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Abstract. Let f W X ! X be a dominant meromorphic map on a projective manifold X which
preserves a meromorphic fibration � W X ! Y ofX over a projective manifold Y . We establish
formulas relating the dynamical degrees off , the dynamical degrees off relative to the fibration
and the dynamical degrees of the map g W Y ! Y induced by f . Applications are given.
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1. Introduction

Let .X; !X / be a compact Kähler manifold of dimension k and let f W X ! X be a
meromorphic map. We assume that f is dominant, i.e. the image of f contains an
open subset of X . Let � W X ! Y be a dominant meromorphic map from X onto
a compact Kähler manifold .Y; !Y / of dimension l � k. The fibers of � define a
fibration on X which might be singular. If f preserves this fibration, i.e. f sends
generic fibers of � to fibers of � , it induces a dominant meromorphic map g W Y ! Y

such that � B f D g B � . In that case, we say that f is semi-conjugate to g. For
simplicity, we assume that !Y is normalized so that !l

Y is a probability measure.
A natural question is how the dynamical system defined by f is similar to the

one defined by g when f is semi-conjugate to g as above. One of the first steps
towards understanding this question should be to find out the relations between some
invariants associated to f and g. In this paper, we will compare their dynamical
degrees.

Let f n WD f B � � � Bf , n times, denote the iterate of order n of f . The dynamical
degree dp.f / of order p is the quantity which measures the growth of the norms of
.f n/� acting on the Hodge cohomology groupHp;p.X;R/ when n tends to infinity.
By Poincaré duality, it also measures the growth of the norms of .f n/� acting on
H k�p;k�p.X;R/. IfX is a projective manifold, dp.f / represents the volume growth
of f n.V / for p-dimensional (closed complex) submanifolds V of X .
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It was shown by Sibony and the first author in [6], [7] that dynamical degrees are
bi-meromorphic invariants, that is, if f and g are bi-meromorphically conjugate, they
have the same dynamical degrees. Dynamical degrees capture important dynamical
information, in particular, in the computation of the topological entropy or in the
construction of Green currents and of measures of maximal entropy. We refer the
reader to the above references and to [8], [10], [15], [20] for more results on this
matter.

Whenf preserves a fibration� W X ! Y as above, the dynamical degreedp.f j�/
of order p of f relative to � measures the growth of .f n/� acting on the subspace
H

lCp;lCp
� .X;R/ of classes inH lCp;lCp.X;R/which can be supported by a generic

fiber of � . It also measures the growth of .f n/� acting on H k�p;k�p
� .X;R/ and

represents the volume growth of f n.V / for p-dimensional submanifolds V of a
generic fiber of � when X is projective. Precise definitions and properties will be
given in Section 3. Here is our main result.

Theorem 1.1. LetX and Y be projective manifolds of dimension k and l respectively
with k � l . Let f W X ! X , g W Y ! Y and � W X ! Y be dominant meromorphic
maps such that � B f D g B � . Then the dynamical degrees dp.f / of f are related
to the dynamical degrees dp.g/ of g and the relative dynamical degrees dp.f j�/ by
the formulas

dp.f / D max
maxf0;p�kClg�j �minfp;lg

dj .g/dp�j .f j�/

for 0 � p � k.

Note that the condition maxf0; p � k C lg � j � minfp; lg is equivalent to
0 � j � l and 0 � p � j � k � l . It guarantees that dj .g/ and dp�j .f j�/ are
meaningful1. We deduce from the above result that max dp.f / � max dp.g/. This
gives an affirmative answer to the problem 9.3 in Hasselblatt–Propp [12]. When X
and Y have the same dimension, generic fibers of � are finite and have the same
cardinality. Moreover, f defines bijections between generic fibers of � . We deduce
from the proof of Theorem 1.1 the following corollary which generalizes a result in
[6], [7]. It was proved by Nakayama–Zhang for holomorphic maps in [14].

Corollary 1.2. LetX and Y be compact Kähler manifolds of same dimension k. Let
f W X ! X , g W Y ! Y and � W X ! Y be dominant meromorphic maps such that
� B f D g B� . Then the dynamical degrees of f are equal to the dynamical degrees
of g.

1We will find later analogous conditions, essentially for the same reason but also to avoid expressions which

always vanish, e.g. !
lC1
Y D 0.
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Recall that by a theorem of Khovanskii [13], Teissier [17] and Gromov [9], the
dynamical degrees of f are log-concave, i.e. p 7! log dp.f / is concave. Therefore,
there are integers p � p0 such that

1 D d0.f / < � � � < dp.f / D � � � D dp0.f / > � � � > dk.f /:

An instructive example with p 6D p0 is a map f .x1; x2/ D .h.x1/; x2/ on a product
X1 �X2 of projective manifolds. A natural problem is to find dynamically interesting
examples of maps on projective manifolds. Therefore, it would be interesting to see
construction of maps with distinct consecutive dynamical degrees, i.e. with p D p0.
Somehow, this condition insures that there is no trivial direction in the associated
dynamical systems. We have the following useful results.

Corollary 1.3. Let f; �; g be as in Theorem 1.1. If the consecutive dynamical degrees
off are distinct, then the same property holds forg and for the consecutive dynamical
degrees of f relative to �:

The following result is obtained using the Iitaka fibrations of X .

Corollary 1.4. Let X be a projective manifold admitting a dominant meromorphic
map with distinct consecutive dynamical degrees. Then the Kodaira dimension of X
is either equal to 0 or �1.

Note that the same result was proved for compact Kähler surfaces by Cantat
in [3] and Guedj in [11], and for holomorphic maps on compact Kähler manifolds
by Nakayama and Zhang in [14], [21]. We also refer to Amerik–Campana [1] and
Nakayama-Zhang [14], [22] for other invariant fibrations for which Theorem 1.1 may
be applied in order to compute dynamical degrees.

Acknowledgment. The paper was written while the second author was visiting the
Abdus Salam International Centre for Theoretical Physics in Trieste and the Korea
Institute for Advanced Study in Seoul. He wishes to express his gratitude to these
organizations.

2. Positive closed currents

The proof of our main result uses a delicate calculus on positive closed currents on
compact Kähler manifolds2. In this section, we prove some useful results which can
be applied to currents of integration on varieties and may have independent interest.
The reader will find in Demailly [4] and Voisin [19] the basic facts on currents and
on Kähler geometry.

2In this paper, we only consider the strong positivity, see e.g. [8], A.2, for the terminology.
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Let .X; !X / be a compact Kähler manifold of dimension k. Let Kp.X/ denote
the cone of classes of strictly positive closed .p; p/-forms inHp;p.X;R/. This is an

open cone which is salient, i.e. Kp.X/ \ �Kp.X/ D f0g. If c, c0 are two classes
in Hp;p.X;R/, we write c � c0 and c0 � c when c0 � c is in Kp.X/ [ f0g.

If T is a real closed .p; p/-current, denote by fT g its class in Hp;p.X;R/. If
moreover T is positive, the mass of T is defined by kT k WD hT; !k�p

X i. We often
use the properties that kT k depends only on the class of T and fT g � AkT kf!p

Xg
for some constant A > 0 independent of T . The following semi-regularization of
currents was proved by Sibony and the first author in [6], [7].

Proposition 2.1. Let T be a positive closed .p; p/-current on a compact Kähler
manifold .X; !X /. Then there is a sequence of smooth positive closed .p; p/-forms
Tn on X which converges weakly to a positive closed .p; p/-current T 0 such that
T 0 � T , i.e. T 0 � T � 0, kTnk � AkT k and fTng � AkT kf!p

Xg, where A > 0 is
a constant independent of T . Moreover, if T is smooth on an open set U , then for
every compact set K � U , we have Tn � T on K when n is large enough.

We need the following lemma.

Lemma 2.2. Let T and S be positive closed currents on X of bidegree .p; p/ and
.q; q/ respectively with pCq � k. Assume that T is smooth on a dense Zariski open
set U of X . Then TjU ^ SjU has a finite mass. More precisely, there is a constant
A > 0 independent of T , S and U such that

kTjU ^ SjU k WD hTjU ^ SjU ; !k�p�q
X i � AkT kkSk:

Proof. Let Tn and K be as in Proposition 2.1. Since kTn ^ Sk can be computed
cohomologically, we have

kTjK ^ SjKk � lim inf
n!1 kTn ^ Sk � AkT kk!p

X ^ Sk D AkT kkSk:

This property holds for every compact subset K of U . Therefore,

kTjU ^ SjU k � AkT kkSk:
The lemma follows. �

Consider currents T and S as in Lemma 2.2. So, TjU ^ SjU has a finite mass.
Therefore, by Skoda’s theorem [16], its trivial extension defines a positive closed

current on X . We denote by T
B^ S this current obtained for the maximal Zariski

open set U on which T is smooth (in that case TjU is the regular part of T ). Observe
that when S has no mass on proper analytic subsets ofX , the current obtained in this
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way does not change if we replace U with another dense Zariski open set. We often
use this property in the sequence. By Lemma 2.2, we always have

kT B^ Sk � AkT kkSk:
We will be interested in positive closed currents T on Y � P m, where .Y; !Y /

is a compact Kähler manifold of dimension l and P m is the projective space of
dimension m endowed with the standard Fubini–Study form !FS. We assume that
!FS is normalized so that !m

FS is a probability measure. In practice, we will take
m WD k� l D dimX � dim Y . In order to simplify the notation, the pull-back of !Y

and !FS to Y � P m under the canonical projections are also denoted by !Y and !FS.
Consider on Y � P m the Kähler form ! WD !Y C !FS. The pull-back of a class c in
H�.Y;C/ orH�.P m;C/ toH�.Y � P m;C/ under the canonical projections is also
denoted by c.

If T is a positive closed .p; p/-current on Y � P m, define for maxf0; p �mg �
j � minfl; pg (or equivalently, for 0 � j � l and 0 � p � j � m)

j̨ .T / WD ˝
T; !

l�j
Y ^ !m�pCj

FS

˛
: (1)

Observe that j̨ .T / depends only on the class fT g of T . Denote by Y the cup-product
on Hodge cohomology groups.

Proposition 2.3. Let T be a positive closed .p; p/-current on Y � P m as above.
Then

fT g � A
X

maxf0;p�mg�j �minfl;pg
j̨ .T /f!j

Y g Y f!p�j
FS g;

where A > 0 is a constant independent of T .

Proof. By the Künneth formula (see e.g. [19], p. 266) we have

H�.Y � P m;C/ D H�.Y;C/˝H�.P m;C/:

Therefore, there are classes cj 2 H j;j .Y;R/ such that

fT g D
X

maxf0;p�mg�j �minfl;pg
cj Y f!p�j

FS g:

Let S be a smooth positive closed .l � j; l � j /-form on Y and S 0 its canonical
pull-back to Y � P m. Recall that cj denotes also the pull-back of cj to Y � P m.
Since !m

FS is a probability measure on P m, a simple computation on bidegree gives

cj Y fSg D cj Y fS 0g Y f!m
FSg D hT; S 0 ^ !m�pCj

FS i � 0:
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So, cj belongs to the convex closed cone K of classes c in H j;j .Y;R/ with
cYc0 � 0 for c0 2 K l�j .Y /. Since K l�j .Y / is open and since Y is non-degenerate,
K is salient, i.e. K \ �K D f0g. The fact that f!l�j

Y g is in the interior of K l�j .Y /

implies that cj Y f!l�j
Y g D 0 only when cj D 0. Moreover, we have

kcj k � A0cj Y f!l�j
Y g D A0hT; !l�j

Y ^ !m�pCj
FS i D A0

j̨ .T /

for a fixed norm k k on H j;j .Y;R/ and for some constant A0 > 0. It follows that

cj � A j̨ .T /f!j
Y g

for some constant A > 0. The result follows. �

Proposition 2.4. Let T be a positive closed .p; p/-current on Y � P m as above.
Assume that Y is a projective manifold. Then there is a sequence of smooth positive
closed .p; p/-forms Tn on Y � P m which converges weakly to a current T 0 � T

such that j̨ .Tn/ � A j̨ .T / for all j , where A > 0 is a constant independent of T .
Moreover, if T is smooth on an open set U , then for every compact subset K of U
and every � > 0, we have Tn � T � �!p on K when n is large enough.

Proof. We first consider the case where Y D P l and !Y is the Fubini–Study form
normalized so that !l

Y is a probability measure. The Künneth formula applied to this
particular case says that T is cohomologous to

X
maxf0;p�mg�j �minfl;pg

j̨ .T /f!j
Y g Y f!p�j

FS g:

Since Y � P m is homogeneous, we can regularize T using the automorphisms of
Y � P m which are close to the identity.

More precisely, let �n be a sequence of smooth probability measures on the group
of automorphisms Aut.Y � P m/ of Y � P m whose supports converge to the identity
id 2 Aut.Y � P m/. Define

Tn WD
Z

�2Aut.Y �Pm/

��.T /d�n.�/:

Then, the Tn are smooth positive closed .p; p/-forms and converge weakly to T . We
also have fTng D fT g and hence j̨ .Tn/ D j̨ .T /. This gives the first assertion for
Y D P l .

For the second assertion, we can prove a stronger property. Let ˆ be a smooth
positive .p; p/-form on U such that ˆ � T . We do not assume that T is smooth nor
that ˆ is closed on U . Then

ˆn WD
Z

�2Aut.Y �Pm/

��.ˆ/d�n.�/
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converges uniformly toˆ onK. Sinceˆn � Tn, we have Tn � ˆ� �!p onK for n
large enough. With our hypothesis, T is smooth on U and we can replace ˆ with T .

Assume now that Y is a general projective manifold. We may find a finite family
of open holomorphic maps ‰i , 1 � i � s, from Y onto P l such that for every
point y 2 Y at least one map ‰i is of maximal rank at y. To do this it suffices
to embed Y into a projective space and take a family of central projections. Let
…i W Y � P m ! P l � P m be defined by

…i .y; z/ WD .‰i .y/; z/; .y; z/ 2 Y � P m:

We apply the first case to the currents T .i/ WD .…i /�.T /.
We construct as above smooth positive closed .p; p/-forms T .i/

n on P l � P m

converging to T .i/ such that fT .i/
n g D fT .i/g. Define Tn WD P

i …
�
i .T

.i/
n /. Since

the cohomology classes of T .i/
n are bounded, the classes of Tn are also bounded.

Therefore, the masses of Tn are bounded. Up to extracting a subsequence, we can
assume that…�

i .T
.i/
n / converges and hence theTn converge to a positive closed current

T 0. If .y; z/ is a point in Y � P m and ‰i has maximal rank at y, then …i defines a
local bi-holomorphic map on a neighbourhood of .y; z/. In this neighbourhood, we
have

T � …�
i .…i /�.T / D …�

i .T
.i// � lim

n!1…�
i .T

.i/
n / � T 0:

The choice of ‰i implies that T � T 0 on Y � P m. The second assertion of the
proposition is a local property. So, it is also easy to check.

It remains to prove the estimate on j̨ .Tn/. Let Q!FS denote the Fubini–Study
form of P l normalized so that Q!l

FS is a probability measure. Since Q!FS is strictly

positive, there is a constant A1 > 0 such that .‰i /�f!l�j
Y g � A1f Q!l�j

FS g. We also

have .‰i /
�. Q!l�j

FS / � A2!
l�j
Y for some constantA2 > 0. For simplicity, we will also

denote by!Y , !FS and Q!FS the pull-backs of these forms to Y �P m or to P l �P m. In
particular, .…i /�.!l�j

Y ^!m�pCj
FS / and .‰i /�.!l�j

Y /^!m�pCj
FS represent the same

form on P l � P m. Since the T .i/
n are smooth and since the following integrals can

be computed cohomologically, we have
˝
…�

i .T
.i/
n /; !

l�j
Y ^ !m�pCj

FS

˛ D ˝
T .i/

n ; .‰i /�.!l�j
Y / ^ !m�pCj

FS

˛
� A1

˝
T .i/

n ; Q!l�j
FS ^ !m�pCj

FS

˛
D A1

˝
T .i/; Q!l�j

FS ^ !m�pCj
FS

˛
D A1

˝
T;‰�

i . Q!l�j
FS / ^ !m�pCj

FS

˛
� A1A2

˝
T; !

l�j
Y ^ !m�pCj

FS

˛
:

It follows that j̨

�
…�

i .T
.i/
n /

� � A1A2 j̨ .T / and hence j̨ .Tn/ � A j̨ .T / for some
constant A > 0. �
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3. Dynamical degrees

Let � W .X; !X / ! .Y; !Y / be a dominant meromorphic map between compact
Kähler manifolds of dimension k and l respectively. The map � is holomorphic
outside the indeterminacy set I� which is an analytic subset of X of codimension at
least 2. The closure � of its graph over X n I� is an irreducible analytic subset of
dimensionk ofX�Y . If, �X and �Y denote the projections fromX�Y onto its factors,
then �X defines a bi-holomorphic map between � n��1

X .I�/ andX nI� . The fibers of
�X j� over I� have positive dimension. One can identify� with �Y B.�X j�/�1. ForA �
X and B � Y , define �.A/ WD �Y .�X j�/�1.A/ and ��1.B/ WD �X .�Y j�/�1.B/.

The map � induces linear operators on currents. If ˆ is a smooth .p; q/-form
on Y , then ��.ˆ/ is the .p; q/-current defined by

��.ˆ/ WD .�X /�.��
Y .ˆ/ ^ Œ��/;

where Œ�� is the current of integration on � . It is not difficult to see that ��.ˆ/ is an
L1 form smooth outside I� . If ‰ is a smooth .p; q/-form on X with p; q � k � l ,
then ��.‰/ is the .p � k C l; q � k C l/-current defined by

��.‰/ WD .�Y /�.��
X .‰/ ^ Œ��/:

If ˆ and ‰ are closed or positive, so are ��.ˆ/ and ��.‰/. Therefore, �� and ��
induce linear operators on the Hodge cohomology groups of X and Y .

In general, the above operators do not extend continuously to positive closed
currents. We will use instead the strict transforms of currents �� and �� which
coincide with �� and �� on smooth positive closed forms. In this paper, we only
need these operators in the case where X and Y have the same dimension k.

Let U be the maximal Zariski open set in X n I� such that � W U ! �.U / is
locally invertible. The complement of U in X is called the critical set of � . If T
is a positive closed .p; p/-current on Y , .�jU /�.T / is well-defined and is a positive
closed .p; p/-current on U . Proposition 2.1 allows us to show that this current has
finite mass. By Skoda’s Theorem [16], its trivial extension to X is a positive closed
.p; p/-current that we denote by ��.T /.

Let V be the maximal Zariski open set in Y n�.I�/ such that � W ��1.V / ! V is
a non-ramified covering. The complement of V in Y is called the set of critical values
of � . If S is a positive closed .p; p/-current onX , then ��.S/ is the trivial extension
of .�j��1.V //�.S/ to Y . This is also a positive closed .p; p/-current. We will use the
properties that k��.T /k � AkT k and k��.S/k � AkSk for some constant A > 0

independent of T , S , see [6], [7] for details.
Consider now a dominant meromorphic self-map f W X ! X . The iterate of

order n of f is defined by f n WD f B � � � B f (n times) on a dense Zariski open set
and extends to a dominant meromorphic map on X . Define for 0 � p � k

�p.f
n/ WD k.f n/�.!p

X /k D ˝
.f n/�.!p

X /; !
k�p
X

˛
:



Vol. 86 (2011) Comparison of dynamical degrees for semi-conjugate meromorphic maps 825

It is not difficult to see that

�p.f
n/ D k.f n/�.!k�p

X /k D ˝
.f n/�.!k�p

X /; !
p
X

˛
:

It was shown in [6], [7] that Œ�p.f
n/�1=n converges to a constant dp.f / which is the

dynamical degree of order p of f . Note that the main difficulty here is that in general
we do not have .f nCs/� D .f n/� B .f s/� on cohomology classes.

Let k kH p;p denote the norm of an operator acting on Hp;p.X;R/ with respect
to a fixed norm on that space. Since the mass of a positive closed current depends
only on its cohomology class, we deduce from the above discussion that

A�1�p.f
n/ � k.f n/�kH p;p � A�p.f

n/;

for some constant A > 0. It follows that

dp.f / D lim
n!1 k.f n/�k1=n

H p;p :

Note that we also have dp.f
n/ D dp.f /

n for n � 1. The last dynamical degree
dk.f / is also called the topological degree of f . It is equal to the number of points
in a generic fiber of f and we have �k.f

n/k!k
Xk�1 D dk.f

n/ D dk.f /
n.

Proposition 3.1. Let T be a positive closed .p; p/-current and S a positive closed
.k � p; k � p/-current on X . Then

k.f n/�.T /k � AkT k�p.f
n/ and k.f n/�.S/k � AkSk�p.f

n/

for some constant A > 0 independent of T , S and n. In particular, we have

lim sup
n!1

k.f n/�.T /k1=n � dp.f / and lim sup
n!1

k.f n/�.S/k1=n � dp.f /:

Proof. We show the first inequality. The second one is proved in the same way. LetTi

be smooth positive closed forms as in Proposition 2.1. It follows from the definition
of .f n/� that any limit value of .f n/�.Ti / is larger than or equal to .f n/�.T /. So, it
is enough to bound the mass of .f n/�.Ti /. Since this mass can be computed cohomo-
logically and since fTig � AkT kf!p

Xg, we obtain that k.f n/�.Ti /k � AkT k�p.f
n/

for some constant A > 0. This completes the proof. �

The above proposition can be applied to currents of integration on submanifolds
V of dimension k � p or p of X and gives a upper bound for the volume growth of
the preimage or image of V by f n.

It was shown in [6], [7] that dynamical degrees are bi-meromorphic invariants, i.e.
conjugate maps have the same dynamical degrees. This property allows us to define
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dynamical degrees for maps on singular manifolds having a kählerian desingulariza-
tion. We will use the same argument in order to define dynamical degrees relative to
an invariant meromorphic fibration.

Let f , g, � be as in Theorem 1.1. So, � defines a fibration and f preserves
this fibration. Let us assume first that � is a holomorphic map. By the Bertini–Sard
theorem, the setZ of critical values of � is a proper analytic subset of Y . Therefore,
� W X n ��1.Z/ ! Y nZ defines a regular holomorphic fibration. Its fibers form a
continuous family of smooth submanifolds of dimension k � l of X .

Let Pf and Pg denote the union of the critical set and the set of critical values
of f and g respectively. They contain the indeterminacy sets of f and of g. A fiber
Ly WD ��1.y/ with y 2 Y nZ is called generic if for every n � 0

(a) gn.y/ and g�n.y/ do not intersect Pg ;

(b) For every point b in gn.y/ [ g�n.y/, no component of Lb is contained in Pf .

Denote by† the set of y such that Ly is generic. Observe that Y n† is contained in
a finite or countable union of proper analytic subsets of Y . So, † is connected. We
also have g.†/ D g�1.†/ D †. We will use the following lemma for � D !l

Y and
for � D Œdl.g/�

�n.gn/�.!l
Y /.

Lemma 3.2. Let Ly be a generic fiber as above. Let � be a probability measure on
Y which has no mass on proper analytic subsets of Y . Then, for 0 � p � k � l and
for n � 0, the 6 positive closed currents

dl.g/
�n.f n/�.!p

X ^ ŒLy �/; .f n/�.!p
X /

B^ ŒLy �; .f n/�.!p
X /

B^ ��.�/

and

.f n/�.!k�l�p
X ^ ŒLy �/; dl.g/

�n.f n/�.!k�l�p
X /

B^ ŒLy �;

dl.g/
�l.f n/�.!k�l�p

X /
B^ ��.�/

have the same mass. In particular, their mass does not depend on y 2 †.

Proof. For y 2 †, define

'.y/ WD dl.g/
�n

��.f n/�.!p
X ^ ŒLy �/

�� and  .y/ WD ��.f n/�.!k�l�p
X ^ ŒLy �/

��:
It is not difficult to see that these functions are continuous on †. We have

'.y/ D dl.g/
�n

˝
.f n/�.!p

X ^ ŒLy �/; !
k�l�p
X

˛
D dl.g/

�n
˝
!

p
X ; ŒLy �

B^ .f n/�.!k�l�p
X /

˛
:

It follows that

' D dl.g/
�n��

�
!

p
X ^ .f n/�.!k�l�p

X /
�
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in the sense of currents on Y . Therefore, ' defines a closed 0-current on Y and it
should be constant on †.

We also deduce from the above computation that

'.y/ D dl.g/
�n

��.f n/�.!k�l�p
X /

B^ ŒLy �
��:

Since � has no mass on Y n†, we obtain

' D
Z
'.y/d� D dl.g/

�n
��.f n/�.!k�l�p

X /
B^ ��.�/

��:
In the same way, we prove that  is constant on † and

 D ��.f n/�.!p
X /

B^ ŒLy �
�� D ��.f n/�.!p

X /
B^ ��.�/

��:
It remains to check that ' D  . Using that  is constant and #g�n.y/ D dl.g/

n,
we have

' D dl.g/
�n

��.f n/�.!p
X ^ ŒLy �/

�� D dl.g/
�n

X
b2g�n.y/

��.f n/�.!p
X /

B^ ŒLb�
�� D  :

This completes the proof. �

Define �p.f
nj�/ the mass of the currents in Lemma 3.2. We have in particular

�p.f
nj�/ D ��.f n/�.!p

X / ^ ��.!l
Y /

��:
Recall that � is holomorphic and then ��.!l

Y / is smooth.

Proposition 3.3. The sequence �p.f
nj�/1=n converges to a constant dp.f j�/. Let

T be a positive closed .pC l; pC l/-current and S a positive closed .k�p; k�p/-
current on X which are supported on a generic fiber Ly . Then

k.f n/�.T /k � AykT kdl.g/
n�p.f

nj�/ and k.f n/�.S/k � AykSk�p.f
nj�/

for some constant Ay > 0 independent of T and S . In particular, we have

lim sup
n!1

k.f n/�.T /k1=n � dl.g/dp.f j�/
and

lim sup
n!1

k.f n/�.S/k1=n � dp.f j�/:
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Proof. Fix a generic fiber Ly with y 2 †. We will show that

�p.f
nCmj�/ � Ay�p.f

nj�/�p.f
mj�/

for some constant Ay > 0 and for all n;m � 0. This will imply the first assertion
because the sequence Ay�p.f

nj�/ is sub-multiplicative.
Since Ly is a compact Kähler manifold, we can apply Proposition 2.1 to Ly . Let

b be a point in† such that gm.b/ D y. DefineR WD .f m/�.!k�l�p
X ^ ŒLb�/. This is

a positive closed .k �p; k �p/-current on X which is also a .k � l �p; k � l �p/-
current on Ly . By Lemma 3.2, we have kRk D �p.f

mj�/. Therefore, there are
smooth positive closed .k � l � p; k � l � p/-forms ‚i on Ly which converge to

a current ‚ � R. Moreover, we have f‚ig � Ay�p.f
mj�/f!k�l�p

X jLy
g for some

constant Ay > 0, where the inequality is considered in H�.Ly ;R/.
Let h denote the restriction of f n toLy . It defines a meromorphic map fromLy to

Lgn.y/. Since the mass of a positive closed current can be computed cohomologically,
we obtain

�p.f
nCmj�/ D k.f n/�.R/k � lim inf

i!1 kh�.‚i /k � Ay�p.f
mj�/kh�.!k�l�p

X jLy
/k

D Ay�p.f
mj�/k.f n/�.!k�l�p

X ^ ŒLy �/k
D Ay�p.f

mj�/�p.f
nj�/:

This implies the first assertion in the proposition. The rest is proved in the same way
using the semi-regularization result for T and S onLy , see also Proposition 3.1. �

We call dp.f j�/ the dynamical degree of order p of f relative to � . The con-
vergence in Proposition 3.3 implies that dp.f

nj�/ D dp.f j�/n.

Remark 3.4. Our choice of† simplifies the calculus on currents but several properties
above still hold for some y 62 †. For example, if y is a fixed point of g which is not
a critical value of � and if no component of Ly is contained in the critical set of f ,
then dp.f j�/ D dp.fjLy

/. The proof is left to the reader.

The next result shows that the relative dynamical degrees are bi-meromorphic in-
variants. Consider a bi-meromorphic map � W . zX;! zX / ! .X; !X / between compact

Kähler manifolds. Define Q� WD � B � and Qf WD ��1 B f B � . Then, Qf is a dominant
meromorphic map conjugate to f and Q� B Qf D g B Q� .

Proposition 3.5. Assume that Q� is holomorphic. Then

dp.f j�/ D dp. Qf j Q�/
for 0 � p � k � l .
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Proof. Since � is bi-meromorphic, �� Q��.!l
Y / D ��.!l

Y / and Qf n D ��1 B f n B � ,
we have

�p. Qf nj Q�/ D ˝
. Qf n/�.!p

zX / ^ Q��.!l
Y /; !

k�l�p

zX
˛

D ˝
��.f n/���.!p

zX / ^ !k�l�p

zX ; Q��.!l
Y /

˛

D ˝
.f n/���.!p

zX /
B^ ��.!k�l�p

zX /; ��.!l
Y /

˛
:

Using the semi-regularization result for ��.!k�l�p

zX /, we deduce that

�p. Qf nj Q�/ � A
˝
.f n/���.!p

zX / ^ !k�l�p
X ; ��.!l

Y /
˛

for some constant A > 0. Then, using a semi-regularization of ��.!p

zX /, we obtain

�p. Qf nj Q�/ � A0˝.f n/�.!p
X / ^ !k�l�p

X ; ��.!l
Y /

˛ D A0�p.f
nj�/

for some constant A0 > 0. It follows that dp. Qf j Q�/ � dp.f j�/. The converse
inequality is proved in the same way. �

The last proposition allows us to define relative dynamical degrees in the general
case. Assume now that f preserves a meromorphic fibration� W X ! Y , i.e.� Bf D
g B � as in Theorem 1.1. Let � denote the closure of the graph of � in X � Y . Then
� is an irreducible analytic set of dimension k which is bi-meromorphic to X . Let
	 W zX ! � be a desingularization of � which can be constructed using a blow-up
along the singularities. By Blanchard’s theorem [2], zX is a compact Kähler manifold.
Then, � WD �X B 	 is a bi-meromorphic map from zX to X . Define also Q� WD �Y B 	
and Qf WD ��1 B f B � . The map Q� is holomorphic and Q� B Qf D g B Q� . Define the
dynamical degree of order p of f relative to � by

dp.f j�/ WD dp. Qf j Q�/:
Proposition 3.5 implies that the definition does not depend on the choice of 	 . The
following result is a consequence of a theorem by Khovanskii, Teissier and Gromov.

Proposition 3.6. The function p 7! log dp.f j�/ is concave for 0 � p � k � l . In
particular, dp.f j�/ � 1 for 0 � p � k � l .
Proof. We can assume that � is holomorphic. We have to show that

dp�1.f j�/dpC1.f j�/ � dp.f j�/2:
For this purpose, it is enough to check that

�p�1.f
nj�/�pC1.f

nj�/ � �p.f
nj�/2:
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Observe that for non-critical values y of� , the fibersLy are not necessarily connected
but they contain the same number s of components. The family of these components
is connected since X is connected. It defines a covering of degree s over the set of
non-critical values of � . Let †0 denote the parameter space for the components L0

y

ofLy with y 2 †. We may think of†0 as a covering of degree s over†:We can then

prove as in Lemma 3.2 that the function L0
y 7! k.f n/�.!p

X /
B^ ŒL0

y �k is constant on

†0. Therefore, it is equal to s�1k.f n/�.!p
X /

B^ ŒLy �k and then to s�1�p.f
nj�/.

Let h be the restriction of f n to L1 WD L0
y and define L2 WD h.L1/. Let �

denote the graph of h inL1 �L2 and � W y� ! � a desingularization of � using some
blow-up along the singularities. By Blanchard’s theorem [2], z� is a compact Kähler
manifold. Denote by �1 W y� ! L1 and �2 W y� ! L2 the canonical projections. We
have h D �2 B ��1

1 . Define !1 WD ��
1 .!X / and !2 WD ��

2 .!X /. We deduce from the
above discussion that

s�1�p.f
nj�/ D k.hn/�.!p

X /k D
Z

y�
!

k�l�p
1 ^ !p

2 :

If 
p denotes the last integral, Gromov proved in [9] that p 7! log 
p is concave,
i.e. 
p�1
pC1 � 
2

p , when !1 and !2 are Kähler forms. By continuity, this still
holds in our case where these forms are only smooth positive and closed. Hence,
p 7! log dp.f j�/ is concave.

In order to deduce the second assertion of the proposition, it is enough to show
that d0.f j�/ D 1 and dk�l.f j�/ � 1. For y generic, we have

�0.f
nj�/ D dl.g/

�nk.f n/�ŒLy �k D dl.g/
�n

X
b2g�n.y/

kŒLb�k:

Hence, �0.f
nj�/ is independent of n since #g�n.y/ D dl.g/

n and the mass of ŒLb�,
with b 2 †, is independent of b. It follows that d0.f j�/ D 1.

We also have for y generic and b 2 g�n.y/

�k�l.f
nj�/ D k.f n/�ŒLb�k � kŒLy �k:

So, the sequence �k�l.f
nj�/ is bounded from below by a positive constant. There-

fore, dk�l.f j�/ � 1. This completes the proof of the lemma. Note that we can
show that dk�l.f j�/ is the number of points in a generic fiber of the restriction of
f to Ly . �

Consider now some examples, see also [1], [14], [21], [22].

Example 3.7. Let X D Y � Z be the product of two compact Kähler manifolds
and � W X ! Y the canonical projection. Consider f .y; z/ WD .g.y/; h.z// where
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g W Y ! Y and h W Z ! Z are dominant meromorphic maps. So, f is semi-
conjugate to g. The relative dynamical degree dp.f j�/ is equal to dp.h/. We easily
deduce from the definition of dynamical degrees that

dp.f / D max
maxf0;p�kClg�j �minfp;lg

dj .g/dp�j .h/:

There are more interesting examples of maps on the productY�Z. LetF be a compact
Kähler manifold. Assume thatF is also the parameter space of a meromorphic family
of meromorphic self-maps of Z. Let � W Y ! F be a meromorphic map. Then
f .y; z/ WD .g.y/; �.y/.z// is a meromorphic self-map of Y �Z which preserves the
fibration � . The example is also interesting when �.y/ is holomorphic for generic y
or when a Zariski open set G of F is a Lie group and � is a morphism from G to the
group of bi-meromorphic maps of Z.

Example 3.8. Let g W Y ! Y be a dominant meromorphic map on a compact Kähler
manifold Y . It induces a meromorphic self-map f on the projectivizationX WD PTY

of the holomorphic tangent bundle ofY . The map f preserves the fibration associated
to the canonical projection from X onto Y and is semi-conjugate to g. This example
and some applications were considered in [5].

4. Proofs of the results

We first prove Theorem 1.1. Since the dynamical degrees are bi-meromorphic invari-
ants, Proposition 3.5 allows us to assume that � is a holomorphic map. Since X is
projective, we can construct a dominant meromorphic map v W X ! P k�l . Indeed,
it is enough to embedX in a projective space and choose a generic central projection
on P k�l . Replacing X with a desingularization of the graph of v allows to assume
that v is holomorphic. Consider the holomorphic map … W X ! Y � P k�l defined
by

….x/ WD .�.x/; v.x//:

Since the chosen central projection is generic, the intersection of a generic fiber of �
and a generic fiber of v is finite. Therefore, … is dominant.

Our proof is based on a delicate calculus on currents. If X D Y � P k�l and � is
the canonical projection onto Y , the proof is simpler and the properties obtained in
Section 2 can be directly applied. A rough idea is to reduce the general case to the
particular case using the map …. In other words, we use the fact that f is, in some
sense, “semi-conjugate” to the multi-valued map … B f B…�1 which is defined on
Y � P k�l .

Let !FS denote the Fubini–Study form on P k�l . For simplicity, the canonical
pull-back of !Y and !FS to Y � P k�l are still denoted by !Y and !FS. In particular,
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…�.!Y / and ��.!Y / represent the same form on X . We consider on Y � P k�l the
Kähler form! WD !Y C!FS. Our calculus will involve the quantities aq;p.n/ defined
for n � 0, 0 � q � k � l and q � p � l C q by

aq;p.n/ WD k…�.f n/�…�.!p/ ^ !l�pCq
Y k

D ˝
…�.f n/�…�.!p/; !

l�pCq
Y ^ !k�l�q

˛
D ˝
.f n/�…�.!p/;…�.!l�pCq

Y ^ !k�l�q/
˛

D ˝
.f n/�…�.!p/ ^ ��.!l�pCq

Y /;…�.!k�l�q/
˛
:

Observe that
aq;p.n/ � p̨�q

�
…�.f n/�…�.!p/

�
;

where p̨�q. �/ is defined in (1).

Lemma 4.1. There is a constant A > 0 independent of p, n such that

A�1�p.f
nj�/ � ap;p.n/ � A�p.f

nj�/
In particular, Œap;p.n/�

1=n converges to dp.f j�/.

Proof. Since the pull-back of a smooth form under … is smooth, we have

ap;p.n/ D ˝
.f n/�…�.!p/ ^ ��.!l

Y /;…
�.!k�l�p/

˛
� A

˝
.f n/�.!p

X / ^ ��.!l
Y /; !

k�l�p
X

˛ D A�p.f
nj�/

for some constant A > 0. This gives the second inequality in the lemma.
Define T WD …�.!p

X /. Since …�.T / � !
p
X , we have

�p.f j�/ D k.f n/�.!p
X / ^ ��.!l

Y /k � k.f n/�…�.T / ^ ��.!l
Y /k:

We apply Proposition 2.1 to the current T on Y � P k�l which is an L1 form smooth
on a Zariski open set. Let Ti be as in that proposition with fTig � Af!pg for some
constant A > 0. If S WD …�.!k�l�p

X /, we have …�.S/ � !
k�l�p
X and hence

�p.f j�/ � lim inf
i!1 k.f n/�…�.Ti / ^ ��.!l

Y /k
� Ak.f n/�…�.!p/ ^ ��.!l

Y /k
D A

˝
.f n/�…�.!p/ ^ ��.!l

Y /; !
k�l�p
X

˛
� A

��.f n/�…�.!p/ ^ ��.!l
Y /

B^ …�.S/
��:
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Now, we apply again Proposition 2.1, in particular its last assertion, to the current
S which is anL1 form smooth on a Zariski open set. IfSi are smooth forms satisfying
that proposition, the latter expression is bounded from above by

lim inf
i!1

˝
.f n/�…�.!p/ ^ ��.!l

Y /;…
�.Si /

˛

.
˝
.f n/�…�.!p/ ^ ��.!l

Y /;…
�.!k�l�p/

˛
:

The last integral is equal to ap;p.n/. The first inequality in the lemma follows. �

Define for 0 � p � k

bp.n/ WD
X

maxf0;p�lg�q�minfp;k�lg
aq;p.n/:

We have the following lemma.

Lemma 4.2. The sequence bp.n/
1=n converges to dp.f /.

Proof. Since …�.!p/, ��.!l�pCq
Y / and …�.!k�l�q/ are smooth on X , we have

aq;p.n/ D ˝
.f n/�…�.!p/ ^ ��.!l�pCq

Y /;…�.!k�l�q/
˛

� Ak.f n/�.!p
X /k D A�p.f

n/

for some constant A > 0. We deduce that lim sup bp.n/
1=n � dp.f /.

It remains to check that lim inf bp.n/
1=n � dp.f /. For this purpose, we only

need to show that �p.f
n/ � Abp.n/ for some constant A > 0. Define T WD

…�.f n/�…�.!p/. We prove that �p.f
n/ . kT k . bp.n/ which will imply the

result.
Define S WD …�.!p

X /. We have …�.S/ � !
p
X . Therefore,

�p.f
n/ D ˝

.f n/�.!p
X /; !

k�p
X

˛ � ˝
.f n/�…�.S/; !k�p

X

˛
:

Using a semi-regularization of S , we deduce that

�p.f
n/ .

˝
.f n/�…�.!p/; !

k�p
X

˛
:

Define R WD …�.!k�p
X /. We also have …�.R/ � !

k�p
X . We obtain as above using

a semi-regularization of R that

�p.f
n/ .

��.f n/�…�.!p/
B^ …�.R/

�� .
��.f n/�…�.!p/ ^…�.!k�p/

��
D ˝
…�.f n/�…�.!p/; !k�p

˛ D kT k:
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Now, since !lC1
Y D 0 and !k�lC1

FS D 0, we have

kT k D ˝
T; .!Y C !FS/

k�p
˛
.

X
maxf0;p�lg�q�minfp;k�lg

˝
T; !

l�pCq
Y ^ !k�l�q

FS

˛

�
X

maxf0;p�lg�q�minfp;k�lg
aq;p.n/ D bp.n/:

This completes the proof of the lemma. �

For every n � 0 and 0 � p � l define

cp.n/ WD �p.g
n/ D k.gn/�.!p

Y /k D ˝
.gn/�.!p

Y /; !
l�p
Y

˛
:

We have the following lemma.

Lemma 4.3. There is a constant A > 0 such that˝
…�.f n/�…�.!p�q

Y ^ !q/; !
l�pCp0

Y ^ !k�l�p0
˛ � Aap0;q.n/cp�q.n/

for 0 � p0 � k � l , p0 � p � l Cp0, p0 � q � p and n � 0. Moreover, the above
integral vanishes when q < p0.

Proof. Observe that by definition of …�

…�.f n/�…�.!p�q
Y ^ !q/ D …�

�
.f n/�…�.!p�q

Y /
B^ .f n/�…�.!q/

�
� …�.f n/�…�.!p�q

Y /
B^ …�.f n/�…�.!q/:

Hence, the left hand side of the inequality in the lemma is smaller than or equal to
˝
…�.f n/�…�.!p�q

Y /
B^ …�.f n/�…�.!q/; !

l�pCp0

Y ^ !k�l�p0
˛
:

DefineT WD …�.f n/�…�.!p�q
Y /^!l�pCp0

Y andS WD …�.f n/�…�.!q/^!k�l�p0 .
Note that T and S are of bidegree .l � qCp0; l � qCp0/ and .k � l C q �p0; k �
l C q � p0/ respectively. The quantity considered above is equal to the mass of the

measure T
B^ S .

We first show that j̨ .T / D 0when j < l�qCp0 and ˛l�qCp0
.T / � Acp�q.n/

for some constant A > 0. Since � B f n D gn B � , we have

T D …�.f n/���.!p�q
Y / ^ !l�pCp0

Y D …���.gn/�.!p�q
Y / ^ !l�pCp0

Y :

Hence,

j̨ .T / D ˝
…���.gn/�.!p�q

Y / ^ !l�pCp0

Y ; !
l�j
Y ^ !k�2lCq�p0Cj

FS

˛
D ˝
��.gn/�.!p�q

Y / ^ ��.!l�pCp0

Y /; ��.!l�j
Y / ^…�.!k�2lCq�p0Cj

FS /
˛

D ˝
���

.gn/�.!p�q
Y / ^ !2l�pCp0�j

Y

�
;…�.!k�2lCq�p0Cj

FS /
˛
:
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When j < l�qCp0, the form in the brackets has bidegree � .lC1; lC1/ and should
vanish because dim Y D l . Therefore, j̨ .T / D 0 in that case. When j D l�qCp0,
this form defines a positive measure of mass �p�q.g

n/. Its cohomology class is equal
to �p�q.g

n/f!l
Y g. Therefore, using a semi-regularization as above, we obtain

˛l�qCp0
.T / . �p�q.g

n/
˝
��.!l

Y /;…
�.!k�l

FS /
˛ � Acp�q.n/

for some constant A > 0.
We deduce from Proposition 2.3 that fT g . cp�q.n/f!l�qCp0

Y g. Using the semi-
regularization in Proposition 2.4 for T , we obtain

fT B^ Sg . cp�q.n/k!l�qCp0

Y ^ Sk D cp�q.n/ap0;q.n/:

This completes the proof of the first assertion in the lemma. For the second one, it
is enough to observe that when q < p0, we have j̨ .T / D 0 for every j and hence
T D 0. �

The following lemma is crucial in our proof.

Lemma 4.4. There exists a constant A > 0 such that for all 0 � p0 � k � l ,
p0 � p � l C p0 and all n; r � 1

ap0;p.nr/ � Ar
X rY

sD1

aps�1;ps
.n/cp�ps

.n/;

where the sum is taken over .p1; : : : ; pr/ with p0 � p1 � p2 � � � � � pr � p and
pr�1 � k � l:

Proof. We proceed by induction on r . Clearly, the lemma is true for r D 1. Suppose
the lemma true for r , we need to prove it for r C 1. In what follows, the constants
Ai depend only on the geometry of X and Y .

Define T .r/ WD …�.f nr/�…�.!p/. This is a positive closed L1 form, smooth
on a dense Zariski open set. Observe that …�…� � id on positive closed currents
having no mass on proper analytic subsets of X . Therefore,

T .rC1/ � …�.f n/�…�…�.f nr/�…�.!p/ D …�.f n/�…�.T .r//:

On the other hand, by Proposition 2.4, we can find a sequence of smooth positive
closed .p; p/-forms T .r/

i converging weakly to a positive closed current zT .r/ � T .r/

such that

p̨�q.T
.r/
i / � A1 p̨�q.T

.r// � A1aq;p.nr/
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for maxf0; p � lg � q � minfp; k � lg and A1 > 0 a constant. By Proposition 2.3,
there is a constant A2 > 0 such that

fT .r/
i g � A2

X
maxf0;p�lg�q�minfp;k�lg

aq;p.nr/f!p�q
Y g Y f!q

FSg:

We deduce from the above discussion and Lemma 4.3 that

ap0;p.n.r C 1// D ˝
T .rC1/; !

l�pCp0

Y ^ !k�l�p0
˛

� lim inf
i!1

˝
…�.f n/�…�.T .r/

i /; !
l�pCp0

Y ^ !k�l�p0
˛

� A2

X
maxf0;p�lg�q
�minfp;k�lg

aq;p.nr/
˝
…�.f n/�…�.!p�q

Y ^ !q
FS/; !

l�pCp0

Y ^ !k�l�p0
˛

� A3

X
p0�q�minfp;k�lg

aq;p.nr/ap0;q.n/cp�q.n/

for some constantA3 > 0. Consequently, the induction hypothesis implies the result.
�

Theorem 1.1 is a consequence of the next two propositions.

Proposition 4.5. We have

dp.f / � max
maxf0;p�kClg�j �minfp;lg

dj .g/dp�j .f j�/

for 0 � p � k.

Proof. Since …�.!j
Y ^ !p�j / is a smooth form, we have for some constant A > 0

��.f n/�…�.!j
Y ^ !p�j /

�� � A�p.f
n/:

So, by definition of dynamical degrees and Lemma 4.1, it is enough to bound
k.f n/�…�.!j

Y ^ !p�j /k from below by a constant times �j .g
n/ap�j;p�j .n/.

Fix a constant A > 0 large enough. Using the identity � B f n D gn B � and that
…�.!l�j

Y ^ !k�l�pCj / is smooth, we obtain

Ak.f n/�…�.!j
Y ^ !p�j /k

� ˝
.f n/�…�.!j

Y ^ !p�j /;…�.!l�j
Y ^ !k�l�pCj /

˛
D ˝
.f n/���.!j

Y /
B^ .f n/�…�.!p�j /; ��.!l�j

Y / ^…�.!k�l�pCj /
˛

D ��.f n/���.!j
Y / ^ ��.!l�j

Y /
B^ .f n/�…�.!p�j / ^…�.!k�l�pCj /

��
D ����Œ.gn/�.!j

Y / ^ !l�j
Y �

B^ .f n/�…�.!p�j / ^…�.!k�l�pCj /
��:
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Observe that .gn/�.!j
Y / ^ !

l�j
Y is a positive measure of mass �j .g

n/. As in
Lemma 3.2, we show that the last expression in the previous identities is equal to
�j .g

n/ times the mass of the restriction of .f n/�…�.!p�j / ^…�.!k�l�pCj / to a
generic fiber Ly of � . Therefore, it is also equal to

�j .g
n/

˝
��.!l

Y /; .f
n/�…�.!p�j / ^…�.!k�l�pCj /

˛ D �j .g
n/ap�j;p�j .n/:

This completes the proof. �

Proposition 4.6. We have

dp.f / � max
maxf0;p�kClg�j �minfp;lg

dj .g/dp�j .f j�/

for 0 � p � k.

Proof. For every 0 � p � k and n � 0 let

�p.n/ WD max
maxf0;p�kClg�j �minfp;lg

cj .n/ap�j;p�j .n/:

Observe that for r > p, in Lemma 4.4, there are at most p indices s such that
ps�1 < ps . Moreover, the sum in that lemma contains at most .kC1/r terms and the
sum in the definition of bp.n/ contains at most p C 1 terms. We infer the following
estimate

bp.rn/ �
h
.p C 1/.k C 1/rArb0.n/ � � � bp.n/

lY
j D0

cj .n/
i
�p.n/

r :

We deduce that

Œbp.rn/�
1=rn � .p C 1/1=nr.k C 1/1=nA1=n

�
b0.n/

1=n � � � bp.n/
1=n

�1=r

�
h lY

j D0

cj .n/
1=n

i1=r

�p.n/
1=n:

Letting n tend to infinity, we obtain using Lemma 4.2 that

dp.f / � �
d0.f / : : : dp.f /

�1=r
h lY

j D0

dj .g/
i1=r

lim inf
n!1 �p.n/

1=n:

Now, letting r ! 1, the first two factors in the right hand side tend to 1. Therefore,
using Lemma 4.1, we obtain

dp.f / � lim inf
n!1 �p.n/

1=n D max
maxf0;p�kClg�j �minfp;lg

dj .g/dp�j .f j�/:

This completes the proof. �
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Proof of Corollary 1.2. When X and Y are projective, the corollary is a direct con-
sequence of Theorem 1.1. We only used the projectivity in Proposition 2.4 applied
to m WD k � l and for the existence of v W X ! P k�l . This is superfluous when X
and Y have the same dimension, i.e. k D l . �

Proof of Corollary 1.3. Letj ,p be such thatdj .g/ D maxq dq.g/ anddp�j .f j�/ D
maxq dq.f j�/. We have 0 � j � l and 0 � p � j � k � l . By Theorem 1.1,
dp.f / is the maximal dynamical degree of f and dp.f / D dj .g/dp�j .f j�/. We
have dp�1.f / < dp.f / < dpC1.f /. Theorem 1.1 implies that

dj �1.g/ < dj .g/ < dj C1.g/ and dp�j �1.f j�/ < dp�j .f j�/ < dp�j C1.f j�/:

The log-concavity of dq.g/ and dq.f j�/ implies the result. Note that when j D 0; l

or p � j D 0; k � l , in the above inequalities, one has to remove the expressions
which are not meaningful. �

In the rest of the paper, we prove Corollary 1.4. Let KX denote the canonical
lines bundle of X . Let H 0.X;Kn

X / denote the space of holomorphic sections of Kn
X

and H 0.X;Kn
X /

� its dual space. Assume that H 0.X;Kn
X / has positive dimension.

If x is a generic point in X , the family Hx of sections which vanish at x is a hyper-
plane of H 0.X;Kn

X / passing through 0. So, the correspondence x 7! Hx defines a
meromorphic map

�n W X ! PH 0.X;Kn
X /

�

from X to the projectivization of H 0.X;Kn
X /

� which is called an Iitaka fibration of
X . Let Yn denote the image of X by �n. The Kodaira dimension of X is �X WD
maxn�1 dim Yn. When H 0.X;Kn

X / D 0 for every n � 1, the Kodaira dimension of
X is �1. We have the following result.

Theorem 4.7 ([14], [18]). Let f W X ! X be a dominant meromorphic map. Assume
that �X � 1. Then f preserves the Iitaka fibration �n W X ! Yn. Moreover, the map
g W Yn ! Yn induced by f is periodic, i.e. gN D id for some integer N � 1.

Proof of Corollary 1.4. Assume in order to get a contradiction that �X � 1. Let
n � 1 be such that l WD dim Yn � 1. Replacing f with an iterate, we can assume
that g D id. A priori, Yn may be singular, but we can use a blow-up and assume that
Yn is smooth. We have dj .g/ D 1 for 0 � j � l . This contradicts Corollary 1.3.
Note that in order to prove that dj .g/ D 1, instead of Theorem 4.7, it is enough to use
the weaker result that g is induced by a linear endomorphism of PH 0.X;Kn

X /
�. �
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