
Comment. Math. Helv. 75 (2000) 410–414
0010-2571/00/030410-5 $ 1.50+0.20/0
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quadratic fields
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Abstract. In this paper, we will prove there are infinitely many integers n such that n2 − 1 is
square-free and Q(

√
n2 − 1) admits universal octonary diagonal quadratic forms.
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1. Introduction

A universal integral form over totally real number field K is a positive definite
quadratic form over the ring of integers of K which represents all the totally
positive integers of K. For example, the sum of four squares is universal integral
over Q. In 1917, Ramanujan [8] found there are exactly 54 universal positive
diagonal integral quadratic forms over Q. More concretely, he showed there are
54 diagonal quaternary quadratic forms f(x, y, z, w) = ax2 + by2 + cz2 + dw2 such
that a, b, c, d ∈ Z+ and the equation f = n is solvable for all n ∈ Z+. In 1947, M.
Willerding [10] proved there are exactly 178 classic universal integral forms. More
concretely, she showed there are 178 quaternary quadratic forms f(x, y, z, w) up to
equivalence such that f is positive definite integral quadratic form, the coefficients
of cross terms of f are always even and the equation f = n is solvable for all
n ∈ Z+. On the other hand, the study of positive universal quadratic integral
forms over totally real number fields was initiated by F. Götzky [3]. In 1928,
he proved that the sum of four squares is universal over Q(

√
5). H. Maass [6]

improved this result. In 1941, he proved the sum of three squares is positive
universal over Q(

√
5). Four years later, Siegel [9] proved Q(

√
5) is the only totally

real number field, other than Q , over which every (totally) positive integer is a
sum of squares. In other words, he showed if a totally real number field K is
different from Q and Q(

√
5), there is a totally positive algebraic integer α of K

which cannot be represented by the sum of any number of squares. For example,
if K = Q(

√
2), α = 2 +

√
2. In 1996, W. K. Chan, M.-H. Kim and S. Raghavan [1]
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classified all (totally) positive universal integral ternary lattices over real quadratic
fields. Only Q(

√
2), Q(

√
3) and Q(

√
5) admit universal integral ternary lattices

and total number of universal integral ternary lattices over real quadratic fields
is 11. Recently, the author [5] proved there are only finitely many real quadratic
fields which admit universal integral septenary diagonal forms. The content of
this paper is to prove if n2−1 is square-free, there are universal octonary diagonal
forms over Q(

√
n2 − 1). So we can prove there are infinitely many real quadratic

fields which admit universal integral octonary diagonal forms. Obviously 8 is the
minimal rank with this property.

2. Main Theorem

Throughout this chapter, we let m = n2 − 1 be a positive square free integer,
K = Q(

√
m) and OK be the ring of algebraic integers of K. Note that ε = n+

√
m

is the fundamental unit of OK and is totally positive.

Theorem 1. The octonary diagonal form x2
1 +x2

2 +x2
3 +x2

4 +εx2
5 +εx2

6 +εx2
7 +εx2

8
is universal over OK .

This Theorem is a consequence of following Lemmas.

Lemma 1. Let 1 ≤ b < 2n. α = a+ b
√
m is totally positive algebraic integer in

K if and only if nb ≤ a.

Proof. As nb+ b
√
m = b(n+

√
m) is totally positive, the necessity is trivial. For

the sufficiency, it suffices to prove nb− 1− (b
√
m) < 0. This follows from

(nb− 1)2 − (b
√
m)2 = n2b2 − 2nb+ 1− b2(n2 − 1)

= (b− n)2 − n2 + 1 ≤ (n− 1)2 − n2 + 1 < 0.

�

Lemma 2. If α ∈ O+
K , α belongs to

S = {a0ε
k + a1ε

k+1 + . . .+ alε
k+l| k, l ∈ Z, a0, a1, . . . , al ∈ N}.

Proof. Suppose α = a + b
√
m /∈ S. We may assume that b > 0 and trK/Q(α) ≤

trK/Q(β) for all elements β /∈ S. Then, by Lemma 1, we have b ≥ 2n. Since

bn− 1 + b
√
m = ε2 + (b− 2n)ε ∈ S,
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we also have a ≤ bn− 1. Then,

αε−1 = (a+ b
√
m)(n−

√
m) = an− bm+ (bn− a)

√
m.

So
trK/Q(αε−1) = 2(an− bm) ≤ 2(n(bn− 1)− b(n2 − 1))

= 2(b− n) < 2a = trK/Q(α).

So αε−1 ∈ S. Thus α ∈ S. Contradiction. �

Lemma 3. For l ≥ 2,εl = −1 + b1ε+ b2ε
2 + . . .+ bl−1ε

l−1 where b1 ≥ 2n− 1 and
b2, . . . , bl−1 ≥ 2n− 2.

Proof. We use induction on l. As ε2 = 2nε − 1, the assertion holds for l = 2. If
this Lemma is true for l = s ≥ 2,

εs+1 = εεs = ε(−1 + b1ε+ b2ε
2 + . . .+ bs−1ε

s−1)

= −ε+ ε2 + (b1 − 1)ε2 + b2ε
2 + . . .+ bs−1ε

s

= −1 + (2n− 1)ε+ (b1 − 1)ε2 + b2ε
2 + . . .+ bs−1ε

s.

This proves the Lemma. �

Lemma 4. If α ∈ O+
K , α = pεk + qεk+1 for some p, q ∈ N and k ∈ Z.

Proof. By Lemma 2, α = akε
k + . . .+ ak+lε

k+l with ak, . . . , ak+l ≥ 0.
If l ≥ 2 and ak+l ≤ ak,

α = akε
k + . . .+ ak+l−1ε

k+l−1 + ak+lε
k(−1 + b1ε+ . . .+ bl−1ε

l−1)

= (ak − ak+l)εk + (ak+1 + ak+lb1)εk+1 + . . .+ (ak+l−1 + ak+lbl−1)εk+l−1.

If l ≥ 2 and ak+l ≥ ak,

α = akε
k + . . .+ ak+l−1ε

k+l−1 + (ak+l − ak)εk+l + akε
k(−1 + b1ε+ . . .+ bl−1ε

l−1)

= (ak + ak+lb1)εk+1 + . . .+ (ak + ak+lbl−1)εk+l−1 + (ak+l − ak)εk+l.

Repeating the same process, we can obtain the desired expression of α. �

Proof of Theorem 1. If α ∈ O+
K , by Lemma 4, α = aεk + bεk+1 for some a, b ∈ N

and k ∈ Z. If k is even, by Lagrange’s four square theorem, aεk is represented by
x2

1 +x2
2 +x2

3 +x2
4 and bεk+1 is represented by εx2

5 +εx2
6 +εx2

7 +εx2
8. So f represents

α. Similarly f represents α for odd k. Thus f is universal integral over K. �
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Lemma 5. There are infinitely many square free integers of the form n2 − 1.

Proof. If n is even, n2 − 1 is square free if and only if both n + 1 and n − 1 are
square free. It is known that [4] the number of positive square free integers which
do not exceed x is 6x

π2 + O(
√
x). So the number of positive integer n such that

n ≤ x and both n+ 1 and n− 1 are square free is larger than

(
6x
π2 +O(

√
x)) + (

6x
π2 +O(

√
x))− x =

12− π2

π2 x+O(
√
x).

Since 12−π2

π2 > 0, there are infinitely many n such that n ≤ x and n2 − 1 is square
free. �

Theorem 2. There are infinitely many real quadratic fields that admit octonary
universal forms.

Proof. This is an immediate consequence of Theorem 1 and Lemma 5. �
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