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1. Introduction

Let Aut(Fn) be the automorphism group of a free group Fn on n generators
a1, a2, . . . , an. A reduced word xε11 x

ε2
2 . . . xεnn is called a palindrome if it is equal

to its reverse xεnn x
εn−1
n−1 . . . x

ε1
1 . In [2] Collins defines the palidromic automorphism

group ΠA(Fn) as the subgroup of Aut(Fn) consisting of all automorphisms α for
which α(ai) is a palindrome for all i. He showed that the group was generated by
three types of automorphisms:
• Maps (ai||aj), i 6= j, which send ai 7→ ajaiaj and fix all other generators ak.
• Maps σai which send ai 7→ a−1

i and fix all other generators ak.
• Maps corresponding to elements of the symmetric group Σn which permute the
a1, . . . , an among themselves.

The portion of ΠA(Fn) generated by just the (ai||aj) is called the elementary palin-
dromic automorphism group of Fn and denoted EΠA(Fn). Note that ΠA(Fn) =
EΠA(Fn)o(Z/2 o Σn). Collins showed that a set of defining relators for EΠA(Fn)
is given by relations of the form

(1) (ai||ak)(aj ||ak) = (aj ||ak)(ai||ak)
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(2) (ai||ak)(aj ||al) = (aj ||al)(ai||ak)
(3) (ai||ak)(aj ||ak)(ai||aj) = (ai||aj)(aj ||ak)(ai||ak)−1

He remarked how similar this was to the relations for the pure symmetric
automorphism group PΣA(Fn) (see Gilbert’s work in [10]):

(1) (ai|ak)(aj |ak) = (aj |ak)(ai|ak)
(2) (ai|ak)(aj |al) = (aj |al)(ai|ak)
(3) (ai|ak)(aj |ak)(ai|aj) = (ai|aj)(aj |ak)(ai|ak)
where (ai|aj), i 6= j, sends ai 7→ a−1

j aiaj and fixes all other generators ak.
On the basis of this, Collins conjectured that one could find the virtual coho-

mological dimension of ΠA(Fn) by employing the methods of [7], as he did for
ΣA(Fn) in [4]. He also speculated that EΠA(Fn) is torsion free, just as PΣA(Fn)
is. We are able to answer both of these questions in this paper, as well as obtaining
several interesting facts about the cohomology of ΠA(Fn).

Theorem 1.1. Let ΠA(Fn) be the palindromic automorphism group of the free
group Fn on n letters and let EΠA(Fn) be the subgroup of elementary palindromic
automorphisms. Then
a) The virtual cohomological dimension of ΠA(Fn) is n− 1.
b) (i) For the prime 2, the Krull dimension of Ĥ∗(ΠA(Fn);Z(2)) is n. For odd

primes p, the Krull dimension of Ĥ∗(ΠA(Fn);Z(p)) is
[
n
p

]
.

(ii) In the range where the Krull dimension of Ĥ∗(ΠA(Fn);Z(p)) is 1, the period
is 2(p− 1).
c) The group EΠA(Fn) is torsion free.
d) The cohomology group Hn−1(ΠA(Fn);Q) = 0.
e) If p is an odd prime and n = p, p+ 1, p+ 2, then the Farrell cohomology of the
palindromic automorphism group is the same as that of the symmetric group on p
elements:

Ĥ∗(ΠA(Fn);Z(p)) ∼= Ĥ∗(Σp;Z(p)).

For analogous results concerning Aut(Fn), see [3] and [11]. See [9] for the
definition of the Farrell cohomology Ĥ∗(G;M) of a group G of finite vcd with
coefficients in a G-module M and also see [2] for several useful properties of these
cohomology groups.

The remainder of this paper is structured as follows. In section 2, we discuss
ΠA(Fn) and note how it relates to some other groups, while in section 3 we intro-
duce the space Lσn which ΠA(Fn) acts on and prove parts a) and d) of Theorem
1.1. Section 4 is concerned with a realization proposition which allows us to es-
tablish parts b) (i) and c) of the main theorem. Finally, section 5 looks in more
detail at the cohomology of ΠA(Fn) at odd primes p and establishes parts b) (ii)
and e) of the main theorem.

The authors would like to thank John Meier for an enlightening conversation
about symmetric automorphisms of free groups, aiding the presentation of this
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paper.

2. Relationships with other groups

Let Xn be the spine of auter space (see [7], [13], [14]) and Qn = Xn/Aut(Fn). Let
σn ∈ Aut(Fn) be the automorphism which sends ai 7→ a−1

i for each i.
Define the θ-graph θm to be a graph with 2 vertices and m + 1 edges, where

each edge goes from one vertex to the other one. Choose one of the two vertices
of θ1 to be the basepoint ∗, and define the rose Rn to be the result of wedging
together n copies of θ1 at the basepoint.

The petals of the rose Rn can be identified with the generators ai of Fn, so
that π1(Rn, ∗) ∼= Fn. There is an action of 〈σn〉 = Z/2 on Rn given by inverting
each petal of the rose. This action realizes the subgroup 〈σn〉 in the sense of [22]
(also cf. [6].) An action of a group G on a graph Γ is without inversions if G
does not send any edge e to its inverse ē, and an action is reduced if there are no
G-invariant subforests in Γ. The action of σn on Rn is both without inversions and
reduced. From now on, when we refer to a group action on a graph, it is assumed
that the edges of the graph are subdivided as necessary to insure that the group
acts without inversions.

Note that the palindromic automorphism group ΠA(Fn) is just CAut(Fn)(σn).
This follows because an easy argument shows that every element of CAut(Fn)(σn)
is palindromic, and because the generators of ΠA(Fn) are all in CAut(Fn)(σn). For
example, the generators (ai||aj) are just products of σn-Nielsen transformations
(see [20] where the G-Nielsen transformation 〈e, f〉Γ of a G-graph Γ has the same
vertex and edge set as Γ but where the terminal point of an edge eg, g ∈ G, in the
new graph is the initial point of the edge fg in the original graph; this induces a
map 〈e, f〉 from the fundamental groupoid of the first graph to that of the second
where eg is sent to (ef)g and all other edges are sent to themselves.) That is, if
the petal ai of the rose consists of the edges ēifi, then (ai||aj) is the composition
〈ei, f̄j〉 ◦ 〈ei, ej〉.

As a note for the curious, it follows that ΠA(Fn) and ΣA(Fn) are distinct groups
for n ≥ 2, since a direct argument shows that ΣA(Fn) has no element of order 2
in its center. In addition, EΠA(Fn) and PΣA(Fn) are also obviously distinct (for
n ≥ 3; for n = 1, 2 they are the same group with the same presentation,) since
the former abelianizes to an elementary abelian 2-group of rank n(n−1) while the
latter abelianizes to a free abelian group of rank n(n− 1).

In addition to its formal palindromic properties, the group ΠA(Fn) arises na-
turally from looking at hyperelliptic subgroups of mapping class groups (cf. Gries
[12] for corresponding homological properties.) We have a commutative diagram

Γ2,pure
g → Γ1

g → Γg
↓ ↓ ↓

Aut(F2g) → Out(F2g) → GL2g(Z)
(2.1)
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where Γg is the mapping class group of an orientable surface of genus g, Γ1
g is

the mapping class group of an orientable surface of genus g with 1 puncture,
and Γ2,pure

g is the mapping class group of an orientable surface of genus g with
two punctures, where each puncture is fixed pointwise. The map from Γ2,pure

g to
Aut(F2g) is obtained first by taking an intersection basis a1, b1, . . . , ag, bg for the
fundamental group of the surface S with two punctures. One of the punctures
should serve as the basepoint for fundamental group considerations. The other is
treated as an actual puncture, so that the fundamental group of the surface minus
this point is a free group F2g on 2g generators. The map from Γ2,pure

g to Aut(F2g)
is now obtained by sending an element of Γ2,pure

g to the automorphism of F2g that
it induces. The map from Γ1

g to Out(F2g) is obtained similarly.
Let ψ ∈ Γ2,pure

g be a hyperelliptic involution (see, for example, [8].) Then ψ
has 2g + 2 fixed points, two of which are of course the punctures on the surface
S. Choose loops a1, b1, . . . , ag, bg, based at one of the punctures, which form an
intersection basis for the surface S (say the ones described in [8] in the section on
hyperelliptic Riemann surfaces.) By going along the top row of diagram 2.1 and
then projecting downward, we see that the image of ψ in GL2g(Z) is −I. Let ψ̄
be the image of ψ in Aut(F2g). Our goal is to show that ψ̄ is conjugate to σ2g in
Aut(F2g).

Lemma 2.2. If φ ∈ Aut(Fn) and the image of φ in GLn(Z) is −I, then the image
of any conjugate α−1φα of φ, α ∈ Aut(Fn), is also −I.

Proof. This follows directly since −I is in the center of GLn(Z). �

Lemma 2.3. If φ ∈ Aut(Fn) is an involution whose image in GLn(Z) is −I, then
φ can be realized on a marked graph whose underlying graph is the rose.

Proof. Realize φ on a reduced marked graph whose underlying graph is Λ. First,
we show that if e is an edge of Λ which is not fixed by φ, then we can assume that
one endpoint of e is the basepoint ∗. Let f = φ(e). Choose a shortest path γ from
e to ∗. Since stab(e) = 〈1〉, stab(e) ⊆ stab(h) for every h in the path γ. So we
can apply a sequence of Nielsen transformations (see [20]) and slide e along γ to
∗. Note that since Λ is reduced, {e, f} now forms either a rose R2 based at ∗, or
a θ1. Proceeding in this manner, we can slide all of the edges of Λ not fixed by φ
to the basepoint.

By way of contradiction, suppose that two of these θ1-graphs (that have been
moved so that one vertex of each θ1 is the basepoint), say {e1, f1} and {e2, f2},
share another common vertex in addition to the basepoint ∗. That is, suppose that
there is a vertex v 6= ∗ and each of e1, f1, e2, f2 go from v to ∗. Say g : Rn → Λ
is the marked graph, and recall that π1(Rn) = 〈a1, . . . , an〉 = Fn. By replacing φ
by a conjugate if necessary (see Lemma 2.2) we can assume that g sends the petal
a1 of Rn to e−1

1 f1, the petal a2 to e−1
2 f2, and the petal a3 of Rn to e−1

1 f2. So in
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π1(Λ) we have
φ · a1 = f−1

1 e1 = g(a−1
1 ),

φ · a2 = f−1
2 e2 = g(a−1

2 ),

and
φ · a3 = f−1

1 e2 = g(a−1
1 a3a

−1
2 ).

Hence the first column of im(φ) in GLn(Z) is (−1, 0, . . . , 0), the second column
is (0,−1, 0, . . . , 0), and the third column is (−1,−1, 1, 0, . . . , 0). This contradicts
the fact that im(φ) = −I.

If the result of sliding to the basepoint ∗ all edges of Λ not fixed by φ yields a
rose Rn, then we are done. Otherwise, suppose by way of contradiction that there
exist edges e,f , and h of Λ such that
• Both e and f go from some vertex v 6= ∗ to ∗.
• φ(e) = f .
• h goes from v to v.
• φ(h) = h.

As before, say g : Rn → Λ is the marked graph. By replacing φ by a conjugate
if necessary (see Lemma 2.2) we can assume that g sends the petal a1 of Rn to
e−1f and the petal a2 of Rn to e−1hf . So in π1(Λ) we have

φ · a1 = f−1e = g(a−1
1 )

and
φ · a2 = f−1he = (e−1f)−1(e−1hf)(e−1f)−1 = g(a−1

1 a2a
−1
1 ).

Hence the first column of im(φ) in GLn(Z) is (−1, 0, . . . , 0) and the second column
is (−2, 1, 0, . . . , 0). This contradicts the fact that im(φ) = −I. �

Proposition 2.4. If φ ∈ Aut(Fn) is an involution whose image in GLn(Z) is −I,
then φ is conjugate in Aut(Fn) to σn.

Proof. Realize φ on a marked graph g : Rn → Rn. By replacing φ by a conjugate
if necessary, we can assume g(ai) = ai for all i. The involution φ of the graph Rn
must send the petal a1 to some a±1

j , since it is a graph automorphism. But since
im(φ) = −I ∈ GLn(Z), we see that a±1

j must be a−1
1 . Similarly, we can see that

the graph automorphism φ sends, for each i, the petal ai to the petal a−1
i . This

means our current φ is equal to σn (and thus our original φ, before we replaced it
by a conjugate, was conjugate to σn.) �

The following corollary is immediate:

Corollary 2.5. The image ψ̄ of ψ in Aut(F2g) is conjugate to σ2g. Hence the
hyperelliptic subgroup CΓ2,pure

g
(ψ) is conjugate to a subgroup of CAut(F2g)(σ2g).
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As remarked in [5], the image of ΠA(Fn) in GLn(Z) is the subgroup of GLn(Z)
consisting of invertible matrices where each column has exactly one odd entry
(and the rest are even.) The subgroup is the semidirect product Γ̃2(Z)oΣn where
Γ̃2(Z) is the 2-congruence subgroup defined by the short exact sequence

〈1〉 → Γ̃2(Z)� GLn(Z)� GLn(Z/2)→ 〈1〉

and Σn is standard inclusion of the symmetric group

Σn ⊂ GLn(Z).

3. A space for ΠA(Fn) to act on

We define a certain contractible space Lσn , related to auter space, which ΠA(Fn)
acts on with finite stabilizers and finite quotient. This allows us to obtain some
cohomological results.

A graph Γ is a θ1-tree of rank n if there exists a pointed tree T such that Γ is
obtained by “doubling” every edge of T into a θ1-graph. That is, the vertex set
of Γ is the same as the vertex set of T and for every edge e of T going from v to
w, Γ has two edges e1 and e2, both of which go from v to w. There is a natural
Z/2-action on such a graph Γ, which is given by switching the two edges in each
θ1-graph. Note that the orbit space of Γ under this action is just the tree T .

Claim 3.1. The reduced graphs Γ which realize the subgroup 〈σn〉 of Aut(Fn)
are exactly the θ1-trees of rank n, where σn acts on the trees via their natural
Z/2-action.

Proof. We have already mentioned that the rose Rn realizes σn. From Theorem 2
of [20], the other reduced graphs Γ which also realize σ are those that are Nielsen
equivalent to Rn (up to an equivariant isomorphism.)

If e is an edge in one of the copies of θ1 in Rn and f is an edge in a different θ1
in Rn, and both e and f point toward the basepoint, then Nielsen transformation
〈e, f〉 has the result of pulling the θ1-graph {e, σne} through the θ1-graph {f, σnf},
so that now e terminates at the initial vertex of f , rather than at the basepoint ∗.
In other words, the result of applying one Nielsen transformation to Rn is that of
sliding one of the petals of Rn up though another petal.

A basic induction argument now yields that the result of applying a series of
Nielsen transformations fo Rn will be some θ1-tree Γ. �

Recall from [21] that an edge e of a G-graph Γ is inessential if it is in every
maximal G-invariant subforest of Γ. A G-graph Γ is inessential if it has at least
one inessential edge and is essential if it is not inessential. Let XG

n be the fixed
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point subspace of Xn corresponding to some finite subgroup G of Aut(Fn). From
[17] (cf. part III of [18] and [21]), both the centralizer CAut(Fn)(G) and the nor-
malizer NAut(Fn)(G) act on the contractible space XG

n with finite stabilizers and
finite quotient. Moreover, the space XG

n G-equivariantly deformation retracts to
the space LG, where LG is constructed from XG

n by considering only essential
marked graphs. Hence LG is a good space to study if one wishes to calculate the
cohomology of CAut(Fn)(G) or NAut(Fn)(G).

Further recall that aG-graph Γ̂ is aG-equivariant blowup of aG-graph Γ if some
G-invariant subforest F of Γ̂ can be collapsed away to yield Γ. Let φ : Rn → Γ be
some reduced marked graph realizing 〈σn〉. From Claim 3.1, Γ is a θ1-tree. Blow
up Γ σn-equivariantly to some maximal essential blowup Γ̂.

Claim 3.2. The fixed points/cells of the action of σn on Γ̂ are exactly the valence
2 vertices of Γ̂.

Proof. Note that vertices in Γ̂ have valence 2 or 3 and that Γ̂ is obtained from
Γ by blowing up an oriented ideal forest (see [17], [21], [18].) Briefly, ideal edges
(oriented ideal forests) correspond to subsets of edges (chains of subsets of edges)
which are pulled away from existing vertices in order to create new graphs which
collapse down to the original graph.)

No edge is in Fixσn(Γ̂) because no edge is in Fixσn(Γ) and so blowing up ideal
edges will not create any new edges that are fixed under the action of σn (see [21]
page 229.)

If a valence 3 vertex is in Fixσn(Γ̂), then at least one edge of Γ̂ must be fixed
by σn, which is a contradiction.

All of the valence 2 vertices of Γ are in Fixσn(Γ). New valence 2 vertices
created as ideal edges are blown up correspond to either:
• Old vertices of Γ that used to be valence higher than 2 but have since had edges

stripped (pulled away) from them. These are in Fixσn(Γ̂) because all vertices
of Γ are in Fixσn(Γ).
• New valence 2 vertices inserted to insure that σn acts on Γ̂ without inversions.

These are also clearly in Fixσn(Γ̂). �

Note that ∗ ∈ Fixσn(Γ). Cut Γ̂ along each of its valence 2 vertices, yielding
a graph Γ̂cut with the same number of valence 3 vertices and edges as Γ̂ had, no
valence 2 vertices, and twice as many valence 1 vertices as Γ̂ had valence 2 vertices.

Claim 3.3.

Γ̂cut = Γ̂1 q Γ̂1,

the disjoint union of two trees Γ̂1 and Γ̂2, where Γ̂2 = σnΓ̂1.

Proof. There is a covering map p : Γ̂cut → Γ̂/σn obtained by mapping to the orbit
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space under the σn-action. The forest collapse that sends Γ̂ to Γ is σn-equivariant,
so it descends to a forest collapse of Γ̂/σn to Γ/σn. (That the quotient of the forest
upstairs in Γ̂ is also a forest in Γ̂/σn can be seen by an easy Euler characteristic
argument.) But Γ is a θ1-tree with a known σn-action on it, and Γ/σn is a
tree (in fact, the underlying tree of the θ1-tree.) Hence Γ̂/σn is a tree. Since
p : Γ̂cut → Γ̂/σn is a covering map with fiber two points, Γ̂cut is as described. �

Let T be a pointed tree with 2n − 1 edges, all vertices valence either 1 or 3,
where ∗ is one of the valence 1 vertices. (Then T has n+ 1 valence 1 vertices and
n − 1 valence 3 vertices.) Let T1 and T2 be two isomorphic copies of T , and let
f : T1 → T2 be an isomorphism. Define

ΓT =
T1 q T2

f(v) ∼ v, for all valence 1 vertices v of T1.

Define a σn-action on ΓT by

σnx =
{
f(x), x ∈ T1

f−1(x), x ∈ T2

Proposition 3.4. There is a bijective correspondence between trees T as above
(with 2n − 1 edges, etc) and maximal, essential blowups Γ̂ of reduced σn-graphs.
The bijection is given by T 7→ ΓT .

Proof. From claims 3.2 and 3.3, all blowups Γ̂ have the required form. Finally,
any ΓT can easily be reduced to a θ1-tree by collapsing edges, meaning that it is
the blowup of such a graph. �

All maximal simplices in Lσn have the same dimension, from [21]. Maximal
simplices in Lσn/ΠA(Fn) are constructed by taking chains of forest collapses from
maximal blowups ΓT . Alternatively, we can define a subforest of T to be a collection
S of edges of T such that there is no path in S from one valence 1 vertex to another.
(If there were such a path, then S ∪ σnS would be a cycle in ΓT .) In this way,
we can think of maximal simplices as coming from chains of subforests of various
trees T .

Proof of part a) of Theorem 1.1: Since ΠA(Fn) acts on the contractible space
Lσn with finite stabilizers and finite quotient, the vcd of ΠA(Fn) is at most the
dimension of a maximal cell from Lσn/ΠA(Fn). Such a cell comes from a chain of
forest collapses of a tree T with 2n− 1 edges, n+ 1 valence 1 vertices, and n− 1
valence 3 vertices. Hence we can collapse at most n− 1 of the valence 3 vertices
into other vertices while doing forest collapses, resulting in maximal simplices of
dimension n− 1.
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To show that the vcd of ΠA(Fn) is at least n − 1, we note that the subgroup
generated by (ai||an) for i ∈ {1, 2, . . . , n− 1} is isomorphic to Zn−1 = Z× . . .×Z.
�

Lemma 3.5. Let Γ̃ be the underlying graph of a particular marked graph in Lσn.
Hence Γ̃ comes equipped with a σn-action. Let C be a simple closed curve in Γ̃.
Then Fixσn(C) contains exactly two points, and σn(C) is the curve −C, or C
with the opposite of its original orientation.

Proof. Γ̃ can be blown up (not necessarily uniquely) to some maximal essential
graph Γ = ΓT . Γ is the union of two isomorphic copies T1 and T2 of T , where T1
and T2 are attached along their corresponding valence 1 vertices.

As we collapse from Γ to Γ̃, the trees T1 and T2 collapse to trees T̃1 and T̃2.
However, the attaching points for T̃1 and T̃2 are no longer necessarily just the
valence 1 vertices, and could be other vertices as well.

Let α1 be a taut path in T̃1 from one attaching point v1 to some other attaching
point v2, where furthermore there are no attaching points in the interior of α1.
Let α2 = σn(α1) be the corresponding path in T̃2. Then α1ᾱ2 is a simple closed
curve and σn(α1ᾱ2) = α2ᾱ1, or the original curve oriented in the other direction.
Hence the curve α1ᾱ2 satisfies the conclusions of the lemma. Our goal is to show
that any simple closed curve C takes this form.

Let C1 be the portion of C that is in T̃1 and let C2 be the portion of C that
is in T̃2. Since C is a cycle and yet both T̃1 and T̃2 are trees, both C1 and C2 are
nonempty. In fact, there must be a path α1 in C1 from one attaching point v1 to
some other attaching point v2, where there are no other attaching points in the
interior of the path. Since C is a simple closed curve, α1 must be a taut path. Let
α2 = C − α1, some other taut path in Γ̃ from v1 to v2.

Let p : Γ̃→ T̃1 be the map given by taking the quotient space under the action
of σn. Note that p(α2) is a path from v1 to v2. Since T̃1 is a tree and α1 is the
unique taut path in T̃1 from v1 to v2, this gives us that edges(α1) ⊆ edges(p(α2)).
Hence if e is an edge in α1, then p−1(e) is two edges, e ∈ C1 and σn(e) ∈ C2. It
follows that all of the oriented edges of the simple closed curve α1σn(ᾱ1) are in
the simple closed curve C. Hence C = α1σn(ᾱ1). �

Lemma 3.6. Let Γ̃ be the underlying graph of a particular marked graph in Lσn.
Hence Γ̃ comes equipped with a σn-action. Choose an edge e in Γ̃. Among all
simple closed curves D which pass through e, choose one curve C for which the
distance from the curve to the basepoint ∗ is minimal. Then Fixσn(C) is two
points v1 and v2. One of these two points in the closest point in C to the basepoint
∗ and one of them is the farthest point in C to the basepoint ∗.

Proof. Using the notation of the proof of Lemma 3.5, C is the result of following
some path α1 in T̃1 and then ᾱ2 = σn(ᾱ1) in T̃2, where α1 goes from the attaching
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point v1 to the attaching point v2.
Since α1 is a path in a pointed tree, there is a unique vertex w in α1 which is

closest to ∗. By way of contradiction, suppose that w 6∈ {v1, v2}. Then w is not an
attaching point. Let β1 be the unique taut path in T̃1 from ∗ to w. Let γ1 be the
unique subpath of β1 which contains w and exactly one attaching point y. Now
let δ1 be the path in T̃1 which starts at y, follows γ1 along to w, and then either
follows C from w to v2 or −C from w to v1 (where we choose whichever possibility
insures that ±e ∈ δ1.) Then the simple closed curve δ1σn(δ̄1) is closer to ∗ than
C is, which is a contradiction. Hence w is v1 or v2, and the lemma follows. �

Proposition 3.7. Let Γ̃ be a graph which occurs as an underlying graph of marked
graphs in Lσn . Then there is only one possible σn-action on Γ̃.

Proof. We see that our task is to show that a unique σn-action is determined by
the properties about simple closed curves listed in Lemmas 3.5 and 3.6.

Define an action η on Γ̃ as follows. Let e be an oriented edge of Γ̃. Among
all simple closed curves D which pass through e, choose one path C for which the
distance from the curve to the basepoint ∗ is minimal. Let v1 be a point on C
which is closest to the basepoint. Let n be the edge-path distance in C from v1 to
e. Then there is an orientation ε ∈ {−1, 1} such that if you traverse εC starting
at v1 and go n edges, you get to e. Define η(e) to be the result of traversing −εC
starting at v1 and then going n more edges.

By Lemma 3.5 and 3.6, the action η is well defined and if any σn acts on Γ̃,
then the σn-action and the η-action coincide. �

Denote by Qσn the quotient space Lσn/ΠA(Fn).

Corollary 3.8. If two marked graphs in Lσn have the same underlying graph,
then they correspond to the same vertex in Qσn . That is, the moduli space Qσn
can be formed by looking only at the poset structure of the underlying graphs of
marked graphs in Lσn.

Proof. From Proposition 3.7, any underlying graph of a marked graph in Lσn
has only one possible σn-action. But from Corollary 10.4 of [21], ΠA(Fn) acts
transitively on the set of marked σn-graphs based on the same σn-graph. The
result follows. �

The simplices of Lσn group themselves into cubes, as described in §3 of [15]. In
[13], Hatcher and Vogtmann show that the quotients in Qn of cubes in Xn have the
rational homology of balls. They use this to create a cubical chain complex which
has the same rational homology as Qn. Our goal here is to establish a similar
result for the cubes of maximal dimension in Qσn , where this time we want the
quotients of cubes to have the Z(p)-cohomology of balls, where p is any odd prime.
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Following [14], we consider a maximal cube in Lσn . It is given by considering
a maximal essential marked graph φ : Rn → ΓT and considering some maximal
subforest S of T . Recall that by a subforest of T we mean a subset S of the edges
of T where there is no path in S from one valence 1 vertex of T (or equivalently,
one terminal edge of T ) to another. From part a) of Theorem 1.1, S has n − 1
edges in it. The cube corresponding to the pair (T, S) can thus be thought of
as imbedded in Rn−1, where each coordinate vector is an edge of the cube, the
graph obtained by collapsing each edge of S ∪ σn(S) is at the origin, and ΓT is
at (1, 1, . . . , 1). Let Aut(T, S) be the group of all (pointed) automorphisms of the
tree T which take S to S. The group stabΠA(Fn)(T, S) = 〈σn〉 × Aut(T, S) acts
linearly on the cube by permuting the coordinates of Rn−1, and fixes the diagonal
from (0, 0, . . . , 0) to (1, 1, . . . , 1). (The involution σn acts trivially on the cube, of
course, since all of these cubes are coming from Lσn ⊂ Xσn

n .) Hence, just as in
[15], the quotient of the cube in Qσn is a cone with base Sn−2/Aut(T, S), where
Sn−2 is the boundary of the cube.

Lemma 3.9. The finite group Aut(T ) (and hence its subgroup Aut(T, S)) is all
2-torsion.

Proof. Let ξ ∈ Aut(T ). Now ξ must take the basepoint to the basepoint, and so it
must take the unique edge attached to the basepoint to itself. For each n, let En
be the edges in T which are at most distance n from ∗. So E0 is just one edge, and
ξ fixes it as already mentioned. Since all nonterminal vertices of T have valence
3, an inductive argument yields that ξ2n fixes En pointwise. �

The following is an analog of Proposition 3.1 of [15]:

Proposition 3.10. Sn−2/Aut(T, S) has the Z(p)-cohomology of an (n−2)-sphere
or a ball. The latter possibility happens when there is an element of Aut(T, S)
which induces an odd permutation of the edges of S.

Proof. The finite group Aut(T, S), which is all 2-torsion, acts cellularly on Sn−2,
where the stabilizer of a cell fixes it pointwise. We use the spectral sequence for
equivariant cohomology (cf. [2] VII §7):

Er,s1 =
∏

[δ]∈∆r
n

Hs(stab(δ);Z(p))⇒ Hr+s
Aut(T,S)(S

n−2;Z(p)) (3.11)

where [δ] ranges over the set ∆r of orbits of r-simplices δ in Sn−2. Since Aut(T, S)
is all 2-torsion and finite, so are all of the stab(δ). Hence if s > 0, Hs(stab(δ);Z(p))
= 0. So the above spectral sequence converges to
Hr(Sn−2/Aut(T, S);Z(p)).

But another filtration yields a spectral sequence with

Er,s2 = Hr(Aut(T, S);Hs(Sn−2;Z(p)))⇒ Hr+s
Aut(T,S)(S

n−2;Z(p)) (3.12)



Vol. 75 (2000) Geometry for palindromic automorphism groups of free groups 655

It follows that Er,s2 = 0 unless (r, s) is (0, 0) or (0, n − 2). Hence E0,0
2 = Z(p)

and E0,n−2
2 = Hn−2(Sn−2;Z(p))

Aut(T,S). The latter group of invariants is Z(p) if
the action of Aut(T, S) on Sn−2 preserves orientation and 0 otherwise. The last
assertion in the proposition follows from Corollary 3.2 of [15]. �

Theorem 3.13. The top dimensional cohomology group of Qσn vanishes. That
is, Hn−1(Qσn ;Z(p)) = 0.

Proof. We show that the quotient of every maximal cube (T, S) has a free face,
so that the interior of the quotient of the cube can be collapsed away. If we can
do this, then Qσn will have the same Z(p)-cohomology as an (n − 2)-dimensional
complex, and we will be done.

In the degenerate case where there is an element of Aut(T, S) which induces
an odd permutation of the edges of S, then the quotient of the cube (T, S) is not
itself a cube. In this case, the diagonal from (0, . . . , 0) to (1, . . . , 1) is exposed in
the quotient, and any (n− 2)-dimensional simplex in the quotient which lies next
to the diagonal is a free face.

In the nondegenerate case, the quotient of the cube (T, S) is itself a cube,
although its boundary might be self indentified in various ways. Since the subforest
S of T is maximal, S must contain at least one terminal edge e. That is, one of
the two vertices of e is a valence 1 vertex or attaching point. Let Γ̃ be the graph
obtained from Γ = ΓT by collapsing the subforest {e, σn(e)}. The graph Γ̃ has
a maximal subforest corresponding to collapsing the edges e and σn(e) from the
forest S∪σn(S) of Γ. Hence we see that collapsing e gives us a face, which we will
denote by (T/e, S/e), of the cube (T, S). It can be shown that this face corresponds
to a (nondegenerate, cubical) face of the quotient of the cube (T, S) because

Claim 3.14. There is an natural injection of Aut(Γ̃) = 〈σn〉 × Aut(T/e) into
Aut(Γ) = 〈σn〉 × Aut(T ). Define the lift φ̂ of an automorphism φ ∈ Aut(T/e) by
sending an edge f to φ(f) if f 6= e and letting φ̂(e) = e.

Proof. Denote by v the valence 1 vertex of e ∈ T (the attaching point) and let w
be the other vertex of e. In T/e, w = v. We must show that φ sends w to w. This
follows automatically, however, as w = v = σn(w) = σn(v) is the only valence 4
vertex of Γ̃ and so any automorphism of the graph must fix it. Let f and g be the
two other edges in T which share the vertex w. Now if v = ∗ then φ could possibly
exchange f and g, but this is fine as the lift φ̂ also can. If v 6= ∗, then one of f or
g must be closer to the basepoint, and so φ must fix both f and g. Regardless, φ̂
can be defined as in the statement of the claim. �

Warning: Note that if e is not a terminal edge, the above claim is false. Collapsing
an interior edge somtimes allows you to construct automorphisms with 3-torsion,
which obviously cannot be lifted to Aut(T ).
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No automorphism φ of (T/e, S/e) can induce an odd permutation of the edges
in S/e, else the lift φ̂ of φ to T would induce an odd permutation of the edge of
S. Since Aut(T ) is all 2-torsion, it follows from the above claim that Aut(T/e) is
also all 2-torsion. Hence the same spectral sequence argument used in Proposition
3.10 yields that the quotient of the cube corresponding to (T/e, S/e) actually is a
Z(p)-cohomology cube.

It remains to be shown that the cubical face corresponding to (T/e, S/e) is
free. First, if another subforest S′ with an edge e′ of T gives a cube with a face
isomorphic to (S/e, S/e), then e′ must also be a terminal edge of S′. Hence the
isomorphism (T/e, S/e) → (T/e′, S′/e′) maps the vertex that e collapsed into to
the the vertex that e′ collapsed into, and so we can lift the isomorphism to one
from (T, S)→ (T, S′).

Second, we must show that blowing up the vertex w in Γ̃ only yields graphs
isomorphic to Γ. This follows by considering the ways that the vertex w in Γ̃ can
be blown up. Say that the edges f , g, σn(f), and σn(g) are the ones incident
to w. If the ideal edge orbit σn{f, g} is blown up, we get back Γ exactly, and if
σn{f, σn(g)} is blown up, we get a graph isomorphic to Γ. As these are the only
ways to blow up the graph σn-equivariantly into another essential graph, we are
done. �

Corollary 3.15. Hn−1(Qσn ;Q) = Hn−1(ΠA(Fn);Q) = 0.

Proof. That Hn−1(Qσn ;Q) = 0 follows immediately from Theorem 3.13. Re-
call that ΠA(Fn) acts with finite stabilizers and finite quotient Qσn on the con-
tractible space Lσn . Since the stabilizers are finite, their rational cohomology van-
ishes, and the standard equivariant spectral sequence yields that H∗(Qσn ;Q) =
H∗(ΠA(Fn);Q). �

Note that part d) of Theorem 1.1 follows from the above Corollary.
As a final remark for this section, we show that Lσn is an EΠA(Fn) (cf. [19]);

that is, for finite subgroups G of ΠA(Fn), the fixed point subcomplex LGσn is
contractible. This follows directly from the corresponding property of Aut(Fn).
The following proposition is unneccesary in the specific case of Lσn , since (proof
omitted) Lσn actually equals Xσn

n . This does not normally happen (for example,
the spaces LPn×σn mentioned later in Fact 5.4 are not equal to the corresponding
fixed point space of Xn), however, and thus it seems worth noting the more general
fact.

Proposition 3.16. Let S be a finite subgroup of Aut(Fn) and let S be either
CAut(Fn)(S) or NAut(Fn)(S). Let LS be the retract, defined by Krstic and Vogt-
mann and consisting of essential marked graphs, of the fixed point subcomplex XS

n

of the spine of auter space Xn. Then LS is an ES space.



Vol. 75 (2000) Geometry for palindromic automorphism groups of free groups 657

Sketch of Proof. Let H be a finite subgroup of S and let G be the (finite, because
HSH−1 = S) subgroup generated by H and S. Then XG

n = (XS
n )H = (XH

n )S ,
and XG

n is contractible from [17]. It remains to be shown that XG
n = (XS

n )H

deformation retracts to (LS)H .
Given a marked graph Γ representing a vertex of (XS

n )H , we must show (see
Proposition 3.3 of [21]) that for every edge e in Γ and every h ∈ H, e is S-inessential
if and only if he is S-inessential. This follows automatically from Corollary 4.5
of [21], which characterizes essential edges by looking at the stabilizers (in S) of
paths in Γ. Since HSH−1 = H, the stabilizers in h-translates of such paths are
still in S and are isomorphic (conjugate by h) to those of the original path. �

4. A realization proposition

Let Â be a finite subgroup of ΠA(Fn) and let A be the (finite) subgroup generated
by Â and σn. By Zimmerman’s [22] realization theorem, we can realize A by an
action on an A-reduced graph Γ. From the proposition below, Γ is also 〈σn〉-
reduced; that is, Γ is a θ1-tree.

Note that the corresponding statement is not true in Out(Fn) (have Z/p ×
〈σp−1〉 act on a θ-graph θp−1) and certainly would not be true in Aut(Fn) if the
σn-action were replaced by some other Z/2-action.

Proposition 4.1. Let A ⊆ ΠA(Fn) be a finite subgroup of the palindromic au-
tomorphism group with σn ∈ A. Realize A by an action on an A-reduced marked
graph φ : Rn → Γ. Then φ : Rn → Γ is also a 〈σn〉-reduced marked graph.

Proof. As before, let Fn = 〈a1, . . . , an〉 and identify the petals of the rose Rn
with the generators ai. Note that Γ has no separating edges, else it would not be
A-reduced. In this proof, when we refer to concepts such as the number of times
an edge e of Γ occurs in some φ(ai), we mean that we should take the unique
taut path in Γ, starting and ending at ∗, which is homotopic to the path φ(ai)
in Γ, and then count the number of times e occurs in this taut path. By way of
contradiction, suppose Γ is not 〈σn〉-reduced. Let e1 ∈ Γ be an edge of minimal
distance to the basepoint ∗ such that {e1, σne1} is a forest.
CASE 1: e1 = σne1. Since e1 is not a separating edge of Γ, we can choose a
nontrivial cycle µ, starting and ending at ∗, which has just one occurence of e1
and none of e−1

1 . If for all i = 1, . . . , n, the cycles φ(ai) have an even number
of occurences of e±1

1 , then we could not write µ as a product of them and their
inverses. So some φ(aj) has an odd number of occurences of e±1

i in it. Say that
the exponent sum of e1 in φ(aj) is k, k odd. Then the exponent sum of e1 in
σnφ(aj) is still k, but the exponent sum of φ(a−1

j ) is −k. This contradicts the fact
that σnaj = a−1

j .
CASE 2: e1 6= σne1. Let α be a shortest length path from ∗ to e1. Say without
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loss of generality that e1 is the oriented edge from v to w and that α goes from
∗ to v. Let f1 = σne1. Then σnα is a shortest length path from ∗ to f1. Now
v = σnv, else we could write α = βb and get {b, σnb} as a σn-invariant forest closer
to ∗ than {e1, f1} is. (If |α| = 0, then v = ∗ and so σn(v) = v necessarily.) So we
have both α and σnα are paths from ∗ to v Moreover, w 6= σnw (else {e1, σne1}
is not a forest.) Now Ae1 = A{e1, f1} is not a forest, since Γ is A-reduced.
Hence we can choose some simple closed curve µ in Ae1 ⊆ Γ that contains e1.
There must exist some ae±1

1 ∈ µ, ae±1
1 6∈ {e1, e

−1
1 }, such that aw = w. Why?

Otherwise we could deformation retract µ to the set of vertices {âv : âe±1
1 ∈ µ},

which contradicts the fact that µ is a simple closed curve. Now ae1 6= f1, as
σnw 6= w. Hence αe1(ae1)−1(aα)−1 is a nontrivial cycle starting and ending at
∗ which contains exactly one occurence of e1 and none of f1. So there must be
a φ(aεj), ε ∈ {−1, 1}, which contains an odd number of occurences of e±1

1 and an
even number of occurences of f±1

1 . (If we had some even/odd φ(aj), then we could
act by σn to get odd/even, and this would be a φ(a−1

j ). Otherwise, all φ(ai) are
all even/even or odd/odd, and so combine together just to get more even/even or
odd/odd loops.) This is a contradiction, however, because φ(a−εj ) still has an odd
number of occurences of e±1

1 while φ(σnaεj) has an even number of occurences of
e±1
1 . �

Proof of part b) (i) of Theorem 1.1. From the action of (Z/2)n on the rose Rn
such that the ith generator inverts the ith petal and leaves all others fixed, we
know that the Krull dimension at the prime 2 is at least n. Similarly, there is an
action of (Z/p)[

n
p ] on Rn where the first Z/p rotates the first p petals, the second

Z/p rotates the next p petals, etc. Hence the Krull dimension at the prime p is at
least

[
n
p

]
.

Let A be a maximal rank elementary abelian subgroup of ΠA(Fn). From
Proposition 4.1, we can realize A by an action of A on a σn-graph Γ which is both
A-reduced and σn-reduced. That is, we have an action of A on a pointed Θ1-tree
Γ. Since elements of A must preserve basepoints, the action of A on the tree Γ/σn
does not invert edges. Hence we have inclusions

A� (Z/2)n oAut∗(Γ/σn)� (Z/2)n o Σn = Z/2 o Σn.

The result (for 2 or odd primes p) now follows from standard facts about Σn (cf.
Theorem 1.3 in Chapter VI of [1].) �

Proof of part c) of Theorem 1.1. We sketch the proof, which uses standard me-
thods. Suppose that some A = Z/p lies in EΠA(Fn). From Proposition 4.1, we
can realize A by an action of A on a σn-graph Γ which is both A-reduced and
σn-reduced. Let φ : Rn → Γ be the corresponding marked graph. Let T = Γ/σn,
a pointed tree with an A-action on it. First, suppose that the A-action on T is
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nontrivial. (This will always be the case if p is odd.) Then there are two edges
e1 and e2, both oriented so that their terminal vertices are closer to the basepoint
than their initial vertices, of Γ such that a generator of A rotates the edge [e1]
into the edge [e2] in T . Some generator ai1 of Fn must be such that φ(ai1)
contains an odd number of occurences of e1 in it. Choose ai2 similarly. Then
φ(aij ) is a palindromic word in the edges of Γ with either ēijσn(eij ) or σn(ēij )eij
in the middle of the palindrome. The generator of A (thought of as an element of
EΠA(Fn)) must send ai1 to a palindrome with either ai2 or a−1

i2
in the center of

it. This contradicts the fact that all elements of EΠA(Fn) send generators ai to
palidromes with ai in the center of them.

The only remaining case is where p = 2 and A acts trivally on T . So A is a
subgroup of the group (Z/2)n of graph automorphisms of Γ which act by inverting
the Θ1’s in the Θ1-tree Γ. Hence the generator of A corresponds to an element of
ΠA(Fn) which, for at least one i, sends ai to a palindrome with a−1

i in its center.
As none of these automorphisms are in EΠA(Fn), we again have a contradiction.
�

5. Cohomology of ΠA(Fn) at odd primes p

Let p be an odd prime (as will always be the case from now on in this paper.)
We wish to calculate the Farrell cohomology of ΠA(Fn) using Ken Brown’s [2]
normalizer spectral sequence, which states that

Er,s1 =
∏

(P0⊂···⊂Pr)∈|B|r

Ĥs(
r⋂
i=0

NG(Pi);Z(p))⇒ Ĥr+s(G;Z(p)) (5.1)

where G is a group with finite virtual cohomological dimension, A is the poset
of nontrivial elementary abelian p-subgroups of G, B is the poset of conjugacy
classes of nontrivial elementary abelian p-subgroups of G, and |B|r is the set of
r-simplices in the realization |B|.

A first step toward performing such a calculation is calculating |B|. In other
words, we wish to calculate conjugacy classes of elementary abelian subgroups
P ⊂ ΠA(Fn). By Proposition 4.1, we can realize such finite groups P by reduced
actions on θ1-trees.

If n ≥ p, define a particular subgroup Pn ∼= Z/p of ΠA(Fn) by letting Pn act on
the rose Rn by rotating its first p leaves and leaving the last n−p leaves fixed. That
is, Pn corresponds to automorphisms which rotate the first p generators a1, . . . , ap
and leave the remaining generators fixed.

Corollary 5.2. If p ≤ n ≤ 2p− 1, then

Ĥ∗(ΠA(Fn);Z(p)) ∼= Ĥ∗(NAut(Fn)(Pn × 〈σn〉);Z(p)).
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Proof. We show that Pn is the only conjugacy class of nontrivial elementary abelian
p-subgroups that is in ΠA(Fn). By Proposition 4.1, we see that an arbitrary
nontrivial elementary abelian p-subgroup A comes from some action on a θ1-tree
with p-symmetry. Since p ≤ n ≤ 2p − 1, the only possibility is that A acts on a
θ1-tree Γ by rotating p of the θ1-leaves and leaving the other n− p θ1-edges in the
tree fixed. But it is clear that a product of (Pn × 〈σn〉)-Nielsen transformations
takes the rose Rn to the graph Γ, and hence we see that A and Pn are conjugate
to each other in ΠA(Fn).

By the normalizer spectral sequence 5.1, this yields that

Ĥ∗(ΠA(Fn);Z(p)) ∼= Ĥ∗(NΠA(Fn)(Pn);Z(p)).

But since p is an odd prime, it is easy to see that

NΠA(Fn)(Pn) = NAut(Fn)(Pn × 〈σn〉).

�

Proposition 5.3.

NAut(Fn)(Pn × 〈σn〉) ∼= NΣp(Pn)× (Fm o (〈σp〉 ×ΠA(Fm)))

where m = n− p, ΠA(Fm) acts on the Fm in the semidirect product in the natural
way, and σp acts on Fm as σm does.

Proof. The NΣp(Pn) in the above decomposition comes from automorphisms of
Fn which permute the first p generators and leave the remaining m fixed. The
Fm being acted upon in the semidirect product structure above has ith generator
(a1||ap+i)(a2||ap+i) . . . (ap||ap+i). The σp is the involution which inverts the first
p generators of Fn and leaves the remaining m fixed. Finally, the ΠA(Fm) comes
from automorphisms which fix the first p generators of Fn and act on the last m
generators by identifying the subgroup 〈ap+1, ap+2, . . . , an〉 with Fm.

Consider the action of Pn × 〈σn〉 on the rose Rn. Pn rotates the first p petals.
Label the first p petals of the rose as a1, . . . , ap as before, but label the last m
petals as b1, . . . , bm.

Since |Pn| = p is an odd prime, NAut(Fn)(Pn × 〈σn〉) ⊆ NAut(Fn)(Pn) and in
Lemma 5.1 of [16], we calculated

NAut(Fn)(Pn) ∼= NΣp(Pn)× ((Fm × Fm)o (〈σp〉 ×Aut(Fm))),

where the first Fm in Fm×Fm is the free group on the Pn-Nielsen transformations
〈a1, b

−1
i 〉 for i ∈ {1, . . . ,m} and the latter Fm is the free group on the Pn-Nielsen

transformations 〈a−1
1 , b−1

i 〉, i ∈ {1, . . . ,m}. Note that 〈σp〉 acts on Fm × Fm via
σp〈a1, b

−1
i 〉σp = 〈a−1

1 , b−1
i 〉 and σp〈a−1

1 , b−1
i 〉σp = 〈a1, b

−1
i 〉. In other words, if

(b, c) ∈ Fm × Fm then σp(b, c)σp = (c, b).
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Let G be the subgroup

NΣp(Pn)× (Fm o (〈σp〉 × CAut(Fm)(σm)))

of NAut(Fn)(Pn), where Fm is the free group on the generators 〈a1, bi〉 ◦ 〈a−1
1 , b−1

i 〉
for i ∈ {1, . . . ,m}, and CAut(Fm)(σm) is included in Aut(Fm) in the obvious way.
It follows directly that G ⊆ NAut(Fn)(Pn × 〈σn〉). To prove the proposition, we
must show that they are equal.

Take an arbitrary

x ∈ NAut(Fn)(Pn × 〈σn〉) ⊆ NΣp(Pn)× ((Fm × Fm)o (〈σp〉 ×Aut(Fm))).

Say x = abcde, where a ∈ NΣp(Pn), (b, c) ∈ Fm×Fm, d ∈ 〈σp〉, and e ∈ Aut(Fm).
Since a, d ∈ NAut(Fn)(Pn × 〈σn〉), a−1xd−1 = bce ∈ NAut(Fn)(Pn × 〈σn〉) also. So
bce ∈ ΠA(Fn) and (bce)σn(bce)−1 = σn. This means that the map (bce)σn(bce)−1

sends ai to a−1
i for i ∈ {1, . . . , p} and bi to b−1

i for i ∈ {1, . . . ,m}. Now both σn
and e restrict to maps in Aut(〈b1, . . . , bm〉) and moreover b and c both restrict to
the identity map in Aut(〈b1, . . . , bm〉). Hence for i ∈ {1, . . . ,m}, we have

b−1
i = (bce)σn(bce)−1(bi) = eσne

−1(bi),

and we see that eσne−1 restricts to σm in Aut(Fm). As e ∈ Aut(Fm), this means
e ∈ CAut(Fm)(σm). Hence e ∈ ΠA(Fn) also. Since bce ∈ ΠA(Fn), this gives
bc ∈ ΠA(Fn). In other words, we have

(b, c) ∈ (Fm × Fm) ⊆ NΣp(Pn)× ((Fm × Fm)o (〈σp〉 ×Aut(Fm)))

and
(b, c) ∈ ΠA(Fn).

It follows that

(b, c) = σn(b, c)σn
= σmσp(b, c)σpσm
= σm(c, b)σm
= (σm(c), σm(b)).

So b = σm(c) and c = σm(b). In summary, we have shown that an arbitrary
element x = abcde ∈ NAut(Fn)(Pn × 〈σn〉) has c = σm(b) and e ∈ CAut(Fm)(σm).
Thus x ∈ G, as desired. �

The group NAut(Fn)(Pn × 〈σn〉) acts on the contractible space LPn×〈σn〉 with
finite stabilizers and finite quotient QPn×〈σn〉 = LPn×〈σn〉/NAut(Fn)(Pn × 〈σn〉).
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Define a p-admissible tree T to be a triple (T, ◦, A) where T is a pointed tree, ◦
is a vertex of T (which may be the basepoint ∗), A is a subset of the vertices of T
called the set of attaching points, ∗ ∈ A, and all valence 1 vertices of T are in A.
For a p-admissible tree T , define the corresponding graph ΓT as follows: Take two
isomorphic copies T1 and T2 of the tree T , and let f : T1 → T2 be an isomorphism.
Then let ΓpreT be the graph

ΓpreT =
T1 q T2

f(v) ∼ v, for all attaching points v in A.

Let θp−1 be a θ-graph with p edges and two vertices v1 and v2. Let ◦1 be the
◦-vertex in T1 and let ◦2 = f(◦1) be the ◦-vertex in T2. Finally, let

ΓT =
ΓpreT q θp−1
◦1 ∼ v1, ◦2 ∼ v2

If π1(ΓT ) ∼= Fn, then say T is a p-admissible tree of rank n.
If T is a p-admissible tree of rank n, define a 〈σn〉-action on the edges of ΓT by

σnx =


f(x), x ∈ T1

f−1(x), x ∈ T2

x−1, x ∈ θp−1

Since this action inverts the edges of the θ-graph in ΓT , we then need to subdivide
these edges so that the group acts without inversions. Next, define a Pn-action on
ΓT by having Pn fix ΓpreT and rotate the edges of θp−1 cyclically. In this way, ΓT
is a (Pn × 〈σn〉)-graph.

A p-admissible tree is T reduced if the corresponding (Pn × 〈σn〉)-graph ΓT is
reduced; that is, if all vertices of T are attaching points. Similarly, a p-admissible
tree T is a maximal if the attaching points of T are exactly its valence 1 vertices,
the valence 2 vertices of T consist of just the point ◦, and T has no vertices
with valence 4 or more. As before, a subforest of T is a collection of edges S of
T such that there is no path in S from one attaching point to another. Lastly,
isomorphisms of p-admissible trees must be graph isomorphisms which take ∗ to
∗, ◦ to ◦, and A to A.

The following facts about (Pn × 〈σn〉)-graphs are all proven in similar ways to
the analogous facts about σn-graphs.

Fact 5.4.
(1) There is a bijective correspondence between reduced p- admissible trees of rank

n and the underlying graphs of (Pn × 〈σn〉)- reduced marked graphs, given by
T → ΓT .

(2) There is a bijective correspondence between maximal p-admissible trees of rank
n and the underlying graphs of maximal essential marked (Pn × 〈σn〉)-graphs,
given by T → ΓT .
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(3) The virtual cohomological dimension of NAut(Fn)(Pn × 〈σn〉) is m = n− p.
(4) Let Γ be a graph which occurs as the underlying graph of a marked graph in

LPn×〈σn〉. Then there is only one possible σn-action on Γ.
(5) If two marked graphs in LPn×〈σn〉 have underlying graphs which correspond

to the same p-admissible tree, then they correspond to the same vertex in
QPn×〈σn〉. That is, we can form the moduli space QPn×〈σn〉 by looking only
at the poset structure of the p-admissible trees corresponding to marked graphs
in LPn×〈σn〉.

(6) The top dimensional cohomology class of QPn×〈σn〉, with coefficients in Z(p),
vanishes. That is, Hn−p(QPn×〈σn〉;Z(p)) = 0.

(7) Hn−p(QPn×〈σn〉;Q) = Hn−p(NAut(Fn)(Pn × 〈σn〉);Q) = 0.

Note that (4) and (5) above are a little bit different from their analogs Propo-
sition 3.7 and Corollary 3.8. Basically, the underlying graphs Γ always have just
one possible σn-action, as before, but it is conceivable (for example, if the graph
contains two or more copies of θp−1 inside it and we must decide which one Pn
rotates) that it might have several possible Pn-actions. That is why we talk about
p-admissible trees instead in (5), since the vertex ◦ in the tree determines where
the p edges that Pn rotates are located.

Fact 5.4 allows us to show

Proposition 5.5. If p ≤ n ≤ 2p− 1, then

Ĥt(NAut(Fn)(Pn × 〈σn〉);Z(p)) ∼=


Z/p t ≡ 0 (mod 2(p− 1))
Hr(QPn×〈σn〉;Z/p) t ≡ r (mod 2(p− 1)),

1 ≤ r ≤ n− p− 1
0 t ≡ r (mod 2(p− 1)),

n− p ≤ r ≤ 2p− 3

Proof. We use the equivariant cohomology spectral sequence for
NAut(Fn)(Pn × 〈σn〉) acting on the contractible space LPn×〈σn〉 with finite stabili-
zers and finite quotient QPn×〈σn〉. The equivariant cohomology spectral sequence
for this action is

Er,s1 =
∏

[δ]∈∆r
n
Ĥs(stabNAut(Fn)(Pn×〈σn〉)(δ);Z(p))

⇒ Ĥr+s(NAut(Fn)(Pn × 〈σn〉));Z(p))

where [δ] ranges over the set ∆r
n of orbits of r-simplices δ in LPn×〈σn〉.

From the decomposition

NAut(Fn)(Pn × 〈σn〉) ∼= NΣp(Pn)× (Fm o (〈σp〉 × CAut(Fm)(σm)))

we see that (Fm o (〈σp〉 × CAut(Fm)(σm))) has p-rank 0. Since NΣp(Pn) acts
trivially on marked graphs in LPn×〈σn〉 by permuting the edges of the θ-graph
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attached at ◦, it follows that for every simplex δ we have

Ĥ∗(stabNAut(Fn)(Pn×〈σn〉)(δ);Z(p)) ∼= Ĥ∗(NΣp(Pn);Z(p)) ∼= Ĥ∗(Σp;Z(p)).

The Er,s1 -page of the spectral sequence is 0 in the rows where s 6= k · 2(p− 1)
and a copy of the cellular cochain complex with Z/p-coefficients of the (n − p)-
dimensional complex QPn×〈σn〉 in rows k ·2(p−1). It follows that the E2-page has
the form:

Er,s2 =

Z/p r = 0 and s = k · 2(p− 1)
Hr(QPn×〈σn〉;Z/p) 1 ≤ r ≤ n− p and s = k · 2(p− 1)
0 otherwise

Hence we see that the spectral sequence converges at the E2-page.
That Hn−p(QPn×〈σn〉;Z/p) = 0 follows from part 6 of Fact 5.4 and universal

coefficients. �

Note that the above proposition immediately proves part b) (ii) of Theorem
1.1.

Figure 1. Simplices from the first maximal graph

By examining the space QPn×〈σn〉 in low dimensions where m ∈ {0, 1, 2} and
showing that it is contractible, we have the following corollary, which will give us
part e) of Theorem 1.1:
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Corollary 5.6. If m = n− p ∈ {0, 1, 2}, then

Ĥ∗(ΠA(Fn);Z(p)) ∼= Ĥ∗(NAut(Fn)(Pn × 〈σn〉);Z(p)) ∼= Ĥ∗(Σp;Z(p)).

Proof. CASE 1: m = 0. Then QPn×〈σn〉 is a point.
CASE 2: m = 1. Then QPn×〈σn〉 is a contractible 1-dimensional complex with 3
vertices and two edges. Define the maximal p-admissible tree T of rank n to be the
tree with three vertices ∗, ◦, v and two edges e1, e2 where e1 goes from ∗ to ◦ and
e2 goes from ◦ to v. The middle vertex of the 1-dimensional complex QPn×〈σn〉
corresponds to the graph ΓT . The other two vertices and two edges QPn×〈σn〉
correspond to the two possible ways that ΓT can be collapsed equivariantly.

Figure 2. Simplices from the second maximal graph

CASE 3: m=2. Then QPn×〈σn〉 is a 2-dimensional complex with 13 vertices, 28
edges, and 16 two-simplices. There are two maximal graphs inQPn×〈σn〉. Simplices
coming from the first graph are listed in figure 1 and simplices from the second
graph are listed in figure 2. In figures 1 and 2, the maximal graphs are listed in
the center. These maximal graphs can be collapsed in various ways, and these
are listed around the periphery of the figures. In the graphs, a solid dot indicates
the basepoint ∗ and the hollow dots represent attaching points ◦ for the θ-graph
θp−1. If there is only one hollow dot in a graph, both ends of the θ-graph should
be attached to that one vertex. Upon identifying the boundaries of the simplices
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listed in figures 1 and 2, we obtain the complex QPn×〈σn〉 pictured in figure 3. The
complex is homeomorphic to the fletching of a dart, three half disks, all identified
along a common line in their boundary. This complex is clearly contractible. �

Figure 3. The complete complex QPn×〈σn〉
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