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1. Introduction

In the study of discrete subgroups of Lie groups, lattices (i.e., discrete subgroups
of finite covolume) and their remarkable properties have attracted most atten-
tion. Among the deepest results are the strong rigidity theorem of G.D. Mostow
and the superrigidity and arithmeticity theorems of G. A. Margulis for lattices in
semisimple Lie groups of higher rank (see e.g. [14], [23] and [25]). In contrast only
very little is known about general discrete subgroups (except, of course, the elab-
orated theory of Fuchsian and Kleinian groups). We refer to [4], [13], [18] and [24]
for interesting examples of discrete subgroups of Lie groups of higher rank, which
have infinite covolume and which are not subgroups of lattices and in particular
not arithmetic.

It is a general idea that lattices are isolated (in various ways) in the set of all
discrete subgroups of a given semisimple Lie group. Moreover this isolation should
become stronger if the complexity of the ambient group is increasing. The present
paper supports that philosophy.

A basic measure for the size of a discrete group acting on a metric space is the
exponent of growth or critical exponent. We next define that notion in the case
of discrete subgroups of semisimple Lie groups acting isometrically on symmetric
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spaces. Consider a connected, noncompact, semisimple Lie group G with finite
center. Associated to G is the (globally) symmetric space X = G/K, where
K is a chosen maximal compact subgroup of G. Equipped with a left-invariant
Riemannian metric X is a Hadamard manifold (i.e., a complete, simply connected
Riemannian manifold of nonpositive sectional curvature). Let Γ be a torsion-free,
discrete subgroup of G. Then Γ acts isometrically and properly discontinuously
on X and the resulting quotient space V = Γ\X is locally symmetric (i.e., the
geodesic symmetry at each of its points is a local isometry). For x ∈ X let
BR(x) be the closed ball of radius R in X = G/K centered at x. We denote
by N(x, y;R) := |BR(x)) ∩ Γ · y| the number of orbit points of y ∈ X under Γ
contained in BR(x). The critical exponent of Γ is then defined as

δ(Γ) := lim sup
R→∞

1
R

log N(x, y;R).

This number is independent of the chosen points x, y ∈ X. We remark that if Γ
is a lattice, i.e., vol(Γ\X) < ∞, then the critical exponent δ(Γ) is equal to the
volume entropy of V (or of its universal covering space X). The latter is defined as
lim supR→∞R−1 log vol(BR(x)), where BR(x) is as above with arbitrary x ∈ X.

The present paper was motivated by the following remarkable rigidity phe-
nomenon discovered by K. Corlette for discrete subgroups of the isometry groups
of quaternionic hyperbolic spaces HnH, n ≥ 2, and the Cayley hyperbolic plane
H2Ca respectively.

Theorem (K. Corlette, [10]). (i) If Γ is a discrete group of isometries of HnH,
n ≥ 2, with the metric normalized such that the sectional curvature is pinched
between −1 and −4, then δ(Γ) = 4n + 2 or δ(Γ) ≤ 4n. If δ(Γ) = 4n + 2, then Γ
is a lattice.

(ii) If Γ is a discrete group of isometries of H2Ca with the metric normalized
such that the sectional curvature is pinched between −1 and −4, then δ(Γ) = 22
or δ(Γ) ≤ 16. If δ(Γ) = 22, then Γ is a lattice.

The isometry groups of HnH, n ≥ 2, and of H2Ca are precisely the noncompact
simple Lie groups of real rank one which have Kazhdan’s property (T). Corlette’s
result roughly says that property (T) has the effect of creating a gap in the possible
sizes of discrete subgroups measured by the critical exponent. Lattices are exactly
the discrete subgroups on one side of the gap. Corlette uses property (T) to
show first that there is a similar gap in the L2-spectrum of the Laplace–Beltrami
operator of the locally symmetric space corresponding to a discrete group Γ: either
zero belongs to the spectrum in which case Γ is a lattice, or the spectrum has a
strictly positive lower bound c > 0 (independent of Γ). Generalizing a formula
of Patterson–Sullivan he then relates the bottom of the spectrum to the critical
exponent of Γ and also to the Hausdorff dimension of the limit set (see [10]).

For a lattice in the isometry group of a quaternionic or Cayley hyperbolic
space the above number c > 0 turns out to be also a lower bound for the non-zero
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spectrum of the Laplacian. This qualitatively generalizes the celebrated estimate
of A. Selberg which asserts that the bottom λ1 of the non-zero spectrum of the
Laplacian ∆ on the Riemann surface Γ(n)\SL(2, R)/SO(2) satisfies λ1 ≥ 3

16 for
any congruence subgroup Γ(n) ⊂ SL(2, Z). It is conjectured that actually λ1 ≥ 1

4
(see [31] for a recent discussion). Qualitative estimates of λ1 of ∆ for finite volume
locally symmetric spaces corresponding to lattices with property (T) have been
obtained by R. Brooks, A. Lubotzky, R. Zimmer and others (see e.g. [7], [20], [21]
and [22]).

A main goal of the present paper is to extend the above mentioned results
to arbitrary discrete subgroups (in particular to those of infinite covolume) of a
semisimple Lie group G, such that G has property (T). It is well-known that G has
property (T) if and only if G has no simple factors locally isomorphic to SO(n, 1)
or SU(n, 1) (see [16], Ch. 2, 9). Notice that a lattice Γ ⊂ G also has property (T)
if the ambient group G has (T), but that this need not be the case for an arbitrary
discrete subgroup of G. For instance a generalized Schottky group (see [4]) is a
free group and hence does not have property (T).

In the main theorem below we list several dichotomies between locally sym-
metric spaces of finite resp. infinite volume. We emphasize that all these di-
chotomies actually characterize lattices among arbitrary discrete subgroups. In
order to state them we introduce some additional notation. Consider a discrete,
torsion-free subgroup Γ of a semisimple Lie group G as above and let X = G/K
resp. V = Γ\G/K be the associated globally resp. locally symmetric spaces. By
λ0(V ) := inf Spec∆ ⊂ [0,∞) we denote the bottom of the L2-spectrum of the
Laplace–Beltrami operator ∆ of V . If vol(V ) < ∞, the constants are in L2(V )
and λ0(V ) = 0. We denote by λ1(V ) := inf{Spec∆ \ {0}} the bottom of the
non-zero spectrum of ∆ on V .

The Poincaré series of Γ with exponent s is defined as

Ps(x, y) :=
∑
γ∈Γ

e−sd(x,γy) (x, y ∈ X),

where d = dX is the distance function associated to the Riemannian metric on X.
The critical exponent of Γ defined above satisfies

δ(Γ) = inf{s ∈ R | Ps(x, y) < ∞}.
Finally, if 2ρ denotes the sum of all positive restricted roots of G counted with
multiplicity, then its norm 2‖ρ‖ is equal to the volume-entropy of X (see section
6 for the details).

Main Theorem (Dichotomy). Let G be a connected, semisimple Lie group with
finite center, without compact factors and with Kazhdan’s property (T). Let Γ be
a discrete, torsion-free subgroup of G and let V = Γ\G/K be the associated locally
symmetric space. Then there exist constants c(G) > 0 and c∗(G) > 0 depending
only on G but not on Γ such that:
(a) The following assertions are equivalent:
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(1) vol(V ) < ∞, i.e., Γ is a lattice.
(2) λ0(V ) = 0 < c(G) ≤ λ1(V ).
(3) δ(Γ) = 2‖ρ‖.
(4) The Poincaré series of Γ diverges at exponent 2‖ρ‖.
(5) There does not exist a Green function on V .
(6) The Brownian motion on V is recurrent.

(b) The following assertions are equivalent:
(1) vol(V ) = ∞.
(2) 0 < c(G) ≤ λ0(V ).
(3) δ(Γ) ≤ 2‖ρ‖ − c∗(G).
(4) The Poincaré series of Γ converges at exponent 2‖ρ‖.
(5) There exists a Green function on V .
(6) The Brownian motion on V is transient.

For semisimple groups of R-rank one with property (T) the equivalence of
(a.1) with (a.3) and of (b.1) with (b.3) of the theorem was previously proved by
K. Corlette (see [10], Theorem 4.4.) as we mentioned above. That (a.1) implies
(a.2) in the rank one case has been shown by M. Burger and V. Schroeder (see [8],
p. 280 (2), (3)).

We outline the plan of the paper. We equip G with a left invariant Riemannian
metric and then first work in the space Γ\G instead of Γ\G/K. The reason to do
this is that G acts transitively and measure preserving (though not isometrically)
on Γ\G from the right (section 2). In section 3 we use property (T) to derive a
positive lower bound of Cheeger’s isoperimetric constant h(Γ\G) which is univer-
sal (i.e., independent of Γ). An inequality of J. Cheeger then yields a universal
lower bound for the bottom of the (non-zero) L2-spectrum first of Γ\G and then
also for Γ\G/K (section 4). In section 5 we use an inequality of P. Buser to derive
isoperimetric inequalities for the various locally symmetric spaces V and to esti-
mate their volume growth. We show that locally symmetric spaces of finite volume
are expanding while those with infinite volume are open at infinity. In a previous
paper [19] we estimated λ0(V ) from above and below in terms of quadratic poly-
nomials in the critical exponent of Γ. In section 6 we use that result to deduce a
new rigidity property for lattices which (qualitatively) extends the above quoted
result of Corlette to higher rank. In section 7 we estimate the growth of orbital
counting functions for arbitrary discrete groups Γ ⊂ G. Finally in section 8 we
put everything together to prove the main theorem.

It is possible to deduce the spectral gap also more directly from property (T) us-
ing Casimir operators and the methods of [5]. But the present proof via Cheeger’s
constant is more adapted to possible generalizations. In fact, parts of the main
theorem probably hold for a more general class of groups and spaces. For in-
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stance a result of R. S. Phillips, P. Sarnak and P. Doyle asserts the following: For
n ≥ 3 there is a number dn < n − 1 such that for any (classical) Schottky group
Γ ⊂ SO(n, 1), the isometry group of the n-dimensional real hyperbolic space, one
has δ(Γ) ≤ dn (see [26], [11]). Note that in this case 2‖ρ‖ = n− 1.

In contrast it is well-known that assertion (a.2) is not true for (cocompact) lat-
tices in SO(n, 1). In fact, by a result of B. Randol there exist compact hyperbolic
manifolds in all dimensions with arbitrarily numerous small eigenvalues as close
to zero as one wishes (see [29]).

2. Some elementary properties of Γ\G

Let G be a connected, noncompact, semisimple Lie group without compact factors
and with finite center and let K be a maximal compact subgroup of G. Let B be
the Killing form on the Lie algebra g of G, let θ be the Cartan involution of g with
respect to k and set

g0(X,Y ) := −B(X, θY ) (X,Y ∈ g).

Then g0 is a positive definite scalar product on g invariant under Ad(K). We
equip G with the left-invariant Riemannian metric, say g, which is equal to g0 on
g = TeG. Let dG be the associated left-invariant distance function on G and set
|x| := dG(e, x) for x ∈ G.

Let Γ be a torsion-free, discrete subgroup of G. Then Γ acts freely and properly
discontinuously from the left on G by isometries so that Γ\G is a manifold. We
endow it with the Riemannian metric which makes π : G → Γ\G into a Riemannian
covering.

Lemma 1. For any Γ as above the infimum of the Ricci curvature of Γ\G is non-
positive: inf Ric = −κ2(n− 1)g where κ ≥ 0, n = dimG and g is the Riemannian
metric.

Proof. Since Γ\G is locally isometric to G we have Ric(Γ\G) = Ric(G). Since G
is homogeneous −∞ < ag ≤ Ric ≤ bg < ∞ and since G is not compact a ≤ 0 by
Myer’s theorem (see [30], IV, 3.1). ¤

The distance function on Γ\G is given by

dΓ\G(π(g1), π(g2)) := inf
γ∈Γ

dG(γg1, g2).

We also use the action of G on Γ\G from the right:

Γ\G×G −→ Γ\G; (Γg, h) 7→ rh(Γg) := Γgh.
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Lemma 2. For any Γ ⊂ G and any h ∈ G holds:
(i) rh is measure preserving for the Riemannian measure on Γ\G.
(ii) dΓ\G(x, rh(x)) ≤ dG(e, h) = |h| = |h−1| for all x ∈ Γ\G.

Proof. (i) The Riemannian measure induced by the left-invariant Riemannian
metric is a left-invariant Haar measure on G. As a semisimple Lie group G is
unimodular, so that this measure is also right-invariant and descends to a right-
invariant measure on Γ\G.

(ii) For any h ∈ G we have

dΓ\G(π(g), rh(π(g))) = dΓ\G(π(g), π(gh)) = inf
γ∈Γ

dG(γg, gh) ≤
≤ dG(eg, gh) = dG(e, h) = |h|.

¤

3. Kazhdan’s property (T) and Cheeger’s isoperimetric constant

Certain group-theoretic properties of locally compact groups are reflected by the
so-called property (T) introduced by D. Kazhdan. Suppose that ρ : G −→ AutH
is a unitary representation of a locally compact topological group G in a separable
Hilbert space H. For any compact subset H of G and any positive number ε > 0,
the vector v ∈ H is said to be (ε,H)-invariant, if ‖ρ(h)v−v‖ < ε‖v‖ for all h ∈ H.
One says that the representation ρ contains almost invariant vectors, if it contains
(ε,H)-invariant vectors for arbitrary ε and H. A vector v ∈ H is G-invariant
if ρ(g)(v) = v for all g ∈ G. A locally compact group G has Kazdan’s property
(T), if any one of its unitary representations, containing almost invariant vectors,
contains non-zero G-invariant vectors.

It is well-known that a connected, semisimple Lie group has property (T) if and
only if it has no simple factors locally isomorphic to the rank one groups SO(n, 1)
or SU(n, 1) (see [16], [23], [34]).

The following proposition is reformulation of [16], 1.15 and will be most con-
venient for our purposes.

Proposition 1. Let G be a connected, semisimple Lie group without compact fac-
tors and with finite center and let H be a compact neighbourhood of the identity
of G (which in particular generates G). If G has property (T), then there exists a
number ε = ε(G,H) > 0 which depends only on G and the choice of H such that
the following assertion holds: If ρ is a unitary representation of G on a Hilbert
space H which does not have nontrivial invariant vectors, then, given any v ∈ H,
there is an h ∈ H such that ||ρ(h)v − v‖ ≥ ε‖v‖.

Next consider a complete, connected Riemannian manifold M . For an open
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submanifold Ω of M with smooth boundary ∂Ω we denote by V (Ω) (resp. by
A(∂Ω)) its n-dimensional (resp. (n− 1)-dimensional) Riemann-Lebesgue measure.
The Cheeger isoperimetric constant of M is defined as

h(M) := inf
Ω

A(∂Ω)
V (Ω)

where the infimum is taken over all open submanifolds Ω of M with compact clo-
sure and smooth boundary ∂Ω such that V (Ω) ≤ 1

2vol(M). Notice that the last
condition is automatically satisfied if M has infinite volume. A tubular neighbour-
hood of some subset S ⊂ M will be denoted by Ur(S) := {p ∈ M | dM (p, S) ≤ r},
r > 0.

The following technical result due to P. Buser is crucial for what follows.

Proposition 2. Let M be a complete, n-dimensional Riemannian manifold whose
Ricci curvature satisfies Ric ≥ −(n − 1)κ2 (κ ≥ 0). Let Ω ⊂ M be a relatively
compact domain with A(∂Ω)

V (Ω) ≥ h(M) and let C be a sufficiently large ball containing
Ω (if M is compact let C = M). Then there are constants c′, r > 0, depending
only on n = dim M , and a domain Ω̃ ⊆ Ur(Ω) with boundary ∂Ω̃ such that

(a) V (Ω̃) ≥ 1
2
V (Ω) and V (C \ Ω̃) ≥ 1

2
V (C \ Ω)

(b)
V (Ut(∂Ω̃))

V (Ω̃)
≤ c′e(n−1)κt · A(∂Ω)

V (Ω)
for all t ≥ r.

Proof. Proposition 2 is just a slightly modified version of Lemma 7.2 in [9]. Since we
are interested in inf A(∂Ω)

V (Ω) we can assume without loss of generality that A(∂Ω)
V (Ω) ≤ 1.

This in particular implies that the parameter r in Buser’s proof can be chosen
≤ 1

2c′ (and independent of Ω). That observation yields (b). As for (a) we remark
that if M is noncompact one choses a sufficiently large ball C (not necessarily
homeomorphic to a euclidean ball) which contains the given Ω and for which one
may assume that vol(C) ≥ 3

4vol(M) if vol(M) < ∞ (see [9], section 7). Assertion
(a) is then a consequence of formula (4.9) and its proof in [9]. ¤

Theorem 1. Let G be a semisimple Lie group without compact factors and with
finite center. Assume that G has property (T). Then there exists a universal
constant c1(G) > 0 which depends only on G such that for any torsion-free discrete
subgroup Γ the isoperimetric constant of Γ\G satisfies

h(Γ\G) ≥ c1(G) > 0.

3.1. Proof of Theorem 1. Part (a): the case of infinite volume

We choose a compact neighbourhood of the identity H ⊂ G as in Proposition 1.
We consider a relatively compact domain Ω in Γ\G. By Lemma 1 the Ricci
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curvature of Γ\G has a non-positive lower bound and we can apply Proposition
2 in order to replace Ω by a domain Ω̃ whose tubular neighbourhood can be
estimated.

Using the (non-isometric) right action of G on Γ\G we define the right regular
representation R of G on L2(Γ\G) by Rg(f)(x) = f(rg(x)) for f ∈ L2(Γ\G),
x ∈ Γ\G and g ∈ G. The representation R is unitary by Lemma 2(i). Since
G acts transitively on Γ\G the invariant vectors of R are precisely the constant
L2-functions on Γ\G. Since vol(Γ\G) = ∞ we conclude that R does not have
non-zero invariant vectors.

Let χΩ̃ ∈ L2(Γ\G) be the characteristic function of Ω̃. By Proposition 1 there
is h ∈ H and ε > 0 depending only on G and H (but not on Ω̃ and Γ) such that

ε2V (Ω̃)

= ε2‖χΩ̃‖2 ≤ ‖Rh(χΩ̃)− χΩ̃‖2 =
∫

Γ\G
|χΩ̃(rh(x))− χΩ̃(x)|2dµ(x) = V (E ∪ F )

where E := {x ∈ Γ\G | x ∈ Ω̃, rh(x) /∈ Ω̃} and F := {x ∈ Γ\G | rh(x) ∈ Ω̃, x /∈ Ω̃}.
We claim that the sets E and F are contained in the |h|-neighbourhood U|h|(∂Ω̃)

of the boundary ∂Ω̃. To see this pick x ∈ E, i.e., x ∈ Ω̃ and rh(x) /∈ Ω̃. Assume
that dΓ\G(x, ∂Ω̃) ≥ |h|+ 2a for some a > 0. Then the ball B|h|+a(x) is contained
in Ω̃. Since dΓ\G(x, rh(x)) ≤ |h| by Lemma 2(ii) we have rh(x) ∈ Ω̃, which is a
contradiction. The proof for F is similar.

So far we have

ε2V (Ω̃) ≤ V (U|h|(∂Ω̃)). (1)

From Proposition 2 (b) we get

V (U|h|(∂Ω̃)) ≤ c′e(n−1)κ|h|V (Ω̃)
A(∂Ω)
V (Ω)

where the constant c′ > 0 depends only on dim Γ\G = dim G.
If we set |H| := maxh∈H |h| = maxh∈H dG(e, h) for the compact subset H then

we have

V (U|h|(∂Ω̃)) ≤ const · V (Ω̃)
A(∂Ω)
V (Ω)

. (2)

where the positive constant const = const(G, |H|) depends only on G and the size
of the chosen compact subset H ⊂ G. Combining (1) and (2) we obtain

0 <
ε2

const
≤ A(∂Ω)

V (Ω)

which eventually yields

0 <
ε2(G, |H|)

const(G, |H|) ≤ inf
A(∂Ω)
V (Ω)

= h(Γ\G).

This concludes the proof of theorem 1 in case that vol(Γ\G) = ∞.
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3.2. Proof of Theorem 1: (b) the case of lattices

The idea of the proof is the same as in (a) with the following two modifications.
Firstly, the constants are the (only) invariant vectors in L2(Γ\G) for the right
regular representation. We thus have to consider the subspace L2

0(Γ\G) orthogonal
to the constant functions. Secondly, we recall that in the case at hand the Cheeger
constant is

h(Γ\G) = inf
Ω

A(∂Ω)
V (Ω)

where the infimum is taken over all relatively compact domains Ω of Γ\G with
V (Ω) ≤ 1

2vol(Γ\G) =: v < ∞.
We now proceed as in (a). Using Proposition 2 we first replace Ω with A(∂Ω)

V (Ω)

close to h(Γ\G) by a relatively compact domain Ω̃ whose tubular neighbourhoods
can be estimated. We then set

a := V (Ω̃) b := v − a (v = vol(Γ\G) < ∞)

and define

f : Γ\G −→ R; f(x) :=

{
b if x ∈ Ω̃
−a if x /∈ Ω̃.

We compute∫
Γ\G

fdµ = bV (Ω̃)+(−a)(v−V (Ω̃)) = 0 and
∫

Γ\G
f2dµ = (a+b)ab = vab < ∞,

i.e., f ∈ L2
0(Γ\G). Since the right regular representation R of G on L2

0(Γ\G) has
no nontrivial invariant vectors, Proposition 1 asserts that there is h ∈ H such that

ε2‖f‖2 ≤ ‖Rhf − f‖2.
But ‖Rhf−f‖2 = (a+b)2V (E∪F ) where as in (a) E := {x ∈ Γ\G | x ∈ Ω̃, rh(x) /∈
Ω̃} and F := {x ∈ Γ\G | rh(x) ∈ Ω̃, x /∈ Ω̃} and E ∪ F ⊂ U|h|(∂Ω̃). Proposition
2 (b) and the compactness of H yield a constant const = const(G, |H|) > 0
depending only on G and H such that

ε2abv ≤ (a + b)2const · V (Ω̃)
A(∂Ω)
V (Ω)

or, equivalently,
ε2

const
· v − V (Ω̃)

v
≤ A(∂Ω)

V (Ω)
.

In the proof of Proposition 2 one choses a large ball C which contains the given Ω
(if Γ\G is compact, set C = Γ\G) and for which one can assume that V (C) ≥ 3

4v
(where v = vol(Γ\G)). On the other hand by Proposition 2 (a) for such a C holds
V (C \ Ω̃) ≥ 1

2V (C \ Ω) and and since we also have V (Ω) ≤ 1
2v we find

v − V (Ω̃) ≥ V (C)− V (Ω̃) ≥ 1
2
(V (C)− V (Ω)) ≥ 1

2

(
3
4
v − 1

2
v

)
=

1
8
v.
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In conclusion we obtain

0 <
ε2

8 · const
≤ A(∂Ω)

V (Ω)
.

This completes the proof also in the case of lattices.

4. A lower bound for the bottom of the spectrum

For a complete Riemannian manifold M we define the Laplace–Beltrami operator
on C∞-functions with compact support on M by ∆M := −div grad. This operator
has a unique selfadjoint extension to L2(M) which we also denote by ∆M (see e.g.
[32] for details). Let Spec∆M denote the L2-spectrum of ∆M and define the
bottom of the spectrum λ0(M) := inf Spec∆M ≥ 0. Finally denote by λ1(M) :=
inf{Spec∆M \ {0}} the bottom of the non-zero spectrum of ∆ on M .

Theorem 2. Let G be a semisimple Lie group G without compact factors, with
finite center and with property (T). Then there exists a constant c2(G) > 0, which
depends only on G, such that for any torsion-free, discrete subgroup Γ of G the
following holds:

(a) If vol(Γ\G) = ∞, then the bottom of the L2-spectrum of the Laplace–
Beltrami operator on Γ\G satisfies λ0(Γ\G) ≥ c2(G) > 0.

(b) If vol(Γ\G) < ∞, then the bottom of the non-zero spectrum of the Laplace–
Beltrami operator on Γ\G satisfies λ1(Γ\G) ≥ c2(G) > 0.

Proof. According to Cheeger’s inequality (see e.g. [9]) we have 1
4h(Γ\G)2≤λi(Γ\G),

where i = 0 if vol(Γ\G) = ∞ and i = 1 if vol(Γ\G) < ∞. Theorem 2 is thus a
direct consequence of these inequalities and Theorem 1. ¤

We can now state a main result in which we pass from Γ\G to the locally
symmetric space V = Γ\G/K. Note that the Riemannian structure on G/K is
given by the restriction B |p= g0 |p of the Killing form B of the Lie algebra g of
G to p = g/k ∼= TeKG/K (see section 2). In particular, the canonical projection
G −→ G/K is a Riemannian submersion.

Theorem 3. Let G be a semisimple Lie group G without compact factors, with
finite center and with property (T). Then there exists a constant c(G) > 0, which
depends only on G, such that for any torsion-free, discrete subgroup Γ of G with
asssociated locally symmetric space V = Γ\G/K one has:

(a) If vol(V ) = ∞, then the bottom of the L2-spectrum of the Laplace–Beltrami
operator on V satisfies λ0(V ) ≥ c(G) > 0.

(b) If vol(V ) < ∞, then the bottom of the non-zero spectrum of the Laplace–
Beltrami operator on V satisfies λ1(V ) ≥ c(G) > 0 = λ0(V ).



126 E. Leuzinger CMH

Proof. It is well-known that L2(Γ\G/K) = L2(V ) is isomorphic to the K-fixed
part L2(Γ\G)K of L2(Γ\G) by averaging over K-orbits:

f ∈ C∞0 (Γ\G) 7→ f∗(ΓgK) :=
∫

K

f(Γgk)dk

(for more details see e.g. [33]). Moreover by Fubini’s theorem for Riemannian
submersions (see [30], Theorem 5.6) we have for any f ∈ C∞0 (Γ\G)K

‖f‖Γ\G2 = ‖f∗‖V
2 ·

∫
K

dk.

The variational definition of λ0(V ) (resp. λ1(V )) via Rayleigh quotients together
with the above observations about the L2-norms on Γ\G and V respectively then
yields

λ0(V ) = inf
f∗∈C∞0 (V ),f∗ 6=0

‖Of∗‖2
‖f∗‖2 ≥ λ0(Γ\G) = inf

f∈C∞0 (Γ\G),f 6=0

‖Of‖2
‖f‖2 .

By Theorem 1 the last term is bounded from below by c2(G) > 0 which completes
the proof. ¤

Theorem 3 yields (universal) estimates for the volume growth of locally sym-
metric spaces V = Γ\G/K. For v ∈ V let BR(v) be the ball of radius R in V
centered at v. We set

µ(V ) := lim sup
R→∞

1
R

log vol(BR(v)).

This number µ is independent of v and called the exponential growth of V .

Corollary 1. There is a positive constant ĉ(G) > 0 depending only on G such
that for any V = Γ\G/K as above with vol(V ) = ∞ holds

0 < ĉ(G) ≤ µ(V ) ≤ 2‖ρ‖.

Proof. By a result of R. Brooks λ0(V ) ≤ 1
4µ(V )2 (see [6], Thm. 1). The lower

bound thus follows from Theorem 3. The upper bound follows from Proposition 4
below. ¤

5. Isoperimetric inequalities for locally symmetric spaces

Let M be a complete Riemannian manifold. If the Cheeger isoperimetric constant
satsfies h(M) ≥ c > 0 for some positive constant c and if vol(M) = ∞ (resp.
vol(M) < ∞), then M is called open at infinity (resp. expanding).

Theorem 4. Let V = Γ\G/K be a locally symmetric space with nonpositive sec-
tional curvature and such that G has Kazdan’s property (T). Then there is a pos-
itive constant c∗(G) > 0 depending only on G such that the Cheeger isoperimetric
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constant satisfies
0 < c∗(G) ≤ h(V );

and consequently:
(a) If vol(V ) = ∞, then V is open at infinity.
(b) If vol(V ) < ∞, then V is expanding.

Proof. It is well-known that the Ricci curvature of V (which is equal to the Ricci
curvature of G/K) is bounded from below by a strictly negative constant, say
−(κ∗)2(n − 1) < 0, n = dimV (see e.g. [12], 2.14). Inequalities of Buser (see
[9], Theorem 1.2, Theorem 7.1) then assert that there are constants α and β
depending only on n = dim V such that λ0(V ) ≤ ακ∗h(V ) if V is noncompact of
infinite volume, that λ1(V ) ≤ ακ∗h(V ) if V is noncompact of finite volume and
that λ1(V ) ≤ β(κ∗h(V ) + h(V )2) if V is compact.

From Theorem 3 we know that λ0(V ) > c > 0 if vol(V ) = ∞ resp. λ1(V ) >
c > 0 if vol(V ) < ∞. Hence by the above inequalities there is a constant c∗(G)
such that

0 < c∗(G) ≤ h(V )

and assertions (a) and (b) follow. ¤

6. Critical exponents and a rigidity result

In section 1 we defined the critical exponent of a discrete subgroup Γ of a semisim-
ple Lie group G as

δ(Γ) := lim sup
R→∞

1
R

log N(x, y;R)

where N(x, y;R) := |BR(x))∩Γ ·y| is the number of orbit points of y contained in
the closed ball BR(x)) in the globally symmetric space X = G/K. This number
δ(Γ) does not depend on x, y ∈ X but only on Γ (see [19]). The Poincaré series
of a discrete subgroup Γ of G is defined as

Ps(x, y) :=
∑
γ∈Γ

e−sd(x,γy), x, y ∈ X,

where d = dX is the distance function associated to the Riemannian metric on
X = G/K. One can show (see e.g. [19]) that

δ(Γ) = inf{s ∈ R | Ps(x, y) < ∞}.
The next proposition is proved in [19]; it relates δ(Γ) to the bottom λ0(V ) of

the L2-spectrum of the Laplace–Beltrami operator of V = Γ\G/K. In order to
state it we need some additional notations.

Let g be the Lie algebra of the semisimple group G, let g = k⊕ p be a Cartan
decomposition and let a be a maximal abelian subalgebra in p. Let further Σ+
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denote the set of positive restricted roots of the pair (g, a) with respect to some
Weyl chamber a+ (see e.g. [15], Chapter VI, for definitions). We also denote by
mα = dim gα the multiplicity of α ∈ Σ+ and set ρ := 1

2

∑
α∈Σ+ mαα ∈ a∗. Since g

is semisimple the Killing form 〈 , 〉 is non-degenerate and defines an isomorphism
a∗ ' a;α 7→ ~α by 〈~α,H〉 := α(H) for all H ∈ a; finally we set 〈α, β〉 := 〈~α, ~β〉.
Let a+(1) be the set of all unit vectors in the closed Weyl chamber a+ and set
ρmin := min

H∈a+(1)
ρ(H). Note that max

H∈a+(1)
ρ(H) = ‖ρ‖ since ~ρ ∈ a+ (see

[19]).

Proposition 3. Let Γ be a torsion-free, discrete subgroup of a semisimple Lie
group G without compact factors and with finite center and V = Γ\G/K the
associated locally symmetric space. Then

λ0(V )=‖ρ‖2 if δ(Γ) ∈ [0, ρmin]
‖ρ‖2−(δ(Γ)−ρmin)2 ≤ λ0(V )≤‖ρ‖2 if δ(Γ) ∈ [ρmin, ‖ρ‖]

max{0; ‖ρ‖2−(δ(Γ)−ρmin)2}≤ λ0(V )≤‖ρ‖2−(δ(Γ)−‖ρ‖)2 if δ(Γ) ∈ [‖ρ‖, 2‖ρ‖].

For the proof of Proposition 3 we refer to [19]. The idea can be roughly
described as follows. In order to determine the bottom of the spectrum of the
laplacian ∆V on V = Γ\G/K one looks at the resolvent (λId−∆V )−1. Its kernel
is given by the λ-Green function of V . The latter can be written as a series,∑

γ∈Γ Gλ(x, γy), where Gλ is the λ-Green function of X. This series is then
compared with the Poincaré series of Γ using the estimates on Gλ given in [2].

A basic idea is that lattices are isolated in various ways from other discrete
subgroups. The following rigidity result is a quantitative manifestation of this
philosophy.

Theorem 5. Let G be a connected semisimple Lie group without compact factors,
with finite center and with property (T). Let X = G/K be the associated symmetric
space. Let Γ be a discrete, torsion-free subgroup of G and Γ\X the associated locally
symmetric space, then the following holds:

(a) If Γ is a lattice, i.e., vol(Γ\X) < ∞, then δ(Γ) = 2‖ρ‖.
(b) If vol(Γ\X) = ∞, then there is a positive constant c∗(G) > 0 depending

only on G but not on Γ such that δ(Γ) ≤ 2‖ρ‖ − c∗(G).

Proof. (a) is well-known (see e.g. [1] or [19]).
In order to prove (b) we may assume that δ(Γ) > ‖ρ‖ (otherwise we may set

c∗ := ‖ρ‖ > 0). By Proposition 3 and Theorem 3 (a) we have

0 < c(G) ≤ λ0(Γ\X) ≤ ‖ρ‖2 − (δ(Γ)− ‖ρ‖)2

and therefore
0 < (δ(Γ)− ‖ρ‖)2 ≤ ‖ρ‖2 − c(G),
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which gives
δ(Γ) ≤

√
‖ρ‖2 − c(G) + ‖ρ‖ =: 2‖ρ‖ − c∗(G).

¤

Remark 1. The above rigidity phenomenon was discovered by K. Corlette for
quotients of quaternionic (resp. Cayley) hyperbolic spaces. He also related the
critical exponent to the Hausdorff dimension of the limit set (see [10] and section
1). The fact that Corlette’s results are much more precise than those of Theorem
5 is a consequence of explicit information about the unitary dual which is due to
B. Kostant.

Remark 2. It is known that λ0(G/K) = ‖ρ‖2 (see e.g. [19]). Together with
Theorem 3 and its proof this fact may be used to obtain upper bounds for Kazhdan
constants: For Γ = {id} we have

1
4

(
ε2

const(G, |H|)
)2

≤ 1
4
h(G)2 ≤ λ0(G) ≤ λ0(G/K) = ‖ρ‖2

(for the last equality see e.g. [19]) and hence ε2 ≤ const(G, |H|)2‖ρ‖.

7. Estimates of orbital counting functions

In this section we generalize certain results which are well-known for hyperbolic
manifolds of constant negative curvature (see e.g. [28]).

The following proposition is crucial for this section. For a proof see e.g. [17].

Proposition 4. The volume of a ball BR(x) of radius R and center x in the
globally symmetric space X = G/K satisfies

const1 ·R
r−1
2 e2‖ρ‖R ≤ vol(BR(x)) ≤ const2 ·R

r−1
2 e2‖ρ‖R,

where r = rankX and the constants const1, const2 depend only on X.

Recall that, for a discrete subgroup Γ of G, N(x, y;R) := |BR(x))∩Γ·y| denotes
the number of orbit points of y which are contained in the ball BR(x) ⊂ X.

Lemma 3. Let Γ be a discrete, torsion-free subgroup of G acting isometrically on
the symmetric space X = G/K of rank r. Then there is a constant A1 depending
only on Γ such that for any x, y ∈ X

N(x, y;R) < A1R
r−1
2 e2‖ρ‖R.

Proof. Let Bε(y) be a ball centered at y of radius ε > 0 so small that no two
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Γ-images overlap. Then by Proposition 4 we have

vol(Bε(y))N(x, y;R) < vol(BR+ε(x)) ≤
≤ const2 · (R + ε)

r−1
2 e2‖ρ‖(R+ε) ≤ const′ ·R r−1

2 e2‖ρ‖R

and the claim follows. ¤

Lemma 4. Let X be as above and let Γ be a lattice, i.e., vol(Γ\X) < ∞. Then
for given x, y ∈ X there is a constant A2 depending only on x, y and on Γ and a
positive real number R0 such that for all R > R0

N(x, y;R) > A2R
r−1
2 e2‖ρ‖R.

Proof. Consider the ball BR(x). Let D be the Dirichlet-region of Γ centered at x
and set D(R) := D ∩ BR(x). Since vol(D) < ∞, for ε > 0 we may find R1 such
that for all R > R1

vol(D \D(R)) < ε. (3)

Then for R > R1

vol(BR(x)) = vol(BR(x) ∩ ΓD(R1)) + vol(BR(x) ∩ Γ(D \D(R1))) (4)

and the second term on the right is less or equal to∫
D\D(R1)

N(x, z;R)dv(z) < εA1R
r−1
2 e2‖ρ‖R (5)

where the estimate follows from Lemma 3 and (3). Using (5) and Proposition 4
we get from (4) that

vol(BR(x) ∩ ΓD(R1)) > const1R
r−1
2 e2‖ρ‖R − εA1R

r−1
2 e2‖ρ‖R = A′1R

r−1
2 e2‖ρ‖R

for some positive A′1 provided ε was chosen small enough.
By choosing R1 large enough we can assume that y ∈ D(R1). The Γ-images

of D(R1) are disjoint and if one of them meets BR(x) then the corresponding
Γ-image of y must lie in BR+2R1(x) and thus we have

vol(D(R1))N(x, y;R + 2R1) > A′1(R + 2R1)
r−1
2 e2‖ρ‖(R+2R1).

Hence there is a positive constant A2 such that

N(x, y; R̂) > A2R̂
r−1
2 e2‖ρ‖R̂

for R̂ sufficently large. ¤

Lemma 5. For Γ as in Lemma 3 and s > 2‖ρ‖ we have∑
γ∈Γ

e−sd(x,γx) < ∞ (x ∈ X).
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Proof. We consider the partial sum∑
γ∈Γ

d(x,γx)<R

e−sd(x,γx) =
∫ R

0

e−stdN(x, x; t)

= N(x, x;R)e−sR + s

∫ R

0

N(x, x;R)e−stdt.

The claim then follows immediately from Lemma 3. ¤

Theorem 6. Let G be a semisimple Lie group without compact factors, with finite
center and with property (T). Let X = G/K be the associated symmetric space (of
rank r) and let Γ be a torsion-free, discrete subgroup of G.

(a) If vol(Γ\X) = ∞, then the Poincaré series of Γ converges at the exponent
2‖ρ‖, i.e.,

P2‖ρ‖(x0, x0) =
∑
γ∈Γ

e−2‖ρ‖d(x0,γx0) < ∞.

(b) If Γ is a lattice, i.e., vol(Γ\X) < ∞, then the Poincaré series of Γ diverges
at the exponent 2‖ρ‖, i.e.,

P2‖ρ‖(x0, x0) =
∑
γ∈Γ

e−2‖ρ‖d(x0,γx0) = ∞.

Proof. (a) follows from Theorem 5 (b) and the very definition of the critical expo-
nent δ(Γ).

(b) is a consequence of Lemma 4:

∑
γ∈Γ

e−2‖ρ‖d(x0,γx0) =
∫ R

0

e−2‖ρ‖tdN(x0, x0; t) =

= N(x0, x0;R)e−2‖ρ‖R + 2‖ρ‖
∫ R

0

e−2‖ρ‖tN(x0, x0; t)dt >

> 2‖ρ‖A2

∫ R

0

t
r−1
2 dt −→∞ (R −→∞).

¤

8. Proof of the main theorem

In this section we complete the proof of the main theorem (MT) in section 1,
which summarizes the various dichotomies between locally symmetric spaces of
finite and infinite volume.

The equivalences MT: (a.1) ⇐⇒ (a.2) resp. MT: (b.1) ⇐⇒ (b.2) hold by The-
orem 3.
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The equivalences MT: (a.1) ⇐⇒ (a.3) resp. MT: (b.1) ⇐⇒ (b.3) follow directly
from Theorem 5.

The equivalences MT: (a.1) ⇐⇒ (a.4) resp. MT: (b.1) ⇐⇒ (b.4) hold by The-
orem 6.

The equivalences MT: (a.5)⇐⇒ (a.6) resp. MT: (b.5)⇐⇒ (b.6) are well-known
(see e.g. [3]).

It remains to prove MT: (a.1) ⇐⇒ (a.6) resp. MT: (b.1) ⇐⇒ (b.6).
Assume first that (b.1) holds, i.e., vol(V ) = ∞. By the above we then have

(b.2): λ0(V ) > c > 0. This implies that the Brownian motion on V is transient
(see e.g. [27]) and hence there exists a Green function on V = Γ\X. The latter
can be written as a (convergent) series

∑
γ∈Γ G0(x, γy) where G0 is the Green

function of X. From the explicit form of the latter (see [2]) one deduces that the
Green function on V dominates the Poincaré series of Γ at exponent 2‖ρ‖ (see [19]
3.3 estimate (∗∗) for the details). Hence (b.4) holds. By the equivalences already
shown above this implies (b.1): vol(V ) = ∞. Thus we have shown that (b.1) ⇐⇒
(b.6). Since (a.1) ⇐⇒ (a.6) if and only if (b.1) ⇐⇒ (b.6), the proof of the main
theorem is complete.
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