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Introduction
In introductory courses in mathematical statistics there is always the very moment where
students are confronted with the fact that, in case of a sample X1, . . . ,Xn from a nor-

mally distributed population, the statistics X = 1
n

n∑
i=1

Xi and S2 = 1
n−1

n∑
i=1

(Xi−X)2 are

independent. To the audience this will seem to be odd at first sight since the quantity
X occurs explicitly in the defining equation of S2. For this reason, omitting a rigorous
college proof of this statement might cause a slight feeling of annoyance among certain
students. In spite of this, many modern textbooks on statistics (even the excellent work
[5]) more or less surrender in this respect.

The theory of multivariate normal distributions (see for example [1] or [4]) provides
a natural framework for a proof, but in introductory courses it is not always advisable
to present it in that way. Alternatives are to be found for example in [8], [9] and
[10], where proofs are given relying on the theory of characteristic functions or moment
generating functions. Here one is in fact applying part of the Fourier (Laplace) machinery
of mathematical analysis, which is not always familiar to starting statisticians. In this
paper a very elementary proof based on linear algebra is given. As in [3] and [6] a
technique involving the notion of an orthogonal linear map is exploited to prove a more
general result. The necessary linear algebra is usually taught in first year undergraduate
courses in mathematics.

.

In einer Stichprobe aus einer Normalverteilung sind der Mittelwert X̄ und die Varianz
S2 statistisch unabhängig. Die üblichen Beweise für diese für den Anfänger etwas
überraschende Tatsache sind ziemlich involviert. Im vorliegenden Beitrag liefert Wiebe
Pestman einen Beweis, der nur einfache Resultate der Linearen Algebra benötigt. ust
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Independence of linear statistics of normal samples
Let M = (M1, . . . ,Mp) and N = (N1, . . . ,Nq) be vector valued random variables, as-
suming values in Rp and Rq respectively. Denote by (M,N) the variable (M1, . . . ,Mp,
N1, . . . ,Nq) assuming its values in Rp+q. We say that M and N are statistically inde-
pendent if for every (say open) set A ⊂ Rp and B ⊂ Rq one has

P
(
(M,N) ∈ A × B

)
= P(M ∈ A) P(N ∈ B).

If M and N are statistically independent and f and g are continuous functions on Rp

and Rq, then f(M) and g(N) also are statistically independent. In particular, for all
i, j the components Mi and Nj are independent, if M and N are so. (It is frequently
misunderstood (see for example [8], p. 350) that the converse of this statement is not
true; see [2], [7].)

Now suppose that X1, . . . ,Xn are independent N(0, 1) distributed variables. Writing
X = (X1, . . . ,Xn) and denoting by 〈·, ·〉 the standard inner product on Rn, one has

P(X ∈ A) =
∫

A
c e−

1
2 〈x,x〉dx,

where A ⊂ Rn and c = (2π)−n/2. If Q : Rn → Rn is an orthogonal linear transformation
then it can easily be proved that P(X ∈ A) = P(X ∈ QA). We shall refer to this property
by saying that the probability distribution of X is rotation invariant. (It is interesting
to note, that rotation invariance can only occur in cases where the Xi are all N(0, σ2)
distributed; see [7].)

Let V be the linear space consisting of all linear combinations of X1, . . . ,Xn. An inner
product (·, ·) on V is defined by

(M,N) = cov(M,N),

where cov(M,N) denotes the covariance between M and N. The Euclidean space V will
be referred to as the space of linear statistics. Note that {X1, . . . ,Xn} is an orthonormal
basis in V.

Lemma: If the linear statistics Y1, . . . ,Yn form an orthonormal basis in V, then the
vector valued random variables X = (X1, . . . ,Xn) and Y = (Y1, . . . ,Yn) are identically
distributed.

Proof: Let Φ : V → V be the linear isometry which converts the orthonormal basis
{X1, . . . ,Xn} into the orthonormal basis {Y1, . . . ,Yn}. Denoting the matrix of Φ with
respect to basis {X1, . . . ,Xn} by [Φ], we can write

Yj =
n∑

i=1

[Φ]i jXi .



Elem. Math. 53 (1998) 109

The matrix [Φ] being orthogonal, this implies that there exists an orthogonal linear
transformation Q : Rn → Rn such that QX = Y . Taking into account that the probability
distribution of X is rotation invariant one has for every open set A ⊂ Rn

P(Y ∈ A) = P(QX ∈ A) = P(X ∈ Q−1A) = P(X ∈ A).

This proves that X and Y are identically distributed.

Main theorem: Let X1, . . . ,Xn be independent normally distributed variables. Suppose
M = (M1, . . . ,Mp) and N = (N1, . . . ,Nq), where Mi,Nj ∈ V for all i, j. Then M and
N are statistically independent iff cov(Mi,Nj) = 0 for every i, j.

Proof: If M and N are statistically independent then so are the components Mi and Nj .
Consequently one has cov(Mi,Mj) = 0 for all i, j.
Next, we prove the converse of this statement in the special case where X1, . . . ,Xn

are independent and N(0, 1) distributed. Let M and N in V be the linear span of
M1,...,Mp and N1,...,Nq respectively. The assumption that cov(Mi,Nj) = 0 for all i, j
implies that M⊥N in V. It follows that V can be decomposed as V=M⊕N⊕R,
where R = (M ⊕ N)⊥. Choose orthonormal bases {E1, . . . ,Es}, {F1, . . . ,Ft} and
{G1, . . . ,Gu} in M, N and R respectively. Set E = (E1, . . . ,Es), F = (F1, . . . ,Ft)
and G = (G1, . . . ,Gu). By the lemma the random variables X = (X1, . . . ,Xn) and
(E,F,G) are identically distributed. From this it follows that (X1, . . . ,Xs+t) and (E,F)
also are identically distributed. Observing that (X1, . . . ,Xs) and (Xs+1, . . . ,Xs+t) are
statistically independent, one has for A ⊂ Rs and B ⊂ Rt

P
(
(E,F) ∈ A × B

)
= P

(
(X1, . . . ,Xs+t) ∈ A × B

)
= P

(
(X1, . . . ,Xs) ∈ A

)
P
(
(Xs+1, . . . ,Xs+t) ∈ B

)
.

It is easy to see that this implies P
(
(E,F) ∈ A × B

)
= P(E ∈ A) P(F ∈ B), thus

proving the statistical independence of E and F . The variable M (N) can be obtained
from E (F) by linear transformation, so M and N are also statistically independent. In
the general case where X1, . . . ,Xn are independent and Xi is, say N(µi, σ

2
i ) distributed,

one can pass to variables X̃i = (Xi−µi)/σi and reduce to the preceding case.

Remark: We have stated the main theorem in terms of two random variables M and
N, having components in V. The theorem can easily be generalised to the case of an
arbitrary number of vector valued variables, having components in V. A generalisation
of this kind can be applied for example in the theory of normal analysis of variance
whenever independence of linear statistics has to be proved. The premise in the theorem
is equivalent to the requirement that the vectorial variable (M,N) enjoys a multivariate
normal distribution. Details of all this can be found in [7].

Theorem A: If X1, . . . ,Xn form a sample from a normally distributed population, then
X and S2 are statistically independent.

Proof: Observe that X and Xi−X are in V and that cov(X,Xi−X) = 0. By the main
theorem we conclude that X and (X1−X, . . . ,Xn−X) are independent; it thus follows
that X and S2 are independent.
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Next, let X1, . . . ,Xm and Y1, . . . ,Yn be two independent samples from a N(µX , σ
2) and

a N(µY , σ
2) distributed population, respectively. Set

X =
1
m

∑
i

Xi , Y =
1
n

∑
j

Yj ,

S2
X =

1
m−1

∑
i

(Xi−X)2 , S2
Y =

1
n−1

∑
j

(Yj−Y)2 .

The pooled variance (S2
p ) of both samples together is understood to be

S2
p =

(m−1)S2
X + (n−1)S2

Y

m + n− 2
.

Theorem B: The variables (X,Y) and S2
p are statistically independent.

Proof: Applying the main theorem, the independence of the vectors (X,Y) and (X1−X ,
. . ., Xm−X , Y1−Y , . . . ,Yn−Y) is easily verified. As in the proof of theorem A the
independence of (X,Y) and S2

p follows.

Remark: Lecturers encounter the independence of (X ,Y) and S2
p when teaching the fact

that the test statistic
X − Y − (µX−µY)

Sp

√
1
m + 1

n

is Student distributed with m + n− 2 degrees of freedom.

The problem of independence also comes across in the theory of linear regression.

Consider a model of linear regression with one controlled variable x and one response
variable Yx. For a given sequence of values x1, . . . , xn the variables Yxi will be denoted
by Yi . The following assumptions are made:

i) Yx is N(α+βx, σ2) distributed.

ii) Given the values x1, . . . , xn for x, the variables Y1, . . . ,Yn are independent.

Under these conditions the variables

β̂ =
∑

i(xi−x)Yi∑
i(xi−x)2

and α̂ = β̂ − x Y

are unbiased estimators for β and α. Writing Ŷi = α̂+β̂xi , the so called “Sum of Squares
of Errors” can be expressed as

SSE =
∑

i

(Yi−Ŷi)2.
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Theorem C: The variables (α̂, β̂) and SSE are statistically independent.

Proof: Observe that α̂, β̂ and Yi−Ŷi are linear statistics in Y1, . . . ,Yn. Apply the main
theorem to verify that (α̂, β̂) and (Y1−Ŷ1, . . . ,Yn−Ŷn) are independent variables. Then
conclude that (α̂, β̂) and SSE are independent.

Remark: The independence of (α̂, β̂) and SSE plays a role when teaching that the test
statistic

(β̂−β)
√

(n−2)
∑

i(xi−x)2
√

SSE

is Student distributed with n− 2 degrees of freedom.
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