Bounding the symbol length in the Galois cohomology of function fields of p-adic curves

Venapally Suresh

Dedicated to my teacher Professor R. Parimala on her 60th birthday

Abstract. Let K be a function field of a p-adic curve and l a prime not equal to p. Assume that K contains a primitive lth root of unity. We show that every element in the l-torsion subgroup of the Brauer group of K is a tensor product of two cyclic algebras over K.

Mathematics Subject Classification (2000). Galois cohomology, central simple algebras, cyclic algebras, symbols.

Keywords. Primary 12G05; Secondary 11R58, 11R34.

Introduction

Let k be a field and l a prime number not equal to the characteristic of k. Let μ_l be the group of lth roots of unity and $\mu_l(m)$ the tensor product of m copies of μ_l. For $n \ge 0$, let $H^n(k, \mu_l)$ denote the nth Galois cohomology group with coefficients in μ_l. Let $k^* = k \setminus \{0\}$. We have an isomorphism $k^*/k^*_l \to H^1(k, \mu_l)$. For $a \in k^*$, let (a) denote its image in $H^1(k, \mu_l)$. For $a_1, \ldots, a_m \in k^*$, the cup product gives an element $(a_1) \cdot (a_2) \ldots (a_m) \in H^n(k, \mu_l(m))$, which we call a symbol.

Assume that k contains a primitive lth root of unity. Fix a primitive lth root of unity $\zeta \in k$. Then we have isomorphisms $\mu_l \to \mu_l(m)$ of Galois groups. Hence we have isomorphisms $H^n(k, \mu_l(m)) \to H^n(k, \mu_l)$. A symbol in $H^n(k, \mu_l)$ is simply the image of a symbol under this map.

A classical theorem of Merkurjev ([M]) asserts that every element in $H^2(k, \mu_2)$ is a sum of symbols. A deep result of Merkurjev and Suslin ([MS]) says that every element in $H^2(k, \mu_l)$ is a sum of symbols. By a theorem of Voevodsky ([V]), every element in $H^n(k, \mu_2)$ is a sum of symbols. Suppose that k is a p-adic field. Local class field theory tells us that every element in $H^2(k, \mu_l)$ is a symbol and $H^n(k, \mu_l) = 0$ for $n \ge 3$. If k is a global field, then the global class field theory asserts that every element in $H^n(k, \mu_l)$ is a symbol.
Question 1. Do there exist integers $N_l(n)(k)$ such that every element in $H^n(k, \mu_l)$ is a sum of at most $N_l(n)(k)$ symbols?

Of course, the answer to the above question is negative in general. It can be shown that for $K = k(X_1, \ldots, X_n, \ldots)$, there is no such $N_l(n)(K)$ for $n \geq 2$. However we can restrict to some special fields. It is well-known that if $N_l(n)(k)$ exist for k, then $N_l(n)(k((t)))$ exist. We ask the following

Question 2. Suppose that $N_l(n)(k)$ exist for some field k. Do they exist for $k(t)$?

This is an open question. However we can restrict to fields of arithmetic interest. For example we consider the p-adic fields. The most important result in this direction is the following

Theorem (Saltman, [S1], (cf. [S2])). Let k be a p-adic field and $K/k(t)$ be a finite extension. Suppose that $l \neq p$. If A is a central simple algebra over K representing an element in $H^2(K, \mu_1)$, then $\text{ind}(A)$ divides l^2.

Let K be as in the above theorem. Suppose $p \neq 2$. Let $\alpha \in H^2(K, \mu_2)$ and A a central simple algebra over K representing α. Then by the above theorem, we have $\text{ind}(A) = 1, 2, 4$. If $\text{ind}(A) = 1$, then α is a trivial element. If $\text{ind}(A) = 2$, then it is well known that α is a symbol. Assume that $\text{ind}(A) = 4$. By a classical theorem of Albert ([A]), α is a sum of two symbols. For $H^3(K, \mu_1)$, we have the following

Theorem ([PS2], 3.5, (cf. [PS1], 3.9)). Let k be a p-adic field and $K/k(t)$ be a finite extension. Suppose that $l \neq p$. Every element in $H^3(K, \mu_1)$ is a symbol.

Let k and K be as above. The field K is of cohomological dimension 3 and $H^n(K, \mu_1) = 0$ for $n \geq 4$. By the above theorem, $N_l(3)(K) = 1$ and the only case where $N_l(n)(K)$ is to be determined is for $n = 2$. It is known that $N_l(2)(K) \geq 2$ (cf. [S1], Appendix). In this article we prove the following

Theorem. Let k be a p-adic field and $K/k(t)$ be a finite extension. Suppose that $l \neq p$. Every element in $H^2(K, \mu_1)$ is a sum of at most two symbols; in other words, $N_l(2)(K) = 2$.

1. **Some preliminaries**

In this section we recall a few basic facts about Galois cohomology groups and divisors on arithmetic surfaces. We refer the reader to ([C]), ([Li1]), ([Li2]) and ([Se]).
Let k be a field and l a prime number not equal to the characteristic of k. Assume that k contains a primitive l^{th} root of unity. Let $\zeta \in k$ be a primitive l^{th} root of unity. Let μ_l be the group of l^{th} roots of unity. Since k contains a primitive l^{th} root of unity, the absolute Galois group of k acts trivially on μ_l. For $m \geq 1$, let $\mu_l(m)$ denote the tensor product of m copies of μ_l. By fixing a primitive l^{th} root of unity ζ in k, we have isomorphisms of Galois modules $\mu_l(m) \to \mu_l$. Throughout this paper we fix a primitive l^{th} root of unity and identify $\mu_l(m)$ with μ_l.

Let $H^n(k, A)$ be the n^{th} Galois cohomology group of the absolute Galois group Γ of k with values in a discrete Γ-module A. The identification of $\mu_l(m)$ with μ_l gives an identification of $H^n(k, \mu_l(m))$ with $H^n(k, \mu_l)$. In the rest of this paper we use this identification.

Let $k^* = k \setminus \{0\}$. For $a, b, c \in k^*$ we have the following relations in $H^2(k, \mu_l)$.

1. $(a) \cdot (bc) = (a) \cdot (b) + (a) \cdot (c)$;
2. $(a) \cdot (b) = -((b) \cdot (a))$;
3. $(a) \cdot (b^l) = 0$;
4. $(a) \cdot (-a) = 0$.

If $l \geq 3$, we have $(a) \cdot (a) = (a) \cdot ((-1)^l a) = (a) \cdot (-a) = 0$.

Let K be a field and l a prime number not equal to the characteristic of K. Let v be a discrete valuation of K. The residue field of v is denoted by $\kappa(v)$. Suppose $\text{char}(\kappa(v)) \neq l$. Then there is a residue homomorphism $\partial_v: H^n(K, \mu_l(m)) \to H^{n-1}(\kappa(v), \mu_l(m-1))$. Let $\alpha \in H^n(K, \mu_l(m))$. We say that α is unramified at v if $\partial_v(\alpha) = 0$; otherwise it is said to be ramified at v.

Let X be a regular integral scheme of dimension d, with function field K. Let X^1 be the set of points of X of codimension 1. A point $x \in X^1$ gives rise to a discrete valuation v_x on K. The residue field of this discrete valuation ring is denoted by $\kappa(x)$. The corresponding residue homomorphism is denoted by ∂_x. We say that an element $\zeta \in H^n(K, \mu_l(m))$ is unramified at x if $\partial_x(\zeta) = 0$; otherwise it is said to be ramified at x. We define the ramification divisor $\text{ram}_X(\zeta) = \sum x$ as x runs over points in X^1 where ζ is ramified. Suppose C is an irreducible subscheme of X of codimension 1. Then the generic point x of C belongs to X^1 and we set $\partial_C = \partial_x$. If $\alpha \in H^n(K, \mu_l(m))$ is unramified at x, then we say that α is unramified at C. We say that α is unramified on X if it is unramified at every point of X^1.

Let k be a p-adic field and K the function field of a smooth projective geometrically integral curve X over k. By the resolution of singularities for surfaces (cf. [Li1] and [Li2]), there exists a regular projective model \mathcal{X} of X over the ring of integers \mathcal{O}_k of k. We call such an \mathcal{X} a regular projective model of K. Since the generic fibre X of \mathcal{X} is geometrically integral, it follows that the special fibre \mathcal{X}' is connected. Further if D is a divisor on \mathcal{X}, there exists a proper birational morphism $\mathcal{X}' \to \mathcal{X}$ such that the total transform of D on \mathcal{X}' is a divisor with normal crossings (cf. [Sh], Theorem, p. 38 and Remark 2, p. 43). We use this result throughout this paper without further
We have the induced homomorphism

Theorem 1.2 (Saltman [S1]). Let K, α, X, C and E be as above and $P \in C \cup E$. Let R be the local ring at P. Let $\pi, \delta \in R$ be local equations of C and E respectively at P.

1. If $P \in C \setminus E$ (or $E \setminus C$), then $\alpha = \alpha' + (\pi) \cdot (u)$ (or $\alpha = \alpha' + (\delta) \cdot (u)$) for some unit $u \in R$, $\alpha' \in H_2^1(K, \mu_1)$ unramified on R.
2. If $P \in C \cap E$, then either $\alpha = \alpha' + (\pi) \cdot (u) + (\delta) \cdot (v)$ or $\alpha = \alpha' + (\pi) \cdot (u\delta^i)$ for some units $u, v \in R$, $\alpha' \in H_2^1(K, \mu_1)$ unramified on R.

Let $P \in C \cap E$. Suppose that $\alpha = \alpha' + (\pi) \cdot (u) + (\delta) \cdot (v)$ for some units $u, v \in R$, $\alpha' \in H_2^1(K, \mu_1)$ unramified on R and π, δ are local equations of C and E respectively. Then $u(P) = \partial_C(\alpha)(P)$ and $v(P) = \partial_E(\alpha)(P)$. Note that $u(P)$ and $v(P)$ are uniquely defined modulo l^r powers. Following Saltman ([S3], §2), we say that P is a hot point of α if $u(P)$ and $v(P)$ do not generate the same subgroup of $\kappa(P)^*/\kappa(P)^{ul}$.

We have the following

Theorem 1.2 (Saltman ([S3], 5.2). Let k, K, α, X be as above. Then α is a symbol if and only if there are no hot points of α.

2. The main theorem

Let k be a \mathfrak{p}-adic field and $K/k(t)$ be a finite extension. Let $l \geq 3$ be a prime number not equal to p. Assume that k contains a primitive l^{th} root of unity. Let $\beta \in H_2^1(K, \mu_1)$ and X a regular proper model of K. Let $\phi : X' \to X$ be a blow-up such that X' is a regular proper model of K and ram$_{X'}(\beta) = C' + E'$, where C' and E' are two regular curves with normal crossings (cf. §1 or [S1], Proof of 2.1). Let $Q \in C' \cap E'$. Let $C'_1 \subset C'$ and $E'_1 \subset E'$ be the irreducible curves containing Q. Let $R' = O_{X', Q}$ be the regular local ring at Q and m_Q its maximal ideal. We have $m_Q = (\pi', \delta')$, where π' and δ' are local equations of C'_1 and E'_1 at Q respectively. Let $v_{C'_1}$ and $v_{E'_1}$ be the discrete valuations on K at C'_1 and E'_1 respectively.

Let $P = \phi(Q)$. Let R be the regular local ring at P and m_P its maximal ideal. We have the induced homomorphism $\phi^* : R \to R'$ of local rings, which is injective. Let $\pi, \delta \in R$ be such that $m_P = (\pi, \delta)$.

Lemma 2.1. Suppose that $\beta = \beta' + (f') \cdot (g')$ for some $f', g' \in K$ and β' unramified on R'. Then Q is not a hot point of β.

Proof. Since β' is unramified on R', the ramification data of β on R' is same as that of $(f') \cdot (g')$. Since $(f') \cdot (g')$, being a symbol, has no hot points ([S3], cf. 1.2), Q is not a hot point of β. □

Lemma 2.2. Suppose that $\beta = \beta' + (\delta) \cdot (gv) + (f) \cdot (g)$, where β' is unramified on R', $f \in R$ is not divisible by δ and $v, g \in R$ are units with $g(P) = v(P)$. Then Q is not a hot point of β.

Proof. We have $m_Q = (\pi', \delta')$ and β has ramification on R' only at π' and δ'. Since $R/m_P \hookrightarrow R'/m_Q$, we have $g(Q) = g(P) = v(P) = v(Q)$. If C'_1 (or E'_1) is the strict transform of a curve on \mathcal{X}, then either δ is a local equation of C'_1 or $v_{C'_1}(\delta) = 0$. In fact, if C'_1 is the strict transform of C_1 on \mathcal{X}, then $v_{C'_1}(\delta) = v_{C'_1}(\delta)$ and δ itself being a prime in R, the assertion follows.

Suppose that C'_1 and E'_1 are strict transforms of two irreducible curves on \mathcal{X}. If δ is not a local equation for either C'_1 or E'_1, we claim that $(\delta) \cdot (gv)$ is unramified on R'. In fact, since g and v are units in R, $(\delta) \cdot (gv)$ is unramified on R except possibly at δ. Since f is not divisible by δ, $(f) \cdot (g)$ is unramified at δ. Since β is ramified on R' only at π' and δ' and δ is not one of them, $(\delta) \cdot (gv)$ is unramified on R'. By (2.1), Q is not a hot point of β. Assume that δ is a local equation for one of them, say C'_1. Since δ does not divide f, we have $\partial_{C'_1}(\beta) = \overline{gv}$ and $\partial_{E'_1}(\beta) = \tilde{g}^{\nu_{E'_1}(f)}$, where \bar{g} denotes the image in the residue field of C'_1 and \tilde{g} denotes the image in the residue field of E'_1. Since β is ramified at E'_1, $\nu_{E'_1}(f)$ is not a multiple of l.

We have $\partial_{C'_1}(\beta)(Q) = v(Q)g(Q) = g(Q)^2$ and $\partial_{E'_1}(\beta)(Q) = g(Q)^{\nu_{E'_1}(f)}$. Since $\nu_{E'_1}(f)$ is not a multiple of l, $g(Q)^2$ and $g(Q)^{\nu_{E'_1}(f)}$ generate the same subgroup modulo lth powers. Hence Q is not a hot point of β.

Suppose that C'_1 is a strict transform of an irreducible curve on \mathcal{X} and E'_1 is an exceptional curve on \mathcal{X}'. We have $\partial_{E'_1}(\beta) = (g^v)^{\nu_{E'_1}(\delta)} \cdot \tilde{g}^{\nu_{E'_1}(f)}$. Since E'_1 is an exceptional fibre in \mathcal{X}', the residue field of R is contained in the residue field at E'_1. Hence $\partial_{E'_1}(\beta) = (g(P)v(P))^{\nu_{E'_1}(\delta)} g(P)^{\nu_{E'_1}(f)} = g(P)^{2\nu_{E'_1}(\delta)+\nu_{E'_1}(f)}$. Since β is ramified at E'_1, $2\nu_{E'_1}(\delta) + \nu_{E'_1}(f)$ is not a multiple of l. Suppose δ is a local equation of C'_1 at Q. Since δ does not divide f and $v_{C'_1}(\delta) = 1$, we have $\partial_{C'_1}(\beta) = g^v$. Thus $\partial_{C'_1}(\beta)(Q) = g(P)v(P) = g(P)^2$. Since $l \neq 2$ and $2\nu_{E'_1}(\delta) + \nu_{E'_1}(f)$ is not a multiple of l, the subgroups generated by $g(Q)^2$ and $g(P)^{2\nu_{E'_1}(\delta)+\nu_{E'_1}(f)}$ are equal modulo lth powers. Hence Q is not a hot point of β. Suppose δ is not a local equation of C'_1 at Q. We have $\partial_{C'_1}(\beta) = g^{\nu_{C'_1}(f)}$. Since β is ramified at C'_1, $\nu_{C'_1}(f)$ is not a multiple of l. Thus as above Q is not a hot point of β.

Vol. 85 (2010) Bounding the symbol length 341
Theorem 2.4. Suppose that both C'_1 and E'_1 are exceptional curves in X'. Then as above we have
\[\partial_{C'_1}(\beta) = g(P)^{2v_{C'_1}(\delta)+v_{C'_1}(f)} \quad \text{and} \quad \partial_{E'_1}(\beta) = g(P)^{2v_{E'_1}(\delta)+v_{E'_1}(f)}. \]
Since β is ramified at C'_1 and E'_1, $2v_{C'_1}(\delta)+v_{C'_1}(f)$ and $2v_{E'_1}(\delta)+v_{E'_1}(f)$ are not multiples of l. In particular, the subgroups generated by $g(P)^{2v_{C'_1}(\delta)+v_{C'_1}(f)}$ and $g(P)^{2v_{E'_1}(\delta)+v_{E'_1}(f)}$ are equal modulo the lth powers. Thus Q is not a hot point of β. \hfill \Box

Lemma 2.3. Suppose that $\beta = \beta' + (\pi) \cdot (u) + (\delta) \cdot (v)$, where β' unramified on R' and $u, v \in R$ units with $u(P) = v(P)$. Then Q is not a hot point of β.

Proof. Since β is ramified at C'_1, either $v_{C'_1}(\pi)$ or $v_{C'_1}(\delta)$ is not divisible by l. In particular their sum $v_{C'_1}(\pi \delta)$ is non-zero. We have
\[\partial_{C'_1}(\beta)(Q) = u(P)^{v_{C'_1}(\pi)} v(P)^{v_{C'_1}(\delta)} = u(P)^{v_{C'_1}(\pi \delta)}. \]
Suppose that $v_{C'_1}(\pi \delta)$ is a multiple of l. Since $v_{C'_1}(\pi \delta)$ is non-zero, C'_1 is an exceptional curve. As in the proof of (2.2), we see that $\partial_{C'_1}(\beta) = u(P)^{v_{C'_1}(\pi \delta)} = 1$. Which is a contradiction, as β is ramified at C'_1. Hence $v_{C'_1}(\pi \delta)$ is not a multiple of l. Similarly, we have $\partial_{E'_1}(\beta)(Q) = u(P)^{v_{E'_1}(\pi \delta)}$ and $v_{E'_1}(\pi \delta)$ is not a multiple of l. Hence $u(P)^{v_{C'_1}(\pi \delta)}$ and $u(P)^{v_{E'_1}(\pi \delta)}$ generate the same subgroup of $\kappa(P)^*$ modulo $\kappa(P)^{s^l}$ and Q is not a hot point of β. \hfill \Box

Theorem 2.4. Let k be a p-adic field and $K/k(t)$ be a finite extension. Let l be a prime number not equal to p. Suppose that k contains a primitive lth root of unity. Then every element in $H^2(K, \mu_l)$ is a sum of at most two symbols.

Proof. If $l = 2$, then, as we mentioned before, by $([A]), \alpha$ is a sum of at most two symbols. Assume that $l \geq 3$. Let $\alpha \in H^2(K, \mu_l)$. Let X be a regular proper model of K such that $\text{ram}_X(\alpha) = C + E$, where C and E are regular curves with normal crossings.

Let $P \in C \cup E$ be a closed point of X. Let R_P be the regular local ring at P on X and m_P be its maximal ideal.

Let T be a finite set of closed points of X containing $C \cap E$ and at least one closed point from each irreducible curve in C and E. Let A be the semi-local ring at T on X. Let $\pi_1, \ldots, \pi_r, \delta_1, \ldots, \delta_s \in A$ be prime elements corresponding to irreducible curves in C and E respectively. Let $f_1 = \pi_1 \ldots \pi_r \delta_1 \ldots \delta_s \in A$. Let $P \in C \cap E$. Then $P \in C_i \cap E_j$ for unique irreducible curves C_i in C and E_j in E. Then $\pi = \pi_i$ and $\delta = \delta_j$ are local equations of C and E at P. We have $\alpha = \alpha' + (\pi) \cdot (u_P) + (\delta) \cdot (v_P)$
or \(\alpha = \alpha' + (\pi) \cdot (u_P \delta^i) \) for some units, \(u_P, v_P \in R \) and \(\alpha' \) unramified on \(R \) ([S1], cf. 1.1). By the choice of \(f_1 \), we have \(f_1 = \pi \delta w_P \) for some \(w_P \in A \) which is a unit at \(P \). Let \(u \in A \) be such that \(u(P) = w_P(P)^{-1}u_P(P) \) for all \(P \in E \cap F \). Let \(f = f_1u \in A \). Then, we have \((f) = C + E + F \), where \(F \) is a divisor on \(X \) which avoids \(C, E \) and all the points of \(C \cap E \). Further, for each \(P \in C_i \cap E_j \), we have \(f = \pi_i \delta_j w_{ij} \) for some \(w_{ij} \in A \) such that \(w_{ij}(P) = u_P(P) \).

By a similar argument, choose \(g \in K \) satisfying

1. \((g) = C + G \), where \(G \) is a divisor on \(X \) which avoids \(C, E, F \) and also avoids the points of \(C \cap E, C \cap F, E \cap F \);
2. if \(P \in E \cap F \) and \(\alpha = \alpha' + (\delta) \cdot (v) \) for some unit \(v \in R_P \) and \(\alpha' \) is unramified at \(P \), then \(g(P) = v(P) \).

Since \(C \cap E \cap F = \emptyset \), such a \(g \) exists.

We claim that \(\beta = \alpha + (f) \cdot (g) \) is a symbol.

Let \(\phi : X' \to X \) be a blow up of \(X \) such that \(X' \) is a regular proper model of \(K \) and \(\text{ram}_{X'_{\phi}}(\beta) = C' + E' \), where \(C' \) and \(E' \) are regular curves with normal crossings.

To show that \(\beta \) is a symbol, it is enough to show that \(\beta \) has no hot points ([S3], cf. 1.2). Let \(Q \in C' \cap E' \). Let \(P = \phi(Q) \). Then \(P \) is a closed point of \(X \), \(R = \mathcal{O}_{X',P} \subset H_{X',Q} = R' \) and the maximal \(m_P \) of \(R \) is contained in the maximal ideal \(m_Q \) of \(R' \). Let \(m_Q = (\pi', \delta') \), with \(\pi' \) and \(\delta' \) be local equations of \(C' \) and \(E' \) at \(Q \) respectively.

Suppose that \(P \notin C \cup E \). Then \(\alpha \) is unramified at \(P \) and hence unramified at \(Q \).

By (2.1), \(Q \) is not a hot point of \(\beta \).

Assume that \(P \in C \cup E \).

Suppose that \(P \in C \cap E \). Let \(\pi \) and \(\delta \) be local equations of \(C \) and \(E \) at \(P \) respectively. Then \(m_P = (\pi, \delta) \). By the choice of \(f \) and \(g \), we have \(f = \pi \delta w_1 \) and \(g = \pi w_2 \) for some units \(w_1, w_2 \in R \). In particular, \(\beta \) is ramified on \(R \) only at \(\pi \) and \(\delta \). Suppose that \(\alpha = \alpha' + (\pi) \cdot (u) + (\delta) \cdot (v) \) for some units \(u, v \in R \) and \(\alpha' \) unramified on \(R \). We have

\[
\begin{align*}
\beta &= \alpha + (f) \cdot (g) \\
&= \alpha' + (\pi) \cdot (u) + (\delta) \cdot (v) + (\pi \delta w_1) \cdot (\pi w_2) \\
&= \alpha' + (\pi) \cdot (u) + (\delta w_1) \cdot (\pi + (w_1^{-1}) \cdot (v)) + (\pi w_2) + (\delta w_1) \cdot (\pi w_2) \\
&= \alpha' + (w_1^{-1}) \cdot (v) + (\pi) \cdot (u \pi w_2) + (\delta w_1) \cdot (\pi w_2 v) \\
&= \alpha' + (w_1^{-1}) \cdot (v) + (\pi) \cdot (uw_2) + (\delta w_1) \cdot (\pi w_2 v) \\
&= \alpha' + (w_1^{-1}) \cdot (v) + (\pi w_2 v) \cdot (uw_2) + (w_1^{-1} v^{-1}) \cdot (uw_2) + (\delta w_1) \cdot (\pi w_2 v) \\
&= \alpha' + (w_1^{-1}) \cdot (v) + (w_1^{-1} v^{-1}) \cdot (uw_2) + (\pi w_2 v) \cdot (uw_2 \delta^{-1} w_1^{-1}).
\end{align*}
\]

Since \(\alpha' + (w_1^{-1}) \cdot (v) + (w_1^{-1} v^{-1}) \cdot (uw_2) \) is unramified on \(R \), by (2.1), \(Q \) is not a hot point of \(\beta \).
Suppose that $\alpha = \alpha' + (\pi) \cdot (u\delta^i)$ for some units, $u, v \in R$ and α' unramified on R. Then we have

$$\beta = \alpha + (f) \cdot (g)$$

$$= \alpha' + (\pi) \cdot (u\delta^i) + (\pi w_1) \cdot (\pi w_2)$$

$$= \alpha' + (\pi) \cdot (u\delta^i) + (\delta w_1 w_2^{-1}) \cdot (\pi w_2)$$

$$= \alpha' + (\pi) \cdot (u\delta^i(\delta w_1 w_2^{-1})^{-1}) + (\delta w_1 w_2^{-1}) \cdot (w_2)$$

$$= \alpha' + (\pi) \cdot (\delta^{-1} u w_1^{-1} w_2) + (\delta w_1 w_2^{-1}) \cdot (w_2).$$

If $i = 1$, then $\beta = \alpha' + (\pi) \cdot (u w_1^{-1} w_2) + (\delta w_1 w_2^{-1}) \cdot (w_2)$. Since, by the choice of $f, u(P) = w_1 (P)$, by (2.3), Q is not a hot point of β. Assume that $i > 1$. Then $1 \leq i - 1 < l - 1$. Let i' be the inverse of $1 - i$ modulo l. We have

$$\beta = \alpha' + (\pi) \cdot (\delta^{-1} u w_1^{-1} w_2) + (\delta w_1 w_2^{-1}) \cdot (w_2)$$

$$= \alpha' + (\delta^{-1} w_1 w_2^{-1}) \cdot (\pi) + (\delta w_1 w_2^{-1}) \cdot (w_2)$$

$$= \alpha' + ((\delta(u^{-1} w_1 w_2^{-1})^{-i}) \cdot (w_2) + (\delta(u^{-1} w_1 w_2^{-1})^{-i}) \cdot (w_2)$$

$$+ ((u^{-1} w_1 w_2^{-1})^{-i}) \cdot (w_2) + (w_1 w_2^{-1}) \cdot (w_2)$$

$$= \alpha' + ((u^{-1} w_1 w_2^{-1})^{-i}) \cdot (w_2) + (w_1 w_2^{-1}) \cdot (w_2)$$

$$+ ((\delta(u^{-1} w_1 w_2^{-1})^{-i}) \cdot (w_2) + (\delta w_1 w_2^{-1}) \cdot (w_2).$$

Since $\alpha' + ((u^{-1} w_1 w_2^{-1})^{-i}) \cdot (w_2)$ is unramified on R, by (2.1), Q is not a hot point of β.

Suppose that $P \in C \setminus E$. We have $\alpha = \alpha' + (\pi) \cdot (u)$ for some unit u in R and α' unramified on R. We also have $f = \pi f_1$ for some $f_1 \in R$ which is not divisible by π. We have

$$\beta = \alpha + (f) \cdot (g)$$

$$= \alpha' + (\pi) \cdot (u) + (\pi f_1) \cdot (g)$$

$$= \alpha' + (f_1^{-1}) \cdot (u) + (\pi f_1) \cdot (u) + (\pi f_1) \cdot (g)$$

$$= \alpha' + (f_1^{-1}) \cdot (u) + (\pi f_1) \cdot (g u).$$

If f_1 is a unit in R, then $\alpha' + (f_1^{-1}) \cdot (u)$ is unramified on R, by (2.1), Q is not a hot point of β. Assume that f_1 is not a unit in R. Then $P \in C \cap F$ and $g = \pi g_1$ for some unit $g_1 \in R$. We have

$$\beta = \alpha + (f) \cdot (g)$$

$$= \alpha' + (\pi) \cdot (u) + (\pi f_1) \cdot (\pi g_1)$$

$$= \alpha' + (\pi g_1) \cdot (u) + (g_1^{-1}) \cdot (u) + (\pi f_1) \cdot (\pi g_1)$$

$$= \alpha' + (g_1^{-1}) \cdot (u) + (\pi g_1) \cdot (u(\pi f_1)^{-1}).$$
Since $\alpha' + (g_1^{-1}) \cdot (u)$ is unramified on R, by (2.1), Q is not a hot point of β.

Suppose that $P \in E \setminus C$. Then $\alpha = \alpha' + (\delta) \cdot (v)$ for some unit $v \in R$ and $f = \delta f_1$ for some $f_1 \in R$ which is not divisible by δ. Suppose that f_1 is a unit in R. Then, as above, Q is not a hot point of β. Assume that f_1 is not a unit in R. Then $P \in E \cap F$ and g is a unit in R. We have

\[
\beta = \alpha + (f) \cdot (g) = \alpha' + (\delta) \cdot (v) + (\delta f_1) \cdot (g) = \alpha' + (\delta) \cdot (vg) + (f_1) \cdot (g).
\]

Since α' is unramified on R and by the choice of g, $g(P) = v(P)$, by (2.2), Q is not a hot point of β.

By ([S3], cf. 1.2), β is symbol. Thus $\alpha = (f) \cdot (g) - \beta$ is a sum of at most two symbols.

\[\square\]

Acknowledgments. We would like to thank for support from UGC (India) under the SAP program.

References

Received April 1, 2008

Venapally Suresh, Department of Mathematics and Statistics, University of Hyderabad, Gachibowli, Hyderabad - 500046, India

E-mail: vssm@uohyd.ernet.in