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Regular Hexagons Associated to
Triangles with Equal Centroids
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Zvonko Čerin, born 1950 in Zagreb, began his studies at the University of Zagreb.
The years from 1973 to 1976 he spent at the Louisiana State University in Baton
Rouge where he received his PhD. He has published numerous papers on various
topics in topology and is now Professor at the University of Zagreb. His recent
interest in geometry began under the influence of Professor Baldi from the Università
di Torino who introduced him to the world of computers. In his spare time he likes
to play rather competitive recreational tennis.

1 Introduction
Let r denote a real number. For points A and B, let rB

A be the point A when A = B,
the point B when A 6= B and r = −1, and the point P on the line AB such that
|AP|/|PB| = r when A 6= B and r 6= −1.

In Problem 1493 in the February 1996 issue of Mathematics Magazine, Jiro Fukuta ob-
served the following method of generating regular hexagons associated with any triangle
ABC.

Fukuta’s Method. Let 0 ≤ r < 1. Let P1 = rC
B , P2 = rB

C , P3 = rA
C , P4 = rC

A , P5 = rB
A,

and P6 = rA
B . Let P7 = P1. Let QiPiPi+1, (i = 1, 2, . . . , 6), be the equilateral triangles

built outwards on the sides of the hexagon P1P2 · · ·P6. Let Q0 = Q6 and Q7 = Q1.
Let Fi be the centroid of the triangle Qi−1QiQi+1, i = 1, 2, . . . , 6. Then F1F2 · · ·F6 is a
regular hexagon whose center coincides with the centroid of the triangle ABC.

.

Geometrische Konstruktionen, die auf eine reguläre Figur führen, üben einen beson-
deren ästhetischen Reiz aus. Zvonko Čerin liefert uns hier ein Beispiel. Er gibt sich
zwei reelle Zahlen p und q vor und zwei Dreiecke mit gemeinsamem Schwerpunkt
S. Ausgehend von einander entsprechenden Ecken der beiden Dreiecke führt er eine
Anzahl von Konstruktionsschritten durch, die im einzelnen von p und q abhängig sind.
Es resultiert schliesslich ein Sechseck. Und siehe da: Das Sechseck ist regulär und
besitzt den Mittelpunkt S. ust
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The solution by O.P. Lossers from the Technical University in Eindhoven (The Nether-
lands) has appeared in the February 1997 issue. His solution uses complex numbers and
is about two printed pages long. The aim of this note is to propose the following more
general method of creating regular hexagons associated with two triangles with common
centroid.

New Method. Let ABC and XYZ be two triangles with common centroid, and let p
and q be any real numbers. Let P1 = pX

A , P2 = qA
X , P3 = pY

B , P4 = qB
Y , P5 = pZ

C , and
P6 = qC

Z . Let P7 = P1. For i = 1, 2, . . . , 6, let QiPiPi+1 be the six equilateral triangles
built on the sides of the hexagon P1P2 · · ·P6 all with the same orientation. Let Q0 = Q6

and Q7 = Q1. Let Gi be the centroid of the triangle Qi−1QiQi+1, i = 1, 2, . . . , 6.
Then G1G2 · · ·G6 is a regular hexagon whose center coincides with the centroid of the
triangle ABC.
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Fig. 1 The New Method: General situation.
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Observe that there is no condition on the numbers p and q and that there are two regular
hexagons obtained in this way because there are two orientation classes. Moreover, the
new method reduces to Fukuta’s method if we consider a pair ABC and BCA and put
p = q = r.

There are many triangles associated with the triangle ABC which have the same centroid.
For example, the complementary triangle AmBmCm whose vertices are midpoints of
sides, the anticomplementary triangle AaBaCa whose vertices are intersections of parallels
through vertices to opposite sides, the first Brocard triangle AbBbCb of ABC, the triangles
whose vertices are vertices (centers) of equilateral triangles built on sides either outwards
or inwards, and the degenerate triangle GGG, where G is the centroid of ABC.

2 Verification of the new method
In our proof we shall work in the complex plane, and therefore we shall allow ourselves
to regard points as complex numbers. In the references we have listed several books that
give nice introductions into this technique of proof in geometry.

For an expression Ex that depends on the set of variables S and a permutation b of
S let b(Ex) denote the expression obtained by permuting the variables according to
b. For example, if Ex = 3 u v5 w3 and b(u) = v, b(v) = w, and b(w) = u, then
b(Ex) = 3 u3 v w5.

Let s and t denote the substitutions {A = B, B = C, C = A, X = Y, Y = Z, Z = X}
and {A = C, B = A, C = B, X = Z, Y = X, Z = Y}. We prove the following
amusing theorem which could be regarded as the main fact implying the new method.

Theorem 1. Let the triangles ABC and XYZ have the common centroid G. Let P1 = A,
P2 = X , P3 = B, P4 = Y , P5 = C, and P6 = Z. Let the points G1,G2, . . . ,G6 be
constructed as in the description of the new method. Then G1G2 · · ·G6 is a regular
hexagon with center G.

Proof. Without loss of generality, we can assume that G is the origin of the complex
plane, so that the common centroid of ABC and XYZ corresponds to the complex
number zero. It follows that A + B + C = 0 and X + Y + Z = 0.

Set Ω = 1
2 + i

√
3

2 and ω = 1
2 − i

√
3

2 . Then ω is the complex conjugate of Ω, and one has
Ω = 1−ω, Ω2 = −ω, and Ωω = 1. It follows that Q1 = Ω A+ωX and Q2 = Ω X +ω B
while Q3 = s(Q1), Q4 = s(Q2), Q5 = t(Q1), and Q6 = t(Q2). Also,

G1 =
1
3

(Ω A + B + X + ωY), G2 =
1
3

(Ω X + Y + B + ωC),

G3 = s(G1), G4 = s(G2), G5 = t(G1), and G6 = t(G2).

Since

Ω G1 =
1
3

(−ωA + Ω B + Ω X + Y) =
1
3

(Ω X + Y + B + ω (−A − B)) = G2,

and similarly Ω G2 = G3, Ω G3 = G4, Ω G4 = G5, Ω G5 = G6, and Ω G6 = G1, we
conclude that the points G1, . . . ,G6 are the vertices of a regular hexagon with center at
the centroid of ABC and XYZ because rotating by π

3 around the origin maps the point
Gi to a point Gi+1 for 1 ≤ i < 6 and G6 to G1.
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Fig. 2 In Theorem 1 we build equilateral triangles on the sides of the hexagon AXBYCZ

In the above calculations we have assumed that the triangle ωΩJ is positively oriented,
where J is the point corresponding to the complex number −1, and that we have con-
structed on the sides of the hexagon P1P2 · · ·P6 six positively oriented equilateral trian-
gles. We obtain similar conclusions in the situation when negatively oriented triangles
are used.

The fact that G1G2 · · ·G6 is a regular hexagon can also be proved using the following
idea. Assuming that G is the origin of the complex plane, it is sufficient to show that
(i) the triangles G1G3G5 and G2G4G6 are symmetric to each other with respect to the
origin, (ii) the triangle G1G3G5 is equilateral, and (iii) its centroid is the origin. Each
of these three assertions can be proved in a few lines. h

The new method follows from the Theorem 1 and the following result.

Theorem 2. Let the triangles ABC and XYZ have the common centroid G, and let r
be any real number. Let P = rX

A , Q = rY
B , and R = rZ

C . Then G also is the centroid of
the triangle PQR.

Proof. Under the same simplification as in the proof of the Theorem 1, for r 6= −1, we
have P = q (A + r X), Q = q (B + r Y), and R = q (C + r Z), where q = 1/(r + 1). The
centroid of the triangle PQR is q (A + B + C + r (X + Y + Z))/3. But, this number is
zero because A + B + C = 0 and X + Y + Z = 0. Hence, the centroid of PQR is the
origin. For r = −1, the proof is trivial. h
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Here are two more results analogous to the Theorem 2 that give us new methods for
selecting points P1,P2, . . . ,P6. They use the following notion of a (p, q)-point of a
triangle ABC.

Let p and q be any real numbers. Let (p, q)ABC be a short notation for the point pW
A ,

where W = qC
B . Notice that (1, 1)ABC is the centroid of ABC.

Theorem 3. Let p and q be any real numbers. Let X = (p, q)ABC , Y = (p, q)BCA, and
Z = (p, q)CAB . Then the triangles ABC and XYZ have the same centroid.

Proof. Let f = 1/(p + 1) and g = 1/(q + 1). Obviously we have X = f A + f g p B +
f g p q C, Y = s(X), and Z = t(X). It follows that the triangle XYZ has the centroid at
the complex number (A + B + C)/3. Hence, ABC and XYZ have the same centroid.
This proof assumes that both p and q are different from −1. In these exceptional cases
the proof is even simpler, and we therefore leave it to the reader. h

Theorem 4. Let p and q be any real numbers, and let ABC and XYZ be triangles with
the common centroid G. Let P = (p, q)AYZ, Q = (p, q)BZX , and R = (p, q)CXY . Then
G also is the centroid of the triangle PQR.

Proof. We can assume that G is the origin. Then P = f A+ f g p Y + f g p q Z, Y = s(X),
and Z = t(X), where f = 1/(p + 1) and g = 1/(q+ 1). It follows that the triangle PQR
has centroid (A + B + C + p (X + Y + Z))/3. Hence, PQR, ABC and XYZ have the
same centroid. This proof again assumes that both p and q are different from −1. The
proof for the cases, when this is not true is easy, and left to the reader. h

3 Diagonal method
In this section we shall describe another method of associating a regular hexagon with
two triangles having the same centroid. This time the points Q1,Q2, . . . ,Q6, instead of
being the vertices of the equilateral triangles built on sides of P1P2 · · ·P6, are the centers
of equilateral triangles built on small diagonals of P1P2 · · ·P6.

Diagonal Method. Let ABC and XYZ be two triangles with common centroid, and let
p and q be any real numbers. Let P1 = pX

A , P2 = qA
X , P3 = pY

B , P4 = qB
Y , P5 = pZ

C , and
P6 = qC

Z . Let P7 = P1 and P8 = P2. For i = 1, 2, . . . , 6, let Qi be the centroids of the the
six equilateral triangles built on the small diagonals PiPi+2 of the hexagon P1P2 · · ·P6

all with the same orientation. Let Q0 = Q6 and Q7 = Q1. Let Di be the centroid of
the triangle Qi−1QiQi+1, i = 1, 2, . . . , 6. Then D1D2 · · ·D6 is a regular hexagon whose
center coincides with the centroid of the triangle ABC.

This method is a simple consequence of the following theorem.

Theorem 5. Let ABC and XYZ be two triangles with common centroid G. Let P1 = A,
P2 = X , P3 = B, P4 = Y , P5 = C, and P6 = Z. Let points D1,D2, . . . ,D6 be constructed
as above from centroids of equilateral triangles built on small diagonals of P1P2 · · ·P6.
Then D1D2 · · ·D6 is a regular hexagon with center G.
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Fig. 3 In Theorem 5 we take centers of equilateral triangles on small diagonals of the hexagon AXBYCZ.

Proof. Let λ = i
√

3
3 , µ = 1

2 (1 + λ), and ν = 1
2 (1− λ). Under the same simplifications

as in the proof of the Theorem 1, we can show that Q1 = µA + ν B, Q2 = µX + ν Y ,
Q3 = −ν A +λB, Q4 = −ν X +λY , Q5 = −λA−µB, and Q6 = −λX −µY . Also,
one has

D1 = (λA + µB + µX + ν Y)/3, D4 = −D1,

D5 = (ν A − λB − λX − µY)/3, D2 = −D5,

D6 = (µA + ν B + ν X − λY)/3, and D3 = −D6.

Notice that Ωλ = −ν, Ωµ = λ, and Ω ν = µ. It is now obvious that Ω D1 = D2,
Ω D2 = D3, Ω D3 = D4, Ω D4 = D5, Ω D5 = D6, and Ω D6 = D1. We conclude that
the points D1,D2, . . . ,D6 are vertices of a regular hexagon whose center is the common
centroid of ABC and XYZ because the rotation by π

3 around the origin maps each point
Di to a point Di+1 for 1 ≤ i < 6 and D6 to D1.

In the above calculations we have again assumed that the triangle ωΩJ is positively
oriented and that we have constructed on small diagonals of the hexagon P1P2 · · ·P6 six
positively oriented equilateral triangles. We obtain similar conclusions in the situation
where negatively oriented triangles are used. h
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Fig. 4 Regular hexagons from Theorems 1 and 5 together.

We can now easily compute the lengths of sides of regular hexagons from Theorems 1
and 5 and check that their quotient is precisely

√
3.
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