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An inverse spectral problem on surfaces

Philippe Castillon

Abstract. The purpose of this paper is to prove how the positivity of some operators on a
Riemannian surface gives informations on the conformal type of the surface (the operators
considered here are of the form � + λK where � is the Laplacian of the surface, K is its
curvature and λ is a real number). In particular we obtain a theorem “à la Huber”: under a
spectral hypothesis we prove that the surface is conformally equivalent to a Riemann surface
with a finite number of points removed.

This problem has its origin in the study of stable minimal surfaces.

Résumé. On montre dans cet article comment la positivité de certains opérateurs sur une
surface riemannienne permet d’obtenir des informations sur le type conforme de la surface (les
opérateurs considérés ici sont de la forme � + λK où � est le laplacien sur la surface, K
sa courbure et λ un réel). On montre en particulier un théorème “à la Huber” : partant d’une
hypothèse spectrale, on en déduit que la surface est conformément équivalente à une surface de
Riemann compacte privée d’un nombre fini de points.

Ce problème trouve son origine dans l’étude des surfaces minimales stables.
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Introduction

Minimal submanifolds are solutions of a variational problem: they are critical points
of the volume functional for deformations with compact support. The second deriva-
tive of the volume functional is given by a quadratic form associated to a selfadjoint
operator (the stability operator). A minimal immersion is called stable when it is
a local minimum of the volume functional, that is, when the stability operator is
nonnegative.

For a minimal surface M in R
3, the stability operator is given by S = � + 2K ,

where K is the (intrinsic) curvature of M . For a surface immersed in a manifold
with nonnegative scalar curvature, the positivity of the stability operator implies the
positivity of the operator L = � + K . In order to study stable minimal surfaces,
these remarks lead the authors of [FC-Sc] to consider the problem of relating the
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positivity of operators of the form � + λK (λ ∈ R) on a surface to the geometry of
the surface.

Let (M, h) be a complete noncompact Riemannian surface and let K be its curva-
ture. For all λ ∈ R, consider the operator Lλ = �+λK and the associated quadratic
form qλ. It is easy to see (cf. [FC-Sc]) that the set Ih = {λ ∈ R | qλ positive} is
a closed interval: Ih = [ah, bh] with −∞ ≤ ah ≤ 0 ≤ bh ≤ +∞. The general
problem is to find relations between the geometry of M and the numbers ah and bh.

In [FC-Sc] the authors asked the following question: On the disc D = {z ∈ C |
|z| < 1}, consider the complete metrics which are conformal to the Euclidean one;
for such a metric h, what are the possible values of bh which can occur? As a first
step to answer this question, they remark that bh = 1

4 if h is the Poincaré metric and
they prove that bh < 1 for a complete conformal metric on D (cf. [FC-Sc], Remark 1
and Theorem 2). One of the purpose of this paper is to answer this question (cf.
Section 4).

In the more general context of a complete noncompact Riemannian surface we
prove the following result.

Theorem A. Let (M, h) be a complete noncompact Riemannian surface. If bh > 1
4

then M is conformally equivalent to C or C
∗ = C \ {0}.

A straightforward corollary is that bh ≤ 1
4 when h is a complete conformal metric

on the disc. Moreover, with a similar proof we get the following theorem which is to
be compared with Huber’s theorem (cf. [Hu]).

Theorem B. Let (M, h) be a complete noncompact Riemannian surface. If there
exists a compact domain � ∈ M and a real λ > 1

4 such that qλ(u) ≥ 0 for every
C∞-function u with compact support in M \ �, then M is conformally equivalent to
a compact Riemann surface with a finite number of points removed.

In the first section we precise the notations and give preliminary results. The
second and third sections are devoted to the proofs of Theorem A and Theorem B
respectively. In the fourth section we treat the particular case of complete conformal
metrics on the unit disc.

The main results of this paper were already announced without proof in [Ca2].

1. Notations and preliminary results

Let (M, h) be a surface endowed with a Riemannian metric h; we note K its curvature
and dvh its volume form. For a real number λ, we note Lλ the operator Lλ = �+λK
acting on the space C∞

0 (M) of compactly supported C∞ functions (where � is the
positive Laplacian); each of these operators admits a unique self-adjoint extension
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(also denoted Lλ). We shall note qλ the associated quadratic form; for all u ∈ C∞
0 (M),

we have qλ(u) = ∫
M

(|du|2h + λKu2) dvh.
In order to study the relations between the positivity of some of the forms qλ and

the geometry of M , we introduce the set Ih = {λ ∈ R | qλ is nonnegative}.

Proposition 1.1. The set Ih is a closed interval of R containing 0: Ih = [ah, bh]
with −∞ ≤ ah ≤ 0 ≤ bh ≤ +∞.

Proof. Let F(λ) = inf{qλ(u) | u ∈ C∞
0 (M)}; the set Ih is just the subset of R where

F is nonnegative. Since F is the infimum of affine functions, it must be concave, and
the proposition follows. �

Example 1.2. It is easy to see that bh = +∞ if and only if K ≥ 0 on M , and that
ah = −∞ if and only if K ≤ 0 on M .

Example 1.3. Let D = {z ∈ C | |z| < 1}, and let hH2 be the Poincaré metric on D.
It is a well-known fact that the spectrum of the Laplacian is σ(�) = [1

4 , ∞)
. Since

the curvature is constant and equal to −1, we have σ(� + λK) = [ 1
4 − λ, ∞)

. It
follows that bh

H2 = 1
4 in this case.

Doing the same for an arbitrary hyperbolic surface (M, h), we havebh = inf(σ (�)).

Notations. Let x0 be a point in M . In the sequel we shall note r(x) = dM(x0, x)

the distance function to x0, Bs = {x ∈ M | r(x) < s} the ball of radius s, and
Ct

s = {x ∈ M | s < r(x) < t}.
Moreover, we shall note V (s) the volume of the ball Bs , �(s) the length of the

geodesic circle of radius s (i.e. �(s) = vol(∂Bs)) and G(s) the total curvature of
the ball Bs (i.e. G(s) = ∫

Bs
K dvh). Using the coarea formula, we easily have

V ′(s) = �(s) and G′(s) = ∫
∂Bs

K dσs where dσs is the volume form on ∂Bs .

Topology of noncompact surfaces. For a compact surface S we shall note gS its
genus and nS the number of connected components of its boundary; in particular, the
Euler characteristic of S is given by χ(S) = 2(1 − gS) − nS .

A noncompact surface S is said to be of finite topology if there exists a compact
surface S̃ without boundary and a finite number of pairwise disjoint closed discs Di ,
i = 1, . . . , N , in S̃ so that S is homeomorphic to S̃ \⋃N

i=1 Di (i.e. S is homeomorphic
to the interior of a compact surface with boundary). In this case, we define the Euler

characteristic of S to be χ(S) = χ
(
S̃ \ ⋃N

i=1

�
Di

) = 2(1 − gS̃) − N .
For a complete Riemannian surface (M, h), we have the following relations be-

tween the asymptotic behaviour of χ(Bs) and the topology of M:
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Lemma 1.4. Let (M, h) be a complete Riemannian surface.

(i) If M is of finite topology, then there exists s0 such that for all s ≥ s0 we have
χ(Bs) ≤ χ(M).

(ii) If M is not of finite topology then lims→∞ χ(Bs) = −∞.

Proof. Suppose that M is of finite topology. Then there exists a compact surface M̃ ,
a finite set {p1, . . . , pN } ⊂ M̃ and a homeomorphism f : M → M̃ \ {p1, . . . , pN }.
Let Ũ1, . . . , ŨN be simply connected open neighborhoods of the points p1, . . . , pN

which are pairwise disjoint, let C̃ = M̃ \ ⋃N
i=1 Ũi , and let C = f −1(C̃). The set C

is a compact domain in M , and by construction we have χ(C) = χ(C̃) = χ(M).

Choose s0 such that C ⊂ �
Bs0 ; for all s ≥ s0, we have C ⊂ Bs , which implies that

gC ≤ gBs . (1.1)

For all s ≥ s0, note B̃s = f (Bs). Since C ⊂ �
Bs we have ∂B̃s ⊂ M̃ \ C̃, and since B̃s

is compact in M̃ \ {p1, . . . , pN }, we also have ∂B̃s ∩ Ũi �= ∅ for all i ∈ {1, . . . , N}.
It follows that

nBs = nB̃s
≥ N = nC. (1.2)

From the inequalities (1.1) and (1.2) we deduce that for all s ≥ s0 we have

χ(Bs) ≤ χ(C) = χ(M).

To prove (ii), we suppose that χ(Bs) does not tend to −∞, and we shall prove
that the topology of M is finite. Using the hypothesis, there exists a constant A > 0
and an increasing sequence (si)i∈N such that limi→∞ si = +∞ and χ(Bsi ) ≥ −A

for all i ∈ N. In particular we have 2(1 −gBsi
)−nBsi

≥ −A, from which we deduce

that gBsi
≤ A+2

2 and nBsi
≤ A + 2.

For all i ∈ N, note Ei,j , j = 1, . . . , ai the compact connected components of
M \Bsi . We construct an exhaustion of M by compact domains in the following way:

• �0 = Bs0 ∪ ( ⋃a0
j=1 E0,j

)
.

• Suppose that �0, . . . , �k are known; let ik such that �k ⊂ �
Bsik

, and let �k+1 =
Bsik

∪ ( ⋃aik

j=1 Eik,j

)
.

By construction, �k is connected and M \�k has no compact connected component.
Moreover, for all k ∈ N we have g�k

≤ gBsik
≤ A+2

2 and n�k
≤ nBsik−1

≤ A + 2.

From these inequalities we deduce that there exists a constant A1 > 0 such that for
all k ∈ N we have

χ(�k) = 2(1 − g�k
) − n�k

≥ −A1. (1.3)
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For all k ∈ N write �k+1\�k = ⋃bk

j=1 Fk,j where the domains Fk,j are the connected
components of �k+1 \ �k . For all k and all j = 1, . . . , bk , ∂Fk,j has at least two
connected component: one in ∂�k because �k+1 is connected and one in ∂�k+1
since M \ �k has no compact connected component. It follows that χ(Fk,j ) ≤ 0,
and since

χ(�k+1) = χ(�k) +
bk∑

j=1

χ(Fk,j ), (1.4)

we have χ(�k+1) ≤ χ(�k). From the inequality (1.3) we deduce that there exists
k0 ∈ N such that χ(�k) = χ(�k0) for all k ≥ k0. On the other hand, since the
sequence (g�k

)k is increasing and bounded, we can assume (up to a change of k0),
that g�k

= g�k0
for all k ≥ k0; it follows that �k and �k0 are homeomorphic for all

k ≥ k0.
Let k ≥ k0; from equality (1.4) we deduce that

∑bk

j=1 χ(Fk,j ) = 0, and since

χ(Fk,j ) ≤ 0 for all j = 1, . . . , bk we haveχ(Fk,j ) = 0, which implies that
⋃bk

j=1 Fk,j

is homeomorphic to ∂�k0×]0, 1].
Let M̃ be the surface obtained by gluing �k0 and ∂�k0 ×[0, 1[ along their bound-

aries ∂�k0 and ∂�k0 × {0}. Let (ck)k≥k0 be an increasing sequence of real numbers
which tends to 1 and such that ck0 = 0, and let �̃k = �k0 ∪ ∂�k0 ×[0, ck] ⊂ M̃ . We
construct a sequence of homeomorphisms fk : �k → �̃k in the following way:

• fk0 : �k0 → �̃k0 is the identity;

• if fk is known, we extend it to a homeomorphism fk+1 : �k+1 → �̃k+1 (which
is possible since �k+1 \ �k is homeomorphic to ∂�k0×]ck, ck+1]).

This construction gives a homeomorphism f : M → M̃ defined by f|�k
= fk for

all k ≥ k0, and the surface M̃ is of finite topology, which proves item (ii) of the
lemma. �

Remark 1.5. Lemma 1.4 holds if we replace the geodesic balls of the metric by an
exhaustion of M by a sequence of compact domains (and the proof is the same).

In the proof of item (ii), the construction of the homeomorphism from its restric-
tions to compact domains is a classical tool in the theory of surfaces (cf. for example
the proof of Kerékjártó’s theorem on the topological classification of noncompact
surfaces, Theorem 1 in [Ri]).

Remark 1.6. When M is of finite topology, we may have χ(Bs) < χ(M) for arbi-
trarily large s. Moreover, the converse statement of item (ii) is false.

The length of geodesic circles. The regularity properties of the function � were
already studied, in particular in connection to the isoperimetric problem (cf. [Fi],
[Ha], [Sh-Ta1], [Sh-Ta2]). In general, the function � is not continuous, however we
have the following result:
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Theorem 1.7. The function � is differentiable almost everywhere and we have

(i) for almost all s ∈ R, �′(s) ≤ 2πχ(Bs) − G(s);

(ii) for all 0 ≤ a < b, �(b) − �(a) ≤ ∫ b

a
�′(s) ds.

Proof. Cf. [Sh-Ta1] and [Sh-Ta2]. �

A technical lemma. In the proofs of TheoremA and B, we will evaluate the quadratic
forms qλ on functions of the form ξ(r), where r is the distance function on M . To do
this, we have to handle with terms of the form

∫
M

Kξ(r)2 dvh which will be estimated
using the following lemma. The proof of this lemma is based on the method used by
T. Colding and W. Minicozzi in [Co-Mi].

Lemma 1.8. Let R < Q, and let ξ : [R, Q] → R such that ξ(Q) = 0, ξ ≥ 0, ξ ′ ≤ 0
and ξ ′′ ≥ 0. If there exists a constant A such that χ(Bs) ≤ A for all s ∈ [R, Q], then∫

C
Q
R

Kξ(r)2 dvh ≤−ξ(R)2G(R)−2ξ(R)ξ ′(R)�(R)+2πAξ(R)2−
∫

C
Q
R

(ξ2)′′(r) dvh.

Proof. Using the coarea formula we have∫
C

Q
R

Kξ(r)2 dvh =
∫ Q

R

ξ(s)2
( ∫

∂Bs

Kdσs

)
ds =

∫ Q

R

ξ(s)2G′(s) ds.

Let H(s) = ∫ s

R
G(t) dt . Doing two integrations by parts we get∫

C
Q
R

Kξ(r)2 dvh = [
ξ(s)2G(s)

]Q
R

−
∫ Q

R

(ξ2)′(s)G(s) ds

= −ξ(R)2G(R) − [
(ξ2)′(s)H(s)

]Q
R

+
∫ Q

R

(ξ2)′′(s)H(s) ds

= −ξ(R)2G(R) +
∫ Q

R

(ξ2)′′(s)H(s) ds.

By Theorem 1.7 we have G(t) ≤ 2πA − �′(t), and therefore

H(s) ≤ 2πA(s − R) −
∫ s

R

�′(t)dt ≤ 2πA(s − R) + �(R) − �(s).

Since (ξ2)′′ ≥ 0, we get∫
C

Q
R

Kξ(r)2 dvh ≤ −ξ(R)2G(R) + 2πA

∫ Q

R

(ξ2)′′(s)(s − R) ds

+ �(R)

∫ Q

R

(ξ2)′′(s) ds −
∫ Q

R

(ξ2)′′(s)�(s) ds.
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Doing an integration by part and using the coarea formula we get the desired
inequality:∫

C
Q
R

Kξ(r)2 dvh

≤ −ξ(R)2G(R) + 2πA
[
(ξ2)′(s)(s − R)

]Q
R

− 2πA

∫ Q

R

(ξ2)′(s) ds + �(R)
[
(ξ2)′(s)

]Q
R

−
∫ Q

R

(ξ2)′′(s)�(s) ds

≤ −ξ(R)2G(R) + 2πAξ(R)2 − 2ξ(R)ξ ′(R)�(R) −
∫

C
Q
R

(ξ2)′′(r) dvh. �

A result of potential theory. In order to determine the conformal type of the ends of
M , we will use the following result whose proof is based on the proof of Theorem 1.2
in [Co-Mi].

Proposition 1.9. Let Xd be a complete Riemannian manifold of dimension d such
that the volume of the geodesic balls of radius R satisfies VX(R) ≤ cR2 and let
φ ∈ L1

loc(X) be a function which is nonnegative almost everywhere. If the operator
�X − φ is nonnegative then the function φ is equal to 0 almost everywhere.

Proof. The idea of the proof is to use the volume estimate to compare the manifold
X with R

2.
Let x0 ∈ X be a fixed point; in this proof, we shall note rX(x) = dX(x0, x), Bs

the ball of radius s centered in x0, VX(s) the volume of Bs , �X(s) the volume of ∂Bs ,
and Ct

s = {x ∈ X | s < rX(x) < t}.
In the same way, for x ∈ R

2 we shall note r̃(x) = |x|, B̃s the Euclidean ball of
radius s, Ṽ (s) the volume of B̃s , �̃(s) the volume of ∂B̃s and C̃t

s = {x ∈ R
2 | s <

r̃(x) < t}. The hypothesis implies that VX(s) ≤ aṼ (s) for some constant a.
For Q > 0, let ξQ(s) = ∫ Q

s
dt
t

; up to a multiplicative constant, ξ(r̃) is the Green
function of the ball of radius Q in R

2 and we have �̃ξ(r̃) = 0 on R
2 \ {0}.

Let R > 0, and let η : [0, Q] → R the function defined by

η(s) =
{

ξQ(R) on [0, R[;
ξQ(s) for all s ∈ [R, Q].

Let p be the quadratic form associated to the operator � − φ. Since p(η(r)) ≥ 0
and since φ is nonnegative almost everywhere, we have

ξQ(R)2
∫

BR

φ dvX ≤
∫

C
Q
R

|dξQ(r)|2 dvX =
∫ Q

R

ξ ′
Q(s)2�X(s) ds.
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Since �X = V ′
X, an integration by parts gives

ξQ(R)2
∫

BR

φ dvX ≤ [
ξ ′
Q(s)2VX(s)

]Q
R

−
∫ Q

R

2ξ ′
Q(s)ξ ′′

Q(s)VX(s) ds.

Using the upper bound on VX and doing another integration by part we have

ξQ(R)2
∫

BR

φ dvX ≤ [
ξ ′
Q(s)2VX(s)

]Q
R

− a

∫ Q

R

2ξ ′
Q(s)ξ ′′

Q(s)Ṽ (s) ds

≤ [
ξ ′
Q(s)2(VX(s) − aṼ (s)

)]Q
R

+
∫ Q

R

ξ ′
Q(s)2�̃(s) ds

≤ aπ +
∫

C̃
Q
R

|dξQ(r̃)|2 dṽ,

where we used that VX(Q) ≤ aṼ (Q) and the fact that Ṽ (R) = πR2. From Green’s
formula in R

2 we deduce

ξQ(R)2
∫

BR

φ dvX ≤ aπ + a

∫
∂C̃

Q
R

ξQ(r̃)〈∇̃ξQ(r̃), ν〉dσ̃ +
∫

C̃
Q
R

ξQ(r̃)�̃ξQ(r̃) dṽ

≤ aπ − aξQ(R)ξ ′
Q(R)�̃(R),

where ν is the exterior normal vector to C̃
Q
R and dσ̃ is the volume form on ∂C̃

Q
R .

Finally we get ∫
BR

φ dvX ≤ aπ

ξQ(R)2 + a�̃(R)

RξQ(R)

and letting Q tend to +∞ (X is complete) we obtain
∫
X

φ dvX ≤ 0, which gives the
desired result since φ is nonnegative almost everywhere. �

Remark 1.10. There is a similar result on surfaces which are conformally equivalent
to a compact Riemann surface with a finite number of points removed: if φ is a
nonnegative function and if the operator � − φ is nonnegative, then φ must be zero
almost everywhere. This is a consequence of the conformal invariance of the Dirichlet
integral in dimension 2 (cf. [Bé-Be], Appendix 1).

2. Proof of Theorem A

Let (M, h) be a Riemannian surface such that bh > 1
4 . In particular, for λ = bh, the

quadratic form qλ is nonnegative. The proof of Theorem A splits into three parts.
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The topology of the surface

Proposition 2.1. Under the hypothesis of Theorem A, M is homeomorphic to C or
C

∗ = C \ {0}.
Proof. Suppose that M is neither homeomorphic to C, nor to C

∗; then we must be in
one of the two following cases:

• M is of finite topology and χ(M) ≤ −1;

• M is of infinite topology.

In these two cases, by Lemma 1.4, there exists R such that for all s ≥ R we have
χ(Bs) ≤ −1.

Let Q > R and let ξ : [0, Q] → R be the function defined by

ξ(s) =
{

(Q − R)α on [0, R[;
(Q − s)α for all s ∈ [R, Q],

where α ≥ 1 will be chosen later.
Since the form qλ is nonnegative, we have

0 ≤
∫

BQ

(ξ ′(r)2 + λKξ(r)2) dvh

≤ λξ(R)2G(R) +
∫

C
Q
R

ξ ′(r)2 dvh + λ

∫
C

Q
R

Kξ(r)2 dvh.

Since χ(Bs) ≤ −1 for all s ∈ [R, Q], Lemma 1.8 gives

0 ≤ λξ(R)2G(R) +
∫

C
Q
R

ξ ′(r)2 dvh − λξ(R)2G(R) − 2λξ(R)ξ ′(R)�(R)

− 2πλξ(R)2 − λ

∫
C

Q
R

(ξ2)′′(r) dvh

≤ −2λξ(R)ξ ′(R)�(R) − 2πλξ(R)2

+
∫

C
Q
R

(
(1 − 2λ)ξ ′(r)2 − 2λξ(r)ξ ′′(r)

)
dvh.

Using the definition of ξ on [R, Q] we obtain

0 ≤ −2λξ(R)ξ ′(R)�(R) − 2πλξ(R)2 +
∫

C
Q
R

(
(1 − 4λ)α2 + 2λα

)
(Q − r)2α−2 dvh.

Since 1 − 4λ < 0, we can choose α large enough so that (1 − 4λ)α2 + 2λα ≤ 0, and
we get

0 ≤ −2λξ(R)ξ ′(R)�(R) − 2πλξ(R)2,
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which implies

0 ≤ −ξ ′(R)

ξ(R)
�(R) − π = α�(R)

Q − R
− π.

Since M is complete, letting Q tend to +∞ we get the desired contradiction. �

The volume growth

Proposition 2.2. Under the hypothesis of Theorem A, there exists a constant c such
that for all R ≥ 0 we have V (R) ≤ cR2.

Proof. Let Q > 0 and let ξ : [0, Q] → R be the function defined by ξ(s) = (Q−s)α ,
where α ≥ 1 will be chosen later. Since qλ is nonnegative, we have

0 ≤
∫

BQ

ξ ′(r)2 dvh + λ

∫
BQ

Kξ(r)2 dvh.

Note that for all s ≥ 0 we have χ(Bs) ≤ 1, so Lemma 1.8 gives

0 ≤
∫

BQ

ξ ′(r)2 dvh + 2πλξ(0)2 − λ

∫
BQ

(ξ2)′′(r) dvh

≤ 2πλQ2α +
∫

BQ

(
(1 − 4λ)α2 + 2λα

)
(Q − r)2α−2 dvh.

Note Aα = −(
(1 − 4λ)α2 + 2λα

)
; since 1 − 4λ < 0 we can choose α large enough

so that Aα > 0. Thus we have the following inequalities:

Aα

∫
BQ

(Q − r)2α−2 dvh ≤ 2πλQ2α,

Aα

∫
BQ

2

(Q − r)2α−2 dvh ≤ 2πλQ2α,

Aα

Q2α−2

22α−2 V

(
Q

2

)
≤ 2πλQ2α.

It follows that for all R we have

V (R) ≤ 22α+1πλ

Aα

R2. �

The conformal type of the ends. It is a classical fact in potential theory that surfaces
with quadratic volume growth are parabolic (i.e. each end is conformally equivalent
to the punctured disc). For sake of completeness we give a proof of this fact which
uses Proposition 1.9.
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Proposition 2.3. Under the hypothesis of Theorem A, each end of M is conformally
equivalent to the punctured disc D∗ = {z ∈ C | 0 < |z| < 1}.

Proof. Suppose that M possesses an end E which is not conformally equivalent to D∗.
Then there exists a < 1 and a conformal diffeomorphism F : E → Da = {z ∈ C |
a < |z| < 1}.

Let hH2 be the Poincaré metric on D, and let h0 = F ∗(hH2). The diffeomorphism
F being conformal, and the metric hH2 being conformal to the Euclidean one on D,
we have h = μ2h0 on E.

Let φ : M → R be the function defined by

φ(x) =
{

0 if x ∈ M \ E;
1

4μ(x)2 if x ∈ E.

Let p be the quadratic form associated to the operator � − φ; for all functions
u ∈ C∞

0 (M) we have

p(u) =
∫

M

(|du|2h − φu2) dvh =
∫

M\E
|du|2h dvh +

∫
E

(
|du|2h − 1

4μ2 u2
)

dvh.

Using the conformal invariance of the Dirichlet integral in dimension 2 and the con-
formal diffeomorphism F , we get

p(u) =
∫

M\E
|du|2h dvh +

∫
Da

(|d(u � F−1)|2h
H2

− 1

4
(u � F−1)2) dvh

H2 .

It is a well-known fact that the second term of this sum is nonnegative.
We proved that there exists a function φ ∈ L1

loc(M) which is nonnegative on
M and positive on a subset of positive measure, such that the operator � − φ is
nonnegative. Since M has quadratic volume growth, this contradicts Proposition 1.9.

�

3. A theorem “à la Huber”

Let (M, h) be a Riemannian surface satisfying the hypothesis of Theorem B: there
exists a compact domain � ∈ M and a real λ > 1

4 such that qλ(u) ≥ 0 for every
function u ∈ C∞

0 (M \ �). Let R0 such that � ⊂ BR0 ; the quadratic form qλ is
nonnegative on C∞

0 (M \ BR0).
The proof of Theorem B is similar to the one of Theorem A. The difference is that

we have to construct test functions whose supports are in M \ BR0 . Choose R1 such
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that R0 < R1 − 1, and define ξ0 : [R1 − 1, R1] → R by ξ0(s) = s − R1 + 1. In the
sequel we shall note

ch,λ =
∫

C
R1
R1−1

(
ξ ′

0(r)
2 + λKξ0(r)

2) dvh − λG(R1),

which only depends on the metric h and on λ.

Proposition 3.1. Under the hypotheses of Theorem B, M is of finite topology.

Proof. Suppose that the topology of M is not finite. Let A be such that 0 > 2πAλ+
ch,λ; by Lemma 1.4, there exists R such that for all s ≥ R we have χ(Bs) ≤ A.

Let Q > R and let ξ : [R1 − 1, Q] → R be the function defined by

ξ(s) =

⎧⎪⎨⎪⎩
ξ0(s) for all s ∈ [R1 − 1, R1[;
1 on [R1, R[;
(Q−s)α

(Q−R)α
for all s ∈ [R, Q].

where α ≥ 1 will be chosen later.
Since the quadratic form qλ is nonnegative on C∞

0 (M \ BR0), we have

0 ≤
∫

C
R1
R1−1

(ξ ′
0(r)

2 + λKξ0(r)
2) dvh + λ

∫
CR

R1

K dvh +
∫

C
Q
R

ξ ′(r)2 dvh

+ λ

∫
C

Q
R

Kξ(r)2 dvh

≤ ch,λ + λG(R) +
∫

C
Q
R

ξ ′(r)2 dvh + λ

∫
C

Q
R

Kξ(r)2 dvh.

Since χ(Bs) ≤ A for all s ∈ [R, Q], Lemma 1.8 gives

0 ≤ ch,λ + λG(R) +
∫

C
Q
R

ξ ′(r)2 dvh − λG(R) − 2λξ ′(R)�(R) + 2πAλ

− λ

∫
C

Q
R

(ξ2)′′(r) dvh.

Using the definition of ξ on [R, Q] we get

0 ≤ ch,λ+2πAλ+ 2αλ�(R)

Q − R
+ 1

(Q − R)2α

∫
C

Q
R

(
(1−4λ)α2+2λα

)
(Q−r)2α−2 dvh.

Since 1 − 4λ < 0, we can choose α large enough so that (1 − 4λ)α2 + 2λα ≤ 0, and
letting Q tend to +∞ we get 0 ≤ ch,λ + 2πAλ which is in contradiction with the
choice of A. �
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Proposition 3.2. Under the hypotheses of Theorem B, there exists a constant c such
that for all R ≥ 0 we have V (R) ≤ cR2.

Proof. Let Q > R1 and let ξ : [R1 − 1, Q] → R be the function defined by

ξ(s) =
{

ξ0(s) for all s ∈ [R1 − 1, R1[;
(Q−s)α

(Q−R1)α
for all s ∈ [R1, Q].

where α ≥ 1 will be chosen later.
The nonnegativity of qλ gives

0 ≤
∫

C
R1
R1−1

(ξ ′
0(r)

2 + λKξ0(r)
2) dvh +

∫
C

Q
R1

ξ ′(r)2 dvh + λ

∫
C

Q
R1

Kξ(r)2 dvh.

Since for all s ≥ 0 we have χ(Bs) ≤ 1, Lemma 1.8 yields

0 ≤ ch,λ − 2λξ ′(R1)�(R1) + 2πλ +
∫

C
Q
R1

ξ ′(r)2 dvh − λ

∫
C

Q
R1

(ξ2)′′(r) dvh

≤ ch,λ + 2πλ + 2αλ�(R1)

Q − R1
− Aα

(Q − R1)2α

∫
C

Q
R1

(Q − r)2α−2 dvh

where Aα = −(
(1 − 4λ)α2 + 2λα

)
; since 1 − 4λ < 0 we can choose α large enough

so that Aα > 0. Thus we have the following inequalities:

Aα

(Q − R1)2α

∫
C

Q
R1

(Q − r)2α−2 dvh ≤ ch,λ + 2πλ + 2αλ�(R1)

Q − R1
,

Aα(Q + R1)
2α−2

22α−2(Q − R1)2α
Vol(C

R1+Q

2
R1

) ≤ ch,λ + 2πλ + 2αλ�(R1)

Q − R1
.

Let R > R1 and let Q > R1 such that R = R1+Q
2 . It follows from the above

inequalities that

V (R) = V (R1)+Vol(CR
R1

) ≤ V (R1)+
(

ch,λ + 2πλ + αλ�(R1)

R − R1

)
22α(R − R1)

2α

AαR2α−2 .

From this inequality we deduce that V (R)

R2 is bounded above on [R1 + 1, +∞); since

limR→0
V (R)

R2 = π , V (R)

R2 is bounded above on R, which implies the result. �

Proposition 3.3. Under the hypotheses of Theorem B, each end of M is conformally
equivalent to the punctured disc.

Proof. The proof is the same as the one of Proposition 2.3. �

Remark 3.4. The hypotheses of Theorem B are satisfied if there exists λ > 1
4 such

that the operator � + λK as a finite number of negative eigenvalues.



284 Ph. Castillon CMH

4. Complete conformal metrics on the unit disc

In the following, a “complete conformal metric on the unit disc” will denote a metric
h on D = {z ∈ C | |z| < 1} which is complete and conformally equivalent to the
Euclidean metric.

In this section, we are interested in the question asked in [FC-Sc]: If h is a
complete conformal metric on the unit disc, what are the possible values of bh which
can occur? Since the unit disc is not conformally equivalent to C nor C

∗, Theorem A
gives a first answer to this question.

Corollary 4.1. If h is a complete conformal metric on the unit disc, then bh ≤ 1
4 .

Remark 4.2. The statement of Theorem A is the best possible since bh = 1
4 for the

Poincaré metric on D. Moreover, C and C
∗ admit complete flat metrics wich are

conformally equivalent to the Euclidean one. For such metrics we have bg = +∞.

It is not hard to see that bh can take any value in
[
0, 1

4

]
for a complete conformal

metric h on the unit disc. Namely, we have the following proposition.

Proposition 4.3. Let h = μ2|dz|2 be a complete conformal metric on the unit disc.
If the metric hα = μ2α|dz|2 is complete, then we have bhα = 1

α
bh

Proof. Let qλ,h (resp. qλ,hα ) denote the quadratic form associated to the operator
� + λK for the metric h (resp. hα). Using the conformal invariance of the Dirichlet
integral, and the expressions of the curvature and the volume form of h in terms of
the conformal factor μ, we get

qλ,h(u) =
∫

D

(|du|2e + λ(� log μ)u2) dve,

where |du|e and dve denote the norm of du and the volume form for the Euclidean
metric.

A similar calculation gives

qλ,hα (u) =
∫

D

(|du|2e + αλ(� log μ)u2) dve

so that qλ,hα = qαλ,h and the proposition follows. �

If h is the Poincaré metric (i.e. μ(z) = 2
1−|z|2 ), and if α ≥ 1, then it is easy to see

that the metric hα = μ2α|dz|2 is complete, so we have bhα = 1
4α

.
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Consider now the metric h = μ2|dz|2, with μ(z) = exp
( 1

1−|z|2
)
. Let R < 1 and

let ξR : [0, 1] → R be the function defined by

ξR(s) =

⎧⎪⎨⎪⎩
1 if s ≤ R;
R+1−2s

1−R
if R ≤ s ≤ R+1

2 ;
0 if s ≥ R+1

2 .

Then a simple calculation proves that, for all λ > 0, qλ,h(ξR(|z|)) becomes negative
if R is close enough to 1. This implies that bh = 0.

Finally, for each β ∈ [
0, 1

4

]
we found a complete conformal metric h on D such

that bh = β.
Another natural question is to know whether the value bh = 1

4 is characteristic
of the Poincaré metric among the complete conformal metrics on the unit disc. The
(negative) answer is given by the following proposition.

Proposition 4.4. There exists a universal constant ε such that for all complete con-

formal metrics h on the unit disc satisfying K ≤ −1 and
∫
D

|K + 1| 3
2 dvh ≤ ε we

have bh = 1
4 .

Proof. The surface being simply connected, the upper bound on the curvature implies
an upper bound on the heat kernel ph of (D, h). This is obtained by comparing ph

with the hyperbolic heat kernel, using standard comparison theorems; using known
estimates on the hyperbolic heat kernel, we get that there exists a universal constant

A0 such that ph(t, x, x) ≤ A0t
− 3

2 e− t
4 (cf. for example [Ca1], Proposition 2.4).

Using Lieb’s theorem (cf. [Ca1], Theorem 1.3), there exists a universal con-
stant A such that for every operator of the type R = � − 1

4 + φ, the number of

negative eigenvalues of R satisfies N0(R) ≤ A
∫
D

|φ| 3
2 dvh. Let ε = 1

A
, and suppose∫

D
|K +1| 3

2 dvh ≤ ε. Since the operator L 1
4

is L 1
4

= �+ 1
4K = �− 1

4 + 1
4 (K +1),

we have

N0(L 1
4
) ≤ A

8

∫
D

|K + 1| 3
2 dvh ≤ 1

8
.

This inequality implies that N0(L 1
4
) = 0, so q 1

4
is non negative and bh ≥ 1

4 .

Using Corollary 4.1 we get bh = 1
4 . �

Remark 4.5. The hypotheses of Proposition 4.4 are satisfied by some of the minimal
surfaces of H

3 introduced in [Ne-Sp]. For some simply connected domain � ⊂ R
2,

the authors prove that there exists a function f� which is zero on ∂� and positive on
� whose graph M� is a minimal surface in the upper half space endowed with its
hyperbolic metric (when � is a Euclidean ball, M� is a hyperbolic plane).
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Now, the Gauss equation implies that K ≤ −1 on M�, and taking � close enough

to a Euclidean ball, it is not hard to see that
∫
M�

|K + 1| 3
2 dvh can be made small

enough to fit the hypothesis of Proposition 4.4.
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