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The stable equivalence and cancellation problems

Leonid Makar-Limanov∗, Peter van Rossum, Vladimir Shpilrain and Jie-Tai Yu†

Abstract. Let K be an arbitrary field of characteristic 0, and An the n-dimensional affine space
over K. A well-known cancellation problem asks, given two algebraic varieties V1, V2 ⊆ An with
isomorphic cylinders V1 × A1 and V2 × A1, whether V1 and V2 themselves are isomorphic.

In this paper, we focus on a related problem: given two varieties with equivalent (under an
automorphism of An+1) cylinders V1 × A1 and V2 × A1, are V1 and V2 equivalent under an
automorphism of An ? We call this stable equivalence problem. We show that the answer is
positive for any two curves V1, V2 ⊆ A2.

For an arbitrary n ≥ 2, we consider a special, arguably the most important, case of both
problems, where one of the varieties is a hyperplane. We show that a positive solution of the
stable equivalence problem in this case implies a positive solution of the cancellation problem.
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1. Introduction

Let K[x1, . . . , xn] be the polynomial algebra in n variables over a field K of
characteristic 0. Any collection of polynomials p1, . . . , pm from K[x1, . . . , xn] de-
termines an algebraic variety Spec K[x1, . . . , xn]/〈p1, . . . , pm〉 in the affine space
An = An

K = Spec K[x1, . . . , xn]. If K is algebraically closed and 〈p1, . . . , pm〉 is
radical, we can of course think of this variety as the zero set {pi = 0, i = 1, . . . , m}
in Kn. We denote this algebraic variety by V (p1, . . . , pm).

We say that two algebraic varieties V (p1, . . . , pm) and V (q1, . . . , qk) in An are
equivalent if there is an automorphism of An that takes one of them onto the
other. Algebraically, this means there is an automorphism of K[x1, . . . , xn] that
takes the ideal 〈p1, . . . , pm〉 to the ideal 〈q1, . . . , qk〉.

A variety equivalent to V × A1 is called a cylinder; a variety of the form
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V (p) is called a hypersurface, and a hypersurface equivalent to V (x1) is called a
hyperplane.

We say that two algebraic varieties V1 and V2 in An are stably equivalent if there
is an automorphism of Am for some m > n that takes the cylinder V1 × Am−n

onto V2 × Am−n.
We also say that two polynomials p, q ∈ K[x1, . . . , xn] are stably equivalent if

α(p) = q for some automorphism α of K[x1, . . . , xm], m > n.
We address here the following

Stable equivalence problem. Is it true that stable equivalence of two hyper-
surfaces in An implies their equivalence?

Or, in purely algebraic language: are any two stably equivalent polynomials
equivalent?

If one considers arbitrary algebraic varieties, not just hypersurfaces, then the
answer is negative, as explained in [17]. The corresponding example is based on
a well-known example, due to Danielewski, of non-isomorphic surfaces in C3 with
isomorphic cylinders.

Here we solve the Stable equivalence problem for n = 2:

Theorem 1.1. If two polynomials p, q ∈ K[x, y] are stably equivalent, then they
are equivalent. Or, in geometric language: if V (p) and V (q) are two curves in A2

such that, for some s ≥ 1, the cylinders V (p) × As and V (q) × As are equivalent
in A2+s, then V (p) and V (q) are equivalent in A2.

Upon replacing equivalence with isomorphism in the statement of Theorem 1.1,
one gets a well known result of Abhyankar, Eakin and Heinzer [1].

Now we focus on a special case of the Stable equivalence problem; we call it

Stable coordinate conjecture. Let V (p) be a hypersurface in An. If V (p)×A1

is equivalent to a hyperplane in An+1, then V (p) is equivalent to a hyperplane
in An.

Or, in purely algebraic language: if p = p(x1, . . . , xn) and ϕ(p) = x1 for some
automorphism ϕ of K[x1, . . . , xn+1], then also α(p) = x1 for some automorphism
α of K[x1, . . . , xn], i.e., p is a coordinate in K[x1, . . . , xn].

It turns out that the Stable coordinate conjecture is closely related to the
famous Cancellation conjecture of Zariski:

Cancellation conjecture. Let V (p) be a hypersurface in An. If V (p) × A1 is
isomorphic to a hyperplane in An+1 (i.e., to An), then V (p) is isomorphic to a
hyperplane in An (i.e., to An−1).

Or, in purely algebraic language: if, for some K-algebra R, R[x] is isomorphic
to K[x1, . . . , xn], then R is isomorphic to K[x1, . . . , xn−1].
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This conjecture was proved for n = 2 [1], [12] and n = 3 [13], [9]. There is some
circumstantial evidence that it might be wrong in higher dimensions if K = R,
see [3]. We refer to [10] for a more detailed survey on this problem.

In [17], it was shown that, for each particular n, the Cancellation conjecture
follows from the Stable coordinate conjecture combined with the Embedding con-
jecture of Abhyankar and Sathaye (see [2]), and also that the Stable coordinate
conjecture follows from the Cancellation conjecture combined with the Embedding
conjecture.

Here we establish a more straightforward implication:

Theorem 1.2. For each particular n, the Stable coordinate conjecture implies the
Cancellation conjecture.

It would be interesting to pinpoint also some connection between more general
forms of both conjectures, namely, between what we call the Stable equivalence
problem and the Cancellation problem (see the abstract). In particular, having in
mind Danielewski’s example mentioned before and motivated by Theorem 1.2, we
ask:

Problem 1. Let p = p(x, y, z) = xy + z2. Is it true that every polynomial in
K[x, y, z] which is stably equivalent to p is, in fact, equivalent to p ?

Recall that, by results of Danielewski [5] and Fieseler [7], the hypersurface
D(k) = {xyk + z2 + 1 = 0} is not isomorphic to D(m) = {xym + z2 + 1 = 0} if
k �= m, k,m ≥ 1, whereas the cylinders D(k) ×C and D(m) ×C are isomorphic.

Finally, we mention that it would be also interesting to find any relation be-
tween the general Cancellation problem and the general Embedding problem.
A somewhat bold conjecture would be that if, for a hypersurface V (p) ⊆ An,
the cylinder V (p)×A1 has a unique (up to an automorphism of An+1) embedding
into An+1, then, whenever V (p) × A1 is isomorphic to V (q) × A1, one has V (p)
isomorphic to V (q).

Now a natural question is whether or not Danielewski’s surfaces/cylinders have
unique embeddings in C4. We were able to prove that all but one of them do not:

Proposition 1.3. For any m ≥ 2, the hypersurface D(m)×Ck−3 = {xym + z2 +
1 = 0} has at least 2 inequivalent embeddings in Ck for any k ≥ 3.

We note that for k = 3, this was also proved in [8] (by an altogether different
method). For m = 1, the question is open:

Problem 2. Does the hypersurface D(1)×C = {xy + z2 + 1 = 0} have a unique
embedding in C4 ?
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It is also unknown whether D(1) has a unique embedding in C3 (cf. [8, Ques-
tion 1]).

We note that Problems 1 and 2 cannot both have positive answers. Indeed,
if the answer to Problem 2 was positive, then, since we know that D(1) × C is
isomorphic to D(m) × C for any m ≥ 1, we would have D(1) × C equivalent to
D(m)×C in C4. Then, if the answer to Problem 1 was positive, this would imply
that D(1) is equivalent to D(m) in C3, which is known not to be the case.

This simple trick also works in a more general situation, namely:

Proposition 1.4. Let V (p), p = p(x1, . . . , xn), be a hypersurface in An. Suppose
that the following two conditions hold:

(i) V (p) × A1 has a unique embedding in An+1.
(ii) If V (p) is stably equivalent to V (q) for some q = q(x1, . . . , xn), then V (p)

is equivalent to V (q).
Then, whenever V (p) × A1 is isomorphic to V (q) × A1, it follows that V (p)

and V (q) are isomorphic subvarieties of An.

The proof is obvious; we omit the details. Equally obvious is the following

Proposition 1.5. Let V (p), p = p(x1, . . . , xn), be a hypersurface in An. Suppose
that the following two conditions hold:

(i) V (p) has a unique embedding in An.
(ii) If V (p)×As and V (q)×As are isomorphic subvarieties of An+s for some

s ≥ 1, then V (p) and V (q) are isomorphic subvarieties of An.
Then, whenever V (p) is stably equivalent to V (q) for some q = q(x1, . . . , xn),

one has V (p) equivalent to V (q).

2. The two-variable case

Let p, q ∈ K[x, y], ϕ(p) = q for some automorphism ϕ of K[x, y, z, . . . ].
Let ϕ(x) = u = u(x, y, z, . . . ), ϕ(y) = v = v(x, y, z, . . . ). We are going to prove

a stronger statement (Proposition 2.1 below) that will imply Theorem 1.1.
We call a pair (u, v) of polynomials z-reduced if the sum of z-degrees of the two

polynomials cannot be reduced by either a (non-degenerate) linear transformation
or a transformation of one of the following two types:

(i) (u, v) −→ (u + µ · vk, v) for some µ ∈ K∗; k ≥ 2;
(ii) (u, v) −→ (u, v + µ · uk).
When proving Theorem 1.1, we can assume, without loss of generality, that the

pair (u(x, y, z, . . . ), v(x, y, z, . . . )) is z-reduced.
If (u, v) is a pair of two-variable polynomials such that the sum of their degrees

cannot be reduced by a transformation of one the above types, then we call this
pair elementary reduced.
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Proposition 2.1. Let p ∈ K[x, y] be a two-variable polynomial. Let (u(x, y, z, . . . ),
v(x, y, z, . . . )) be a z-reduced pair of algebraically independent polynomials such
that both of them actually depend on z. Then, for any N ∈ Z+, there is a polynomial
w = w(x, y) such that deg(p(u(x, y, w, c1, c2, . . . ), v(x, y, w, c1, c2, . . . ))) > N , for
some choice of constants c1, c2, . . . .

In the proof of Proposition 2.1, we shall write just u(x, y, z) and v(x, y, z)
instead of u(x, y, z, c1, c2, . . . ) and v(x, y, z, c1, c2, . . . ) to simplify the notation.
First we prove

Lemma 2.2. Let u(x, y, z) and v(x, y, z) be algebraically independent. For any
M ∈ Z+ and m,n > M , there is c ∈ K such that u(x, y, xmyn + c) and
v(x, y, xmyn + c) are algebraically independent.

Proof. Recall that polynomials f1, . . . , fm ∈ K[x1, . . . , xn] are algebraically depen-
dent over K if and only if the Jacobian matrix D(f1, . . . , fm) has rank smaller
than m.

Assume, by way of contradiction, that for all c ∈ K the polynomials
u(x, y, xmyn + c), v(x, y, xmyn + c) ∈ K[x, y] are algebraically dependent.
This means that for all c ∈ K, the matrix

D(u(x, y, xmyn + c), v(x, y, xmyn + c))

= D(u, v)|(x,y,xmyn+c) ·



1 0
0 1

mxm−1yn nxmyn−1




has rank at most 1. Then for all c ∈ K the 2 × 3 matrix D(u, v)|(x,y,xmyn+c) has
rank at most one, which means that all its 2× 2 minors are 0. Using the fact that
for all a, b ∈ K the map from K to K definied by c �→ ambn + c is surjective, this
implies that for all a, b, c ∈ K all 2×2 minors of D(u, v)|(a,b,c) are 0. Since K is an
infinite field, this in turn implies that all 2× 2 minors of D(u, v) are 0. Thus, the
rank of D(u, v) is at most one and therefore u and v are algebraically dependent
over K, a contradiction. �

Proof of Proposition 2.1. Since both u(x, y, z) and v(x, y, z) actually depend on
z and the pair is z-reduced, we can find m,n > 2N and c ∈ K such that
u(x, y, xmyn + c) and v(x, y, xmyn + c) are algebraically independent (by Lemma
2.2) and elementary reduced.

Now we use a result of Shestakov and Umirbaev [15] which implies, in partic-
ular, that, if two polynomials r(x, y) and s(x, y) of degree > 2N are algebraically
independent and elementary reduced, then every non-constant polynomial in the
algebra K[r, s] has degree at least N + 2. This completes the proof of Proposi-
tion 2.1. �

Now we can get to the
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Proof of Theorem 1.1. Recall that ϕ(x) = u = u(x, y, z, . . . ), ϕ(y) = v =
v(x, y, z, . . . ). Upon applying an automorphism of K[x, y] to both p(x, y) and
q(x, y) if necessary, we may assume that u(x, y, z, . . . ) and v(x, y, z, . . . ) are z-
reduced. Now we have several cases.

Case 1. Both u(x, y, z, . . . ) and v(x, y, z, . . . ) actually depend on z. Then we can
apply Proposition 2.1 to get a contradiction in this case.

Case 2. Say, v(x, y, z, . . . ) actually depends on z, whereas u(x, y, z, . . . ) does not.
Let xmyn be the highest monomial in p(x, y) with respect to “lexdeg” ordering
with y > x. This monomial will contain the highest power of z after we plug in
u for x and v for y. This highest power of z then cannot cancel out in p(u, v).
Therefore, p(u, v) will depend on z, contrary to the assumption p(u, v) = q(x, y).

Case 3. Neither u(x, y, z, . . . ) nor v(x, y, z, . . . ) depend on z. If there are other
variables that either u(x, y, z, . . . ) or v(x, y, z, . . . ) depend on, then we find our-
selves in Case 1 or 2 above. If not, then there is nothing to prove because the
restriction of ϕ to K[x, y] must be an automorphism of K[x, y].

This completes the proof of Theorem 1.1. �

Remark. The crucial technical tool in our proof of Theorem 1.1 was Shestakov–
Umirbaev’s result from [15] that bounds (from below) the degree of polynomials in
the subalgebra of K[x, y] generated by two given polynomials. This is (philosophi-
cally) similar to “small cancellation” ideas in combinatorial group theory (see e.g.
[11]). We note however that in commutative algebra, these ideas cannot be simply
carried on to higher dimensions as the following example shows.

Let ϕ : x → u = x− yt2z2, y → v = 1 + tz2, z → r = z2, t → s = −xt + yt2 +
yt3z2. Let p = p(x, y, z, t) = xy + zt. Then ϕ(p) = x, i.e., x ∈ K[u, v, r, s], even
though the degrees of u, v, r, s are at least 2. Similar examples can be constructed
with arbitrarily high degrees of u, v, r, s.

This example therefore makes it appear likely that our proof of Theorem 1.1
might be difficult to carry on to higher dimensions, but, of course, this does not
mean that the result itself does not hold.

Finally, since our proof of Theorem 1.1 heavily relies on Shestakov–Umirbaev’s
result which is not yet published, we offer an alternative proof, which is more
elementary, but probably has more limited use.

Alternative proof of Theorem 1.1. The statement will follow from Proposition 2.3
below.

Proposition 2.3. Let R = K[x1, . . . , xn, z] be a ring of polynomials in (n + 1)
variables and let (u, v) be a z-reduced pair of algebraically independent polynomials
from R such that both of them actually depend on z. Then, for any nonconstant
two-variable polynomial p, the polynomial p(u, v) depends on z, too.
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Proof. Suppose, by way of contradiction, that q = p(u, v) ∈ K[x1, . . . , xn]. It is
clear that ∂q

∂x �= 0 for some x = xi: otherwise q would be a constant, and u and v
would be algebraically dependent, contrary to the assumption.

Then the derivation ∂(g) = Jx,z(q, g) = ∂q
∂x

∂g
∂z − ∂q

∂z
∂g
∂x = ∂q

∂x
∂g
∂z is a nonzero

locally nilpotent derivation on R , i.e., for any element g ∈ R there is n such that
∂n(g) = 0. Indeed, since degz q = 0, we see that degz ∂(g) < degz g. Therefore, if
m = degz g, then ∂m+1(g) = 0.

Define now a derivation ∂1 on K[u, v] ⊂ R as follows: ∂1(f) = Ju,v(p(u, v), f)
for f = f(u, v) ∈ K[u, v]. We claim that this derivation is locally nilpotent, too.
Let g = g(x1, . . . , xn, z) = f(u, v) ∈ K[u, v]. By the usual chain rule, we have
∂(g) = Jx,z(q, g) = Jx,z(p(u, v), f(u, v)) = Jx,z(u, v) ·Ju,v(p, f) = Jx,z(u, v) ·∂1(f).
Thus, if we consider ∂1(f) as an element of R (as opposed to just K[u, v]), then
degz ∂1(f) = degz ∂(g) − degz Jx,z(u, v) < degz g = degz f(u, v). As above, this
implies that ∂1 is a locally nilpotent derivation on K[u, v] since every application
of ∂1 decreases the degree relative to z.

Locally nilpotent derivations on a polynomial ring in two variables are well
understood. In particular, it is known that the kernel of a nonzero locally nilpotent
derivation is a polynomial ring in one variable and its generator is also a generator
of the ambient two-variable ring (see [14]). Since ∂1 is a nonzero derivation and
p ∈ ker ∂1, a generator s of the kernel does not depend on z either. Thus, K[u, v] =
K[s, w], where s does not depend on z, and therefore degz u = degw u · degz w,
degz v = degw v · degz w. It is known (see e.g. [4]) that K[u, v] = K[s, w] implies
that either degw u divides degw v or degw v divides degw u and that there is an
elementary transformation (see the beginning of this section) which reduces the w-
degree of the pair (u, v). Therefore, the z-degree of the pair can be reduced, too,
so that (u, v) is not a z-reduced pair contrary to our assumption. This completes
the proof. �

3. The Stable coordinate and other conjectures

Proof of Theorem 1.2. One of the equivalent formulations of the Cancellation
conjecture is (see [6, p. 54]): for every locally nilpotent derivation D of the algebra
K[x1, . . . , xn] with a slice s, the kernel KerD is isomorphic to K[x1, . . . , xn−1].
By Proposition 2.1 of Wright [18], the latter property is equivalent to s being a
coordinate, i.e., an automorphic image of x1.

Thus, we start with an arbitrary locally nilpotent derivation D of the alge-
bra K[x1, . . . , xn] with a slice s, and we want to prove that s is a coordinate in
K[x1, . . . , xn].

Extend D to K[x1, . . . , xn+1] by D(xn+1) = 0. Then KerD in K[x1, . . . , xn+1]
is K[x1, . . . , xn]D[xn+1], where K[x1, . . . , xn]D denotes KerD in K[x1, . . . , xn].
Since s is transcendental over K[x1, . . . , xn]D, we have K[x1, . . . , xn]D[xn+1] iso-
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morphic to K[x1, . . . , xn]D[s]. The latter algebra is equal to K[x1, . . . , xn] by the
result of Wright [18, Proposition 2.1].

Thus we get K[x1, . . . , xn+1]D isomorphic to K[x1, . . . , xn], which implies that
s is a coordinate in K[x1, . . . , xn+1]. Since we are under the assumption that the
Stable coordinate conjecture holds for this particular n, we conclude that s is a
coordinate in K[x1, . . . , xn], and therefore the Cancellation conjecture holds for
the same n. �

Proof of Proposition 1.3. We give a proof here for m = 2, just to simplify the
notation. As in [16], it will be technically more convenient to write algebras of
residue classes as “algebras with relations”, i.e., for example, instead of
K[x1, . . . , xn]/〈p(x1, . . . , xn)〉 we shall write 〈x1, . . . , xn | p(x1, . . . , xn) = 0〉.

We get the following chain of “elementary” isomorphisms:

〈x, y, z | xy2 + z2 + 1 = 0〉 ∼= (applying the automorphism φ : x → x, y →
y + 1, z → z) 〈x, y, z | x = −xy2 − 2xy − z2 − 1〉 ∼= 〈x, y, z, u | u = xy, x =
−uy−2u−z2−1〉 ∼= 〈x, y, z, u | u = −uy2−2uy−z2y−y, x = −uy−2u−z2−1〉 ∼=
〈y, z, u | u = −uy2−2uy−z2y−y〉 ∼= 〈x, y, z | x = −xy2−2xy−z2y−y〉 ∼= (applying
the automorphism φ : x → x, y → y−1, z → z) 〈x, y, z | xy2+z2y−z2+y−1 = 0〉.

Now let p = p(x, y, z) = xy2 + z2 + 1, q = q(x, y, z) = xy2 + z2y−z2 + y−1.
We are going to show that the gradients grad(p) and grad(q) have different num-
bers of zeros. This obviously implies that p and q are inequivalent under any
automorphism of K[x, y, z] (in fact, this implies that p and q are even stably
inequivalent).

Compute:
grad(p) = (y2, 2xy, 2z)

grad(q) = (y2, 2xy + z2 + 1, 2yz − 2z).

We see that grad(p) has infinitely many zeros (y = z = 0, x arbitrary), whereas
grad(q) has no zeros. This completes the proof. �
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