), representing the sidelengths
of the reference triangle. Functionf is a center function

• if f is homogeneous, i.e.∃r∀k : f(ka, kb, kc) = k r f(a, b, c);
• and if f is symmetric in the sense thatf(a, b, c) = f(a, c, b).

Any point of the form ( f(a, b, c) : f(b, c, a) : f(c, a, b) ) (either in trilinears, or in
barycentrics) is called acenter. Hereby a center is not a point in the classical sense, but
it is seen as a function of the triangle it is defined in.
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The first rhombi-center�ψ will be associated with rhombi circumscribing�ABC, �ψ

with rhombi inscribed in�ABC, �ψ and�ψ will be defined by three congruent rhombi.
The centers will be depending on the internal anglesψ and ψ̄ := π − ψ of the rhombi.
Hereψ(A,B,C) is considered to be independent from permutation of(A,B,C).

Applying more of Clark Kimberling’s definitions, centers�ψ and �ψ for fixed ψ will
bemajor centers (see [1]), since these centers can be written as( f(α) : f(β) : f(γ) ) for
some continuous functionf . Finally, �A′B′C ′ of Section 2 will be acentral triangle
(see [3] for the least complicated definition).

2 Rhombi circumscribing a triangle
The definition of the first triangle center�ψ depends on the following:

Theorem 1 Let �ABC and ψ ∈ (−π, π) \ {0} be given. We can construct a unique
rhombus AXA′Y such that � XAY = ψ, B ∈ �XA′ and C ∈ �A′Y . Similarly we can
construct rhombi to find points B′ and C ′. The constructed �A′B′C ′ is perspective to
�ABC, i.e. �AA′ , �BB′ and �CC′ are concurrent.

The perspector (center of perspectivity)�AA′∩�BB′∩�CC′ will be called thecircumrhombi
point �ψ.

Proof. Denote byρχ,X(P) the image ofP after rotation throughχ aboutX. Let B′′ =
ρψ̄,A(B) and let C ′′ = ρ−ψ̄,A(C). Then let{A′} = �B′′C ∩ �C′′B . Points X ∈ �C′′A′

and Y ∈ �B′′A′ can be constructed in such a way thatAXA′Y is a parallelogram (see
Figure 1).
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Fig. 1 Construction of rhombusAXA′Y circumscribing�ABC for ψ = π
3 .

Observe that�AC ′′B ∼= �ACB′′, so the perpendicular distances fromA to �B′′A′ and
�C′′A′ are equal. AndAXA′Y must be a rhombus.
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Note that ρψ̄,A(�C′′XBA′) = �A′CYB′′ , so � YA′X = ψ (regarding orientation). And
AXA′Y is a rhombus satisfying the requirements of the theorem.

It is easy to see thatAXA′Y is the unique rhombus fulfilling these requirements: When
we rotate the complete figure of�ABC and rhombusAXA′Y throughψ̄ aboutA, and
let B′′ be the image ofB again, we immediately see thatB′′ ∈ �A′C . In the same way
we see that the image ofC after rotation through−ψ̄ aboutA must be on the line�A′B .

To prove the last statement of the theorem, we use barycentrics. First we calculate
barycentrics forC ′′. To do this, letC ′′

a ,C
′′
b and C ′′

c be the orthogonal projections of
C ′′ on sidelines�BC , �AC and �AB respectively. We will calculate the trilinear distances
ξ := ±|C ′′C ′′

a |, η := ±|C ′′C ′′
b | and ζ := ±|C ′′C ′′

c |, given signs in the usual way for
trilinear coordinates.

Straightforwardly we find thatη = b sinψ and ζ = −b sin(ψ̄ − α) = −b sin(α + ψ).
Using that�C ′′AC is isosceles, we see|C ′′C| = 2b cos(ψ2 ), and consequentlyξ =
2b cos(ψ2 ) sin(γ − ψ

2 ). With use of (1) this brings as barycentrics forC ′′:

C ′′ =
(

2a cos

(
ψ

2

)
sin

(
γ − ψ

2

)
: b sinψ : −c sin(α+ ψ)

)
.

In the same wayB′′ becomes:

B′′ =
(

2a cos

(
ψ

2

)
sin

(
β − ψ

2

)
: −b sin(α+ ψ) : c sinψ

)
.

Straightforward calculations give that barycentrics for{A′} = �BB′′ ∩ �CC′′ are:

A′ =
(
−2a csc(α+ ψ) : b sec

(
ψ

2

)
csc

(
β − ψ

2

)
: c sec

(
ψ

2

)
csc

(
γ − ψ

2

))
.

With similar results forB′ andC ′, we conclude that�AA′ , �BB′ and�CC′ concur in

�ψ =
(

sinα csc

(
α− ψ

2

)
: sinβ csc

(
β − ψ

2

)
: sinγ csc

(
γ − ψ

2

))
. �

All circumrhombi points lie on the Kiepert hyperbola, a rectangular hyperbola consisting
of the isogonal conjugates of points on the Brocard axis (the line through the circumcenter
and the symmedian or Lemoine point). See also Section 3.

For ψ = ± 2π
3 we find that�A′B′C ′ degenerates into a single point. The two points are

the isogonic centers (X13 (the Fermat-Torricelli point) andX14 in [2]).

Among the huge list of triangle centers in [2] there are quite a few centers that can
be found as circumrhombi points. Examples are the Napoleon points, the third Brocard
point and the Tarry point. Points that might be added are thecircumsquares points, found
whenψ = ±π

2 .
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3 Congruent rhombi points
Let ψ ∈ [−π, π]. We call�ψ a congruent rhombi point if there exist six pointsPA,QC ∈
�AC , PC ,QB ∈ �BC andQA,PB ∈ �AB such that:

• These six points are on a circle with center�ψ;

• � PA�ψQA = � PB�ψQB = � PC�ψQC = ψ.

TrianglesPA�ψQA, PB�ψQB andPC�ψQC are congruent and form the halves of three
congruent rhombi:PA�ψQAA′ (the A-rhombus), PB�ψQBB′ andPC�ψQCC ′ (see Fig-
ure 2).

�
3

A B

C

Fig. 2 The congruent rhombi point � π
3

.

This way to define a triangle center is inspired by the Kenmotu point or congruent squares
point, found in Kimberling’s list of triangle centers in [2] as X371, which point is � π

2
. The

Kenmotu point, named after the author of a Japanese mathematics problem collection in
1840, is the only center in this list, which is given a description directly using squares or
rhombi. The point �− π

2
is mentioned in [2] as X372, but without definition using squares

directly.

Theorem 2 The congruent rhombi point �ψ is the point with barycentrics

(
sinα cos

(
α− ψ

2

)
: sinβ cos

(
β − ψ

2

)
: sin γ cos

(
γ − ψ

2

))
.

Proof. Suppose the point �ψ and the points PA, PB , PC , QA, QB and QC from the
definition exist. Let χa := � QB�ψPC , χb := � QC�ψPA and χc := � QA�ψPB . The
circle with A�ψ as diameter passes through the midpoints of QAPB and PAQC . From
this and similar results for the circles with diameters B�ψ and C�ψ we find the following
system of equations:

χa

2
+
χb

2
+ ψ = α+ β,

χb

2
+
χc

2
+ ψ = β + γ,

χa

2
+
χc

2
+ ψ = α+ γ .
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This gives χa = 2α − ψ, χb = 2β − ψ and χc = 2γ − ψ. Since χa, χb and χc are the
top angles of three isosceles triangles on the sides of �ABC with congruent legs, �ψ

must have barycentrics as in the theorem.
On the other hand, we can construct a point �ψ with barycentrics as in the theorem
when ψ is given: �ψ is the isogonal conjugate of �−ψ̄ when ψ ∈ (−π, π) \ {0}, the
circumcenter when ψ = 0 and the symmedian point when ψ = ±π. Having �ψ , we can
also construct the points PA, PB , PC , QA, QB and QC using the results from the first
part of the proof. �

All congruent rhombi points �ψ lie on the Brocard axis. Well-known centers that can
be found as �ψ are the isodynamic points and the Brocard midpoint.
It is not difficult to see that �ABC and �A′B′C ′ (A′ was the vertex of the A-inrhombus
opposite to �ψ; B′ and C ′ were found similarly) are homothetic (parallel). Let ξ be the
perpendicular distance between BC and B′C ′, given sign in the usual way for trilinear
coordinates w.r.t. �ABC, and let η and ζ be defined likewise. Then straightforward
computation gives us that

ξ : η : ζ = cos

(
α+

ψ

2

)
: cos

(
β +

ψ

2

)
: cos

(
γ +

ψ

2

)
.

We can apply the following lemma:

Lemma 3 Let �ABC and �A′B′C ′ be homothetic. Let ξ, η and ζ be the distances
between the a-, b- and c-sides of these triangles respectively, given signs in the usual way
for trilinear coordinates w.r.t. �ABC. Then the perspector of �ABC and �A′B′C ′ has
trilinears (ξ : η : ζ) w.r.t. both triangles.

The proof of this lemma is easy and left to the reader.
Using Lemma 3 we find that the perspector of �ABC and �A′B′C ′ is �−ψ .
Consequently, but this is also seen directly from angle computations using earlier results
on the top angles of triangles such as �QC�ψPA, each pair of A-, B- and C-rhombi for
ψ and −ψ must be parallel. See Figure 3.

4 Inrhombi points
The easiest way to find a triangle center using rhombi seems to be the use of rhombi
inscribed in �ABC.
Given �ABC, we can compute the sidelength of a rhombus TUVW with � TUV =
ψ ∈ [−π

2 ,
π
2 ] \ {0} in such a way that these conditions hold: �TU = �AB , V ∈ �BC ,

W ∈ �AC and points V and W lie on the same side of �AB as C. We will call rhombus
TUVW the C-inrhombus. After similarly having found the A- and B-inrhombi, �VW is
the c-side of a �A′B′C ′ which is homothetic to �ABC. The perspector �ψ of �A′B′C ′

and �ABC will be called the inrhombi point.
To calculate the sidelengths of TUVW let p := |VW |/c = |VC|/a = |W C|/b. We find
that:

|VW | = pc, (2)

|VU| =
(1 − p)a sinβ

sinψ
. (3)
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Fig. 3 Parallel squares and the two congruent squares points K1 and K2.

Then (2) = (3) gives

p =
a sinβ

a sinβ + c sinψ
. (4)

Substituting (4) into (2) we see that

|VW | =
2σ

a sinβ + c sinψ
, (5)

where σ denotes the area of �ABC. Achieving similar results for A- and B-inrhombi,
and using Lemma 3, we conclude that barycentrics for �ψ are

(
sinα

sinβ sin γ + sinα sinψ
:

sinβ
sinα sin γ + sinβ sinψ

:
sin γ

sinα sinβ + sin γ sinψ

)
.

All inrhombi points lie on the hyperbola formed by the isogonal conjugates of points on
the line through the centroid and the symmedian point of �ABC.

5 Congruent shrinked inrhombi points
For ψ ∈ [−π

2 ,
π
2 ], let BA,AB ∈ �AB , AC ,CA ∈ �AC , BC ,CB ∈ �BC and �ψ fulfil the

following statements:

• �BACA ‖ �BC , �AB CB ‖ �AC and �AC BC ‖ �AB ;

• �BACA ∩ �AB CB ∩ �AC BC = {�ψ};

• The A-inrhombus of �ABACA, the B-inrhombus of �ABBCB and the C-inrhombus
of �ACBCC are congruent.
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Fig. 4 The congruent shrinked inrhombi point � for ψ = π
4 .

�ψ will be called the congruent shrinked inrhombi point. See Figure 4.

To calculate coordinates for (possible) �ψ let qa := |BACA|/|BC| and let qb and qc be
defined likewise. To make the shrinked inrhombi congruent, we derive from (5) and
similar results on sidelengths of the A- and B-inrhombi that there must be a real number
t, such that qa = t(b sin γ+a sinψ), qb = t(a sin γ+b sinψ) and qc = t(a sin β+b sinψ).
It is also easy to see that Area(�BC�ψ) = (1− qa)σ, Area(�AC�ψ) = (1− qb)σ and
Area(�AB�ψ) = (1 − qc)σ. The sum of these three areas is σ, so qa + qb + qc = 2 and
consequently

t =
2

b sin γ + a sin γ + a sinβ + (a + b + c) sinψ
.

And we find that �ψ has barycentrics

(
sinα(sinβ + sin γ) − sinβ sin γ + sinψ(sinβ + sin γ − sinα) :

sinβ(sinα+ sin γ) − sinα sin γ + sinψ(sinα+ sin γ − sinβ) :

sin γ(sinα+ sinβ) − sinα sinβ + sinψ(sinα+ sinβ − sin γ)
)
.

The congruent shrinked inrhombi points all lie on the line through the Nagel point and
the equal parallelians point (X192 in [2], found when ψ=0). Only four centers on this
line are mentioned in [2]. The congruent shrinked insquares points might be interesting
additions to these.
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