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Abstract. For a connected reductive group G and a Borel subgroup B, we study the closures of
double classes BgB in a (G×G)-equivariant “regular” compactification of G. We show that these
closures BgB intersect properly all (G × G)-orbits, with multiplicity one, and we describe the
intersections. Moreover, we show that almost all BgB are singular in codimension two exactly.
We deduce this from more general results on B-orbits in a spherical homogeneous space G/H;
they lead to formulas for homology classes of H-orbit closures in G/B, in terms of Schubert
cycles.
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0. Introduction

Let G be a connected complex reductive group, B ⊂ G a Borel subgroup and
H ⊂ G a spherical subgroup, that is, the homogeneous space G/H contains a
dense B-orbit. Then any equivariant embedding X of G/H contains only finitely
many B-orbits (see [Kn] for a simple proof of this result).

A natural question is to describe the B-orbit closures in a smooth complete
embedding X of G/H, and their classes in the Chow group A∗(X); recall that
A∗(X) is then isomorphic to the integral homology of X , and is generated as a
group by classes ofB-orbit closures. Another, closely related question is to describe
the H-orbit closures in the flag variety G/B, and their classes in A∗(G/B).

A classical example is the case where G/H is complete, that is, H is a parabolic
subgroup of G. Then the B-orbit closures in G/H are the Schubert varieties, and
their classes (the Schubert cycles) form a basis of the group A∗(G/H).

In the present article, we obtain partial answers to our questions in the general
setting of a spherical homogeneous space, and more precise results when the space
is G and the group is G × G acting on G by left and right multiplication. In
this case, the first question asks for the behaviour “at infinity” of the closures of
B-double cosets in G.

To any B-orbit closure Y in a spherical homogeneous space G/H, we associate
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a subset W (Y ) of the Weyl group of G, and a function d(Y, ·) on W (Y ) with
values in integral powers of 2 (see 1.1). Given a smooth complete embedding X
of G/H which is regular in the sense of [BDP], and a closed G-orbit Z ⊂ X , we
show that the closure of Y in X has proper intersection with Z. Moreover, the
components of Y ∩Z are the Schubert varieties in Z parametrized by W (Y ), and
the corresponding intersection multiplicities are the values of the function d(Y, ·)
(up to twists, see 1.4).

On the other hand, any H-orbit closure V ⊂ G/B defines obviously a B-orbit
closure Y ⊂ G/H; the decomposition of the class of V in A∗(G/B) on the basis
of Schubert cycles turns out to be determined by W (Y ) and d(Y, ·) (see 1.5).

In the case of the homogeneous space G under G×G, the function d(Y, ·) has
constant value 1 (see 2.1). It follows that all closures of (B × B)-orbits in any
regular completion X of G are smooth in codimension one (as shown by Barbasch
and Evens, closures ofB-orbits in spherical varieties can be singular in codimension
one, see [BE]).

Actually, any closure in X of a B-double class in G is singular in codimension
two, apart from trivial exceptions (see 2.2). This uniform result contrasts with the
situation for Schubert varieties, where the characterization of smoothness is quite
delicate (see e.g. [C], [K] and [L]).

The behaviour “at infinity” of (B×B)-orbit closures is described in 2.1, and the
case of parabolic subgroups of G is treated in more detail in 2.3. As an application,
we construct a degeneration of the diagonal of a flag variety to a sum of Schubert
cycles.

These results are then applied to the study of the Chow ring A∗(X) where X
is a regular completion of G. For this, we use Edidin and Graham’s equivariant
intersection theory (see [EG] and also [Br]); it could be replaced by equivariant
cohomology but we prefer a purely algebraic approach. In 3.1, we describe the
equivariant Chow ring of X in terms of the closed (G × G)-orbits, generalizing
results of Littelmann and Procesi (see [LP]). Then we give closed formulae for the
equivariant classes of (B ×B)-orbit closures (see 3.2).

In the case where X is the canonical regular completion of a semisimple adjoint
group, we construct a basis of the Chow group of X (see 3.3) and we determine
the intersection numbers of any two (B × B)-orbit closures of complementary
dimensions (see 3.4). Our picture of the Chow ring confirms the idea that the
geometry of regular completions of G is governed by the closed (G×G)-orbits and
by the closure of a maximal torus, as shown by De Concini and Procesi (see [DP1]
and [DP2]).

Using the general methods of Part 1, several results of the present work can be
extended to other spherical homogenenous spaces, e.g. to split symmetric spaces;
this will be developed elsewhere.

The structure results for regular group completions which are used in our arti-
cle are gathered in an appendix. These results are due to DeConcini and Procesi
in the case of a semisimple adjoint group and, more generally, of an adjoint sym-
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metric space (see [DP1]). For a connected reductive group, they can be deduced
from embedding theory of spherical homogeneous spaces. Here we follow a direct,
characteristic-free approach based on one-parameter subgroups. As a consequence,
all results of the present work which concern regular completions of G are valid in
arbitrary characteristics, provided that each (G×G)-orbit map is separable.

1. Orbit closures of Borel subgroups in spherical varieties

1.1. Preliminaries

We begin by fixing notation, defining the set W (Y ) and the function d(Y, ·) and
studying their first properties. Throughout the paper, we will use freely classical
notions and results on the Bruhat decomposition in reductive groups and on the
combinatorics of Weyl groups; for this, we refer to [H] and [Sp].

Let G be a connected complex reductive group, B ⊂ G a Borel subgroup, and
T ⊂ B a maximal torus of dimension r. Denote by W the Weyl group and by
Φ the root system of (G,T ). We have the subset Φ+ of positive roots and its
subset ∆ of simple roots. For α ∈ ∆ we denote by sα ∈ W the corresponding
reflection and by Pα = B ∪BsαB the corresponding minimal parabolic subgroup.
The length of w ∈W is denoted by l(w), and the longest element of W is denoted
by w0.

Let P ⊃ B be a parabolic subgroup with Levi subgroup L ⊃ T . Denote by WL

the Weyl group and by ΦL the set of roots of (L, T ). Set

WL := {w ∈W | l(wv) = l(w) + l(v) ∀v ∈WL} = {w ∈W | w(Φ+
L ) ⊂ Φ+}.

Then WL is a system of representatives of the quotient W/WL; moreover, the
unique element of maximal length in WL is w0w0,L where w0,L denotes the longest
element of WL. The space G/P is the disjoint union of the BwP/P (w ∈ WL).
Moreover, the dimension of BwP/P is the length of w. Denoting by B− the Borel
subgroup of G such that B− ∩ B = T and by Q ⊃ B− the parabolic subgroup
opposed to P , we have P ∩Q = L. The length of w ∈ WL is the codimension of
BwQ/Q in G/Q.

Consider now a variety X with a G-action (by variety we mean a reduced and
irreducible algebraic complex scheme, and by subvariety, a closed subscheme which
is a variety). Following [Kn], the set of B-invariant subvarieties of X is denoted
by B(X). For Y ∈ B(X) and w ∈W , the set BwY is in B(X) (this set is denoted
by w ∗ Y in [Kn], where the resulting operation on B(X) is studied). The map

BwB × Y → BwY
(g, y) 7→ gy

is invariant under the B-action defined by b(g, y) = (gb−1, by). Denoting by
BwB ×B Y the quotient, we obtain a map

πY,w : BwB ×B Y → BwY .
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Because BwB/B is complete, πY,w is proper and hence surjective.

Definitions. Let d(Y,w) be the degree of πY,w if this map is generically finite;
otherwise, set d(Y,w) = 0.

Let W (Y ) be the set of all w ∈W such that πY,w is generically finite and that
BwY is G-invariant.

Lemma. Let Y ∈ B(X).
(i) For any τ and w in W such that l(τw) = l(τ) + l(w), we have

d(Y, τw) = d(Y,w) d(BwY , τ).

(ii) For any w ∈ W such that BwY contains only finitely many B-orbits, the
integer d(Y,w) is 0 or a power of 2.
(iii) For any w ∈W such that d(Y,w) 6= 0, we have

W (BwY ) = {τ ∈W | l(τw) = l(τ) + l(w) and τw ∈W (Y )}.

(iv) The set W (Y ) is not empty.
(v) If X = G/P where P ⊃ B is a parabolic subgroup with Levi subgroup L ⊃ T
and Y = BwP/P with τ ∈WL, then W (Y ) = {w0w0,Lw

−1}. Moreover, we have
d(Y,w0w0,Lw

−1) = 1.

Proof. (i) By the Bruhat decomposition, the canonical map

BτB ×B BwB → BτwB

is birational. It follows that the degree of πY,τw is equal to the degree of the map

BτB ×B BwB ×B Y → BτwY .

But the latter factors as

BτB ×B BwB ×B Y → BτB ×B BwY

of degree d(Y,w), followed by

BτB ×B BwY → BτwY

of degree d(BwY , τ).
(ii) Write w = τsα where τ ∈ W , α ∈ ∆ and l(w) = l(τ) + 1. Then BsαY ⊂

BwY and, by (i):
d(Y,w) = d(Y, sα) d(BsαY , τ).

By [RS] §4 or [Kn] 3.2 (see also [Br] 6.2), we have d(Y, sα) ≤ 2. We conclude by
induction over l(w).
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(iii) If τ ∈W (BwY ) then

l(τ) + l(w) = dim(BτBwY )− dim(Y ) ≤ dim(BτBwB/B)

which implies that l(τ) + l(w) = l(τw) and that BτBwB = BτwB. Therefore,
τw ∈W (Y ). The converse is similar.

(iv) We argue by induction over the codimension of Y in GY . If Y = GY then
W (Y ) = {1}. Otherwise we can find a minimal parabolic subgroup Pα ⊃ B such
that PαY 6= Y . Then W (PαY ) is not empty, and we conclude by (iii).

(v) Because w ∈WL, we have BwP = Bww0,LB. Let τ ∈W (BwP/P ). Then
the map

BτB ×B Bww0,LB → G

is generically finite and surjective. By the Bruhat decomposition, this map is
birational and τ = w0w0,Lw

−1.

Remark. If X = G/Q with Q ⊃ B− and Y = BwQ/Q with w ∈ WL, then
W (Y ) = {w−1} and d(Y,w−1) = 1.

1.2. Cancellative and induced actions

This section contains technical results which will play a key role in our study of
regular group completions.

Definition. The action of G on a variety X is cancellative if for any distinct Y1,
Y2 in B(X) and for any α ∈ ∆ such that PαY1 6= Y1 and PαY2 6= Y2 we have
PαY1 6= PαY2.

Equivalently, for any distinct Y1, Y2 ∈ B(X) such that GY1 = GY2, the sets
W (Y1) and W (Y2) are disjoint. In particular, any Y ∈ B(X) is uniquely deter-
mined by GY and W (Y ).

For example, the G-action on G/P is cancellative for any parabolic subgroup
P of G (this follows e.g. from Lemma 1.1). The (G×G)-action on G by left and
right multiplication is cancellative, too. But the diagonal action of G = PGL2 on
P1 × P1 is not cancellative. Indeed, let B be the standard Borel subgroup of G
and let∞ be the B-fixed point in P1. Then Y1 := P1×{∞} and Y2 := {∞}×P1

are B-invariant subvarieties with Y1 6= GY1 = GY2 6= Y2.

Definition. Let P ⊃ B be a parabolic subgroup with Levi subgroup L ⊃ T
and let X ′ be a L-variety. The induced variety X is the quotient of G × X ′

by the diagonal P -action where P acts on G by right multiplication, and on X ′

through its quotient group L. We denote X by G ×P X ′ and we identify X ′ to
the P -invariant subvariety P ×P X ′ ⊂ X , the fiber at P/P of the canonical map
p : G×P X ′ → G/P .
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Lemma. Notation being as above, any Y ∈ B(X) can be written uniquely as
BwY ′ where w ∈WL and Y ′ ⊂ X ′ is a (B ∩ L)-invariant subvariety. Then

W (Y ) = {τ ∈W | τw ∈ w0w0,LWL(Y ′) and l(τ) = codimGY (Y )}

and for any w ∈W (Y ), we have

d(Y,w) = dL(Y ′, w0,Lw0τw).

Furthermore, the G-action on X is cancellative if and only if the L-action on X ′

is.

Proof. Let Y ∈ B(X). Then there exists a unique w ∈ WL such that BwP/P
is dense in p(Y ). Moreover, Y ∩ p−1(wP/P ) is invariant under B ∩ wPw−1.
This group contains w(B ∩ L)w−1 because w is in WL. Therefore, we have Y ∩
p−1(wP/P ) = wY ′ for a unique (B ∩ L)-invariant subvariety Y ′ ⊂ X ′. It follows
that BwY ′ = Y ∩ p−1(BwP/P ) is dense in Y .

For the second statement, consider first the case where w = 1; then Y = Y ′.
Let τ ∈ W (Y ′). Write τ = τLτL where τL ∈ WL and τL ∈ WL. Because
BτY ′ = GY ′, we must have τL = w0w0,L and τL ∈WL(Y ′). Therefore, W (Y ′) =
w0w0,LWL(Y ′). Moreover, d(Y, τ) = dL(Y ′, τL).

In the general case, it follows from Lemma 1.1 that τ ∈ W (Y ) if and only if
l(τ) = codimGY (Y ) and τw ∈ W (Y ′). The latter amounts to: τw = w0w0,Lu for
some u ∈WL(Y ′). Because w ∈WL we have d(Y ′, w) = 1. Therefore, we have by
Lemma 1.1: d(Y, τ) = d(Y ′, τw) = dL(Y ′, u).

If the G-action on X is cancellative, then it is easy to see that the L-action on
X ′ is, too. For the converse, let Y1, Y2 be distinct B-invariant subvarieties of X
and let α ∈ ∆ such that Y1 6= PαY1 = PαY2 6= Y2. For i = 1, 2, write Yi = BwiY ′i
as above. Then PαYi = BsαwiY ′i because PαYi 6= Yi. We distinguish between
three cases.

(i) sαw1 /∈ WL and sαw2 /∈ WL. Then sαw1(β1) /∈ Φ+ for some simple root
β1 of (L, T ). It follows that w1(β1) = α and that sαw1 = w1sβ1 . So sβ1Y

′
1 6= Y ′1

(because PαY1 6= Y1) and PαY1 = Bw1sβ1Y
′
1. Similarly, sαw2 = w2sβ2 for some

simple root β2 of (L, T ). Therefore, w1 = w2 and Pβ1Y
′
1 = Pβ2Y

′
2. Because the

L-action on X ′ is assumed to be cancellative, this implies Y ′1 = Y ′2.
(ii) sαw1 ∈ WL and sαw2 ∈ WL. Then sαw1 = sαw2 whence w1 = w2, and

Y ′1 = Y ′2.
(iii) sαw1 /∈ WL and sαw2 ∈ WL. Write sαw1 = w1sβ1 as in case (i). Then

Bw1sβ1Y
′
1 = Bsαw2Y

′
2 whence w1 = sαw2. Therefore, sαw1 = w2 ∈ WL, a

contradiction.

Remark. Let Q ⊃ B− be the parabolic subgroup opposite to P . Consider the
induced variety G×Q X ′. Then, for w ∈WL and Y ′ ∈ B(X ′), we have

W (BwY ′) = {τ ∈W | τw ∈WL(Y ′) and l(τ) = codimGY ′(BwY ′)}
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and d(BwY ′, τ) = dL(Y ′, τw) whenever τ ∈ W (BwY ′). Thus, the formulation of
the Lemma above is much simpler; note however that Y ′ (viewed as a subvariety
of G×Q X ′) is not B-invariant .

1.3. Intersection multiplicities of invariant subvarieties

In this section, we give a geometric interpretation of W (Y ) and d(Y,w).
Let X be a complete, non-singular G-variety, let Y ⊂ X be a B-invariant

subvariety such that GY = X , and let Z ⊂ X be a G-invariant subvariety. We
denote by C(Y ∩Z) the set of irreducible components of the intersection of Y and Z.
Recall that each C ∈ C(Y ∩Z) satisfies dim(C) ≥ dim(Y )+ dim(Z)−dim(X). By
definition, Y and Z meet properly along C if equality holds above, or equivalently
if codimZ(C) = codimX(Y ). In this case, we denote by i(C, Y ·Z) the intersection
multiplicity of Y and Z along C, see [F] Chap. 7.

Lemma. (i) If Y meets Z properly, then

W (Y ) ⊂
⋃

C∈C(Y ∩Z)

W (C).

If moreover Y meets properly any G-invariant subvariety of Z, then equality holds
above, and GC = Z for any C ∈ C(Y ∩ Z).
(ii) Assume that Y meets properly any G-invariant subvariety of Z, and that the
G-action on Z is cancellative. Then C(Y ∩ Z) is the set of all C ∈ B(Z) such
that W (C) meets W (Y ). Moreover, W (Y ) is the disjoint union of the W (C) for
C ∈ C(Y ∩ Z). Finally, we have for any C ∈ C(Y ∩ Z):

d(C,w) i(C, Y · Z) = d(Y,w).

Proof. (i) Assume that Y meets Z properly. Let w ∈W (Y ). The generically finite,
surjective morphism

πY,w : BwB ×B Y → X

restricts to a surjective morphism BwB ×B (Y ∩ Z) → Z. Thus, there exists
C ∈ C(Y ∩ Z) such that the morphism

πC,w : BwB ×B C → Z

is surjective. But

dim(BwB ×B C) = l(w) + dim(C) = codimX(Y ) + dim(C) = dim(Z)

and therefore, πC,w is generically finite: w ∈W (C).
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Assume now that Y meets properly any G-invariant subvariety of Z. Let
C ∈ C(Y ∩ Z). We prove that W (C) ⊂ W (Y ) and GC = Z by induction on
codimX(Y ). If codimX(Y ) = 0 then Y = X whence C = Z and W (C) = W (Y ) =
{1}. If codimX(Y ) > 0 then C 6= Z. It follows that GC = Z: indeed, because
C ∈ C(Y ∩GC) and Y meets properly GC, we have

codimGC(C) = codimX(Y ) = codimZ(C)

which implies that dim(GC) = dim(Z). In particular, GC 6= C. Let w ∈ W (C);
then w 6= 1. Write w = τsα where α ∈ ∆ and l(w) = l(τ) + 1. Then PαC 6= C,
whence PαY 6= Y ; otherwise, we would have PαC ⊂ Y ∩ Z and dim(PαC) =
dim(C) + 1 which is impossible because Y meets Z properly. It follows that PαY
meets Z properly and that

C(PαY ∩ Z) = {PαC | C ∈ C(Y ∩ Z) and PαC 6= C}.

Similarly, PαY meets properly any G-invariant subvariety of Z. By induction, we
have W (PαY ) ⊃W (PαC). Now the latter contains τ , whence w ∈W (Y ).

(ii) Let C ∈ C(Y ∩ Z); then W (C) ⊂ W (Y ) by (i). If moreover C′ ∈ C(Y ∩
Z) \ {C} then Z = GC = GC′. Because the G-action on Z is cancellative, the
sets W (C) and W (C′) are disjoint.

Consider now D ∈ B(Z) such that W (D) meets W (Y ). We prove that D ∈
C(Y ∩ Z) by induction on codimZ(D). If codimZ(D) = 0 then D = Z whence
1 ∈ W (Y ) and Y = X . If codimZ(D) > 0, choose w ∈ W (D) ∩W (Y ) and write
w = τsα where α ∈ ∆ and l(w) = l(τ)+1. Then PαD 6= D and PαY 6= Y . Because
τ ∈ W (PαD) ∩W (PαY ) and PαY meets properly any G-invariant subvariety of
Z, we have PαD ∈ C(PαY ∩ Z) by the induction assumption. Thus, there exists
C ∈ C(Y ∩ Z) such that PαD = PαC 6= C. Because the G-action on Z is
cancellative, we have D = C.

We consider the map

π : Pα ×B X → X
(g, x)B 7→ gx,

a proper, flat morphism (indeed, π identifies with projection Pα/B × X → X
under the isomorphism Pα ×B X ' Pα/B ×X). We have in the Chow group of
X :

π∗[Pα ×B Y ′] = d(Y ′, sα)[PαY ′]

for any Y ′ ∈ B(X). Moreover,

π∗[Z] = [Pα ×B Z]

because Z is Pα-invariant. It follows that

d(Y, sα)[PαY ][Z] = π∗([Pα ×B Y ]π∗[Z]) = π∗([Pα ×B Y ][Pα ×B Z]) =∑
C∈C(Y ∩Z)

i(C, Y · Z)π∗[Pα ×B C] =
∑

C∈C(Y ∩Z)

d(C, sα)i(C, Y · Z)[PαC]
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in the Chow group of PαY ∩Z. Indeed, for C ∈ C(Y ∩Z), the varieties Pα×BY and
Pα×BZ intersect properly along Pα×BC with multiplicity i(C, Y ·Z). Recall that
the top-dimensional Chow group of PαY ∩ Z is freely generated by the classes of
the elements of C(PαY ∩Z). Considering the coefficient of [PαC] in the equalities
above, we obtain

d(Y, sα)i(PαC,PαY · Z) = d(C, sα)i(C, Y · Z).

It follows that d(C,w)i(C, Y · Z) = d(Y,w) for any w ∈ W (C) and for any C ∈
C(Y ∩ Z).

Corollary. Assume that Z is a closed G-orbit with isotropy group Q ⊃ B− and
that Y meets Z properly. Then the irreducible components of Y ∩Z are the BτQ/Q
where τ ∈WL and τ−1 ∈W (Y ). Moreover, the intersection multiplicity of Y and
Z along BτQ/Q is d(Y, τ−1).

1.4. B-invariant subvarieties in regular G-varieties

We begin by recalling the notion of a regular variety, due to Bifet, De Concini and
Procesi (see [BDP]).

Definition. A G-variety is regular if it satisfies the following conditions:
(i) X is smooth and contains a dense G-orbit X0

G whose complement is a union of
irreducible smooth divisors with normal crossings (the boundary divisors).
(ii) AnyG-orbit closure inX is the transversal intersection of the boundary divisors
which contain it.
(iii) For any x ∈ X , the normal space TxX/Tx(Gx) contains a dense orbit of the
isotropy group Gx.

Any complete regular varietyX is spherical, that is, X contains a dense B-orbit
X0
B. Conversely, any spherical homogeneous space admits a regular completion

X . Moreover, all closed G-orbits in X are isomorphic to G/Q where Q ⊃ B− is
opposite to the parabolic subgroup P ⊃ B consisting of all g ∈ G which leave
invariant X0

B (see e.g. [BB] 2.2).

Theorem. Let X be a complete regular G-variety and let Y ⊂ X be a B-invariant
subvariety.
(i) For any w ∈ W (Y ), we have w−1 ∈ WL where L is the Levi subgroup of Q
which contains T .
(ii) For any G-invariant subvariety Z ⊂ GY , the intersection of Y and Z is proper
in GY , and we have GC = Z for any irreducible component C of Y ∩ Z.
(iii) If moreover Z is cancellative, then Y ∩ Z is the union of all C ∈ B(Z) such
that W (C) is contained in W (Y ). Moreover, the intersection multiplicity of Y and
Z along C is d(Y,w)d(C,w)−1 for any w ∈W (C). In particular, this multiplicity
is a power of 2.
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Proof. Replacing X by the regular G-variety GY , we may assume that Y meets
X0
G.

We first prove (ii). Write Z = X1 ∩ · · · ∩Xc where X1, . . . , Xc are boundary
divisors and c = codimX(Z). Let i be the greatest index such that the intersection
Y ∩X1∩· · ·∩Xi is proper. If i 6= c then there exists C ∈ C(Y ∩X1∩· · ·∩Xi) such
that C ⊂ Xi+1. Observe that C is B-invariant and that dim(C) = dim(Y ) − i.
Choose w ∈ W (C). Because GC ⊂ X1 ∩ · · · ∩ Xi+1, we have l(w) + dim(C) ≤
dim(X)− i− 1 and therefore:

dimBwY ≤ l(w) + dim(Y ) = l(w) + dim(C) + i ≤ dim(X)− 1.

So BwY is contained in X \X0
B. The latter has pure codimension 1, because X0

B

is affine. Thus, there exists an irreducible B-invariant divisor D ⊂ X containing
BwY ; then D is not G-invariant because GY = X . In particular, D contains
BwC = GC and meets X0

G. But this is impossible in a regular G-variety, see e.g.
[BB] Proposition 2.2.1. Thus, i = c, that is, Y meets Z properly. We conclude by
Lemma 1.3.

Now we prove (i). Let w ∈W (Y ) and let Z ⊂ X be a closed G-orbit; let z ∈ Z
such that Gz = Q. By Lemma 1.3, there exists C ∈ C(Y ∩Z) such that w ∈W (C).
Then C = Bτz for some τ ∈WL, and w = τ−1.

(iii) follows from (i), (ii) and Lemmas 1.1, 1.3.

We apply this result to a study of the intersection numbers
∫
X

[Y ][Y ′] where
Y , Y ′ are B-invariant subvarieties of X of complementary dimensions. In the case
where X = G/B, the abelian group A∗(X) is freely generated by the Schubert
cycles Ω(w) := [BwB/B] (w ∈W ). Furthermore,

∫
G/B

Ω(w)Ω(w′) 6= 0 if and only
if w′ = w0w. In this case, the intersection of BwB/B and w0Bw′B/B consists of
the point wB/B with multiplicity one. This can be generalized as follows.

Corollary. Let X be a complete regular G-variety and let Y , Y ′ be B-invariant
subvarieties such that dim(Y ) + dim(Y ′) = dim(X) and that GY = X. Then∫
X [Y ][Y ′] 6= 0 if and only if Y meets w0Y

′. In this case, Y ∩ w0Y
′ is a unique

point fixed by T .

Proof. We have
∫
X [Y ][Y ′] =

∫
X [Y ][w0Y

′]. If this number is non-zero, then Y
meets w0Y

′. For the converse, let O ⊂ X be a G-orbit which meets Y ∩w0Y
′. By

Kleiman’s transversality theorem (see [Kl]), there exists an open dense subset U of
G such that for all g ∈ U , the intersection Y ∩ gY ′ ∩O is non-empty of dimension

dim(Y ∩ O) + dim(Y ′ ∩ O)− dim(O) := n.

Then U meets Bw0B. Because Y and Y ′ are B-invariant, it follows that U contains
w0. On the other hand, we have by the theorem above:

dim(Y ∩ O) = dim(O) − dim(X) + dim(Y )
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and
dim(Y ′ ∩ O) = dim(O)− dim(GY ′) + dim(Y ′).

It follows that
n = dim(O) − dim(GY ′).

Because O ⊂ GY ′ and n ≥ 0, this forces n = 0 and O = GY ′. Therefore, Y ∩w0Y
′

is a finite subset of O. Because this set is invariant under B ∩ w0Bw
−1
0 = T , it

consists of T -fixed points.
Let Y

′0
B be the open B-orbit in Y ′, then O = GY

′0
B . Set Y ′′ := (Y ′ ∩O) \ Y ′0B .

Then Y ′′ ⊂ O is B-invariant and dim(Y ′′) < dim(Y ′). By Kleiman’s transversality
theorem again, Y ∩ w0Y

′′ is empty. It follows that Y ∩ w0Y
′ ⊂ w0Y

′0
B . But the

B-orbit Y
′0
B contains at most one T -fixed point. This completes the proof.

Remarks. (i) For Y and Y ′ as above, the intersection Y ∩ w0Y
′ may be non

transversal. Consider for example G = PGL(2) acting on the space V of quadratic
forms in x, y by linear change of variables. Let X be the projectivization of V and
let Y (resp. Y ′) be the image in X of forms divisible by x (resp. of degenerate
forms). Then GY = X and Y meets w0Y

′ at the image of x2, with multiplicity 2.
(ii) If GY is not equal to X , then it is contained in some boundary divisor

X ′ ⊂ X . Using the projection formula (see [F] p. 140), it follows that∫
X

[Y ][Y ′] =
∫
X′

[Y ]([X ′][Y ′]).

Thus, to compute inductively the left-hand side, it is enough to express [X ′][Y ′]
in terms of classes of B-invariant subvarieties, for any boundary divisor X ′ and
for any B-invariant subvariety Y ′. In the case where X is a regular completion of
G, this will be done in 3.4 below.

1.5. Orbit closures of spherical subgroups in flag varieties

Let H ⊂ G be a spherical subgroup and let P ⊃ B be a parabolic subgroup of G;
then G/P contains only finitely many H-orbits. We express the classes of H-orbit
closures in the Chow group A∗(G/P ) endowed with its basis of Schubert cycles
[BwP/P ] (w ∈WL).

First we associate to each H-invariant subvariety V ⊂ G/P a P -invariant
subvariety V̂ ⊂ G/H, as follows. Denote by qP : G → G/P and qH : G → G/H
the quotient maps, and by ι : G→ G the map g 7→ g−1. Set

V̂ := qH ι q
−1
P (V ).

Then V̂ ⊂ G/H is a P -invariant subvariety (which implies that W (V̂ ) ⊂WL) and

V = qP ι q
−1
H (V̂ ).
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If moreover H is connected, then any P -invariant subvariety of G/H is obtained
in this way.

Theorem. Let H be a spherical subgroup of G, let B be a Borel subgroup of G
such that BH is open in G, and let P ⊃ B be a parabolic subgroup with Levi
subgroup L ⊃ T . Finally, let V ⊂ G/P be an H-invariant subvariety.
(i) For any w ∈WL such that l(w) = codimG/P (V ), the Schubert variety BwP/P
meets V in d(V̂ , w) points of multiplicity one, and these points are contained in
BwP/P .
(ii) We have in A∗(G/P ):

[V ] =
∑

w∈W (V̂ )

d(V̂ , w)[Bw0wP/P ].

In particular, the coefficient of any H-invariant subvariety on any Schubert cycle
is zero or a power of 2.

Proof. (i) By [Kl], there exists a non-negative integer d and an open dense subset
U ⊂ G such that for all g ∈ U , the intersection (gV )∩BwP/P consists of d points
of multiplicity one, contained in BwP/P . Because U meets BH and V (resp.
BwP/P ) is invariant under H (resp. B), it follows that V ∩ BwP/P consists of
d points of multiplicity one.

To show that d = d(V̂ , w), we first reduce to the case where P = B, as
follows. Let p : G/B → G/P be the canonical map. Then p−1(V ) is an H-
invariant subvariety of G/B; on the other hand, restriction of p to BwB/B is an
isomorphism onto BwP/P because w ∈WL. Therefore, we have by the projection
formula:

d =
∫
G/P

[V ]p∗[BwP/P ] =
∫
G/B

[p−1(V )][BwB/B].

Write w = τsα with α ∈ ∆, τ ∈W and l(w) = l(τ) + 1. Let q : G/B → G/Pα
be the canonical map. Then q is a P1-fibration and

q∗q∗[BτB/B] = [q−1q(BτB/B)] = [BwB/B].

Moreover, we have ̂q−1q(V ) = PαV̂ . We claim that

q∗q∗[V ] = d(V̂ , sα)[q−1q(V )].

Indeed, for y ∈ V̂ generic, d(V̂ , sα) is the number of classes gB such that g ∈ Pα
and g−1y ∈ V̂ . Therefore, d(V̂ , sα) is the degree of the restriction q|V : V → q(V ).
Thus, q∗[V ] = d(V̂ , sα)[q(V )] which implies our claim.

By the projection formula, we have

d =
∫
G/B

[V ]q∗q∗[BτB/B] =
∫
G/Pα

q∗[V ]q∗[BτB/B]

=
∫
G/B

(q∗q∗[V ])[BτB/B] = d(V̂ , sα)
∫
G/B

[q−1q(V )][BτB].
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By induction over l(w), this implies d = d(V̂ , w).
(ii) follows from the fact that the [BwP/P ] (w ∈WL) are a basis of A∗(G/P )

and that the dual basis for the intersection pairing

(x, y) 7→
∫
G/P

xy

consists of the [Bw0wP/P ] (w ∈WL).

1.6. Degenerations of orbit closures to B-invariant cycles

The results of 1.4 and 1.5 are related by the following construction. Let X be a
regular completion of the spherical homogeneous space G/H. Let P ⊃ B be a
parabolic subgroup and let V ⊂ G/P be an H-invariant subvariety with corre-
sponding P -invariant subvariety V̂ ⊂ G/H. Denote by Y ⊂ X the closure of V̂ .
Consider the maps

π : G×P Y → X
(g, y)P 7→ gy

and
p : G×P Y → G/P

(g, y)P 7→ gP

Because π factors as

G×P Y → (G/P )×X → X
(g, y)P 7→ (gP, gy) 7→ gy ,

the fibers of π identify to closed subschemes of G/P via p∗ .
Denote by x ∈ X the base point of G/H. Choose a closed G-orbit Z ⊂ X and

denote by z ∈ Z the fixed point of B−. Then, for a suitable choice of T , there
exists a T -invariant affine subvariety A ⊂ X which is transversal to Z at z (see
e.g. [BB] 2.3). It follows that A is T -equivariantly isomorphic to a T -module with
linearly independent weights. So we can choose a smooth curve γ ⊂ X isomorphic
to affine line, transversal to Z at z and containing x (for example, the closure in
A of a generic one-parameter subgroup of T will do).

Proposition. Notation being as above, π is equidimensional, and π−1(γ) is irre-
ducible. Moreover, we have in A∗(G/P ):

p∗[π−1(x)] = [V ] , p∗[π−1(z)] =
∑

w∈W (Y )

d(V̂ , w)[Bw0wP/P ].

Proof. Observe that

π−1(x) = {(g, y)P | y ∈ Y, gy = x} = {(g, g−1x)P | g−1x ∈ Y }
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(as sets) so that
p(π−1(x)) = {gP | g−1x ∈ Y } = V.

Because π−1(x) is a general fiber, it is reduced; because p|π−1(x) : π−1(x)→ V is
bijective, we have p∗[π−1(x)] = [V ].

Similarly, we obtain

p(π−1(z)) = {gP | g−1z ∈ Y ∩ Z} =
⋃

w∈W (Y )

QwP/P =
⋃

w∈W (Y )

B−wP/P

by using Theorem 1.4 (iii). It follows that π is equidimensional.
Set γ̇ := γ \ {z} and Γ := π−1(γ̇). Then Γ is irreducible so that restriction

π : Γ→ γ is flat and that

p∗[π−1(z) ∩ Γ] = p∗[π−1(x)] = [V ]

in A∗(G/P ). Therefore,

p∗[π−1(z) ∩ Γ] =
∑

w∈W (Y )

d(V̂ , w)[B−wP/P ]

by Theorem 1.5. Because the irreducible components of p(π−1(z) ∩ Γ) are irre-
ducible components of p(π−1(z)), this forces p(π−1(z) ∩ Γ) = p(π−1(z)), that is,
the set π−1(z) is contained in Γ. Thus, π−1(γ) = Γ is irreducible and

p∗[π−1(z)] =
∑

w∈W (Y )

d(V̂ , w)[B−wP/P ].

Question. Is π flat ? Because π is equidimensional and X is smooth, the answer
would be positive if Y were Cohen-Macaulay. Is the latter true ?

2. Orbit closures in regular group completions

2.1. Regular group completions

Consider the connected reductive group G as a homogeneous space under G ×G
for the action given by left and right multiplication: (g1, g2)γ = g1γg

−1
2 . Then the

isotropy group of the identity is the diagonal diag G. By the Bruhat decomposition,
G is the disjoint union of the (B × B−)-orbits BwB− (w ∈ W ). In particular, G
is spherical with open (B ×B−)-orbit BB−.

Let X be a (G×G)-equivariant completion of G which is regular in the sense
of 1.4. We describe the (G×G)-invariant subvarieties Z of X . By Proposition A1
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below, there is a unique z ∈ Z such that z is the limit of a one-parameter subgroup
of T , and that the orbit (B × B−)z is open in Z; we refer to z as the base point
of Z. Moreover, there exists a unique parabolic subgroup P := P (Z) ⊃ B with
opposite parabolic subgroup Q ⊃ B− and Levi subgroup L := L(Z) = P ∩Q such
that the isotropy group (G × G)z is the semi-direct product of Ru(Q) × Ru(P )
with diag L× (C × {1})z where C denotes the connected center of L. Finally,

Z = (G×G)×(Q×P ) Z
′

where Z ′ = (L× L)z is a regular completion of a quotient of L by a central torus.
In particular, all closed (G×G)-orbits in X are isomorphic to G/B− ×G/B.

Now we describe the (B × B−)-invariant subvarieties Y in X . Let y be the
base point of the (G × G)-invariant subvariety (G × G)Y and let P (Y ) be the
corresponding parabolic subgroup with Levi subgroup L(Y ) ⊃ T . Then, by 1.2,
we have

Y = (B × B−)(σ, τ)Y ′

for σ, τ ∈WL(Y ) and a (B ∩ L(Y )) × (B− ∩ L(Y ))-invariant subvariety Y ′ in Z ′.
Moreover, because y is fixed by diag L(Y ), we have

Y ′ = (B ∩ L(Y ))× (B− ∩ L(Y ))(ρ, 1)y

for ρ ∈ WL(Y ). Observing that Bσ(B ∩ L(Y )) = Bσ and that B−τ(B ∩ L(Y )) =
B−τ because σ, τ ∈WL(Y ), we conclude that

Y = (B ×B−)(w, τ)y

where w = σρ ∈W and τ ∈WL(Y ) are uniquely determined. If moreover Y meets
G, then y = 1, τ = 1 and Y = BwB−.

Having these descriptions at hand, we can state the following

Theorem. Let X be a regular completion of G, let Y ⊂ X be a (B×B−)-invariant
subvariety, and let Z ⊂ (G×G)Y be a (G×G)-invariant subvariety.
(i) Y meets Z properly in (G × G)Y , and all intersection multiplicities are equal
to one.
(ii) If moreover Y = (B ×B−)(w, τ)y as above and Z has base point z and asso-
ciated parabolic subgroup P (Z), then

Y ∩ Z =
⋃

(B ×B−)(wv, τv)z

(decomposition into irreducible components) where the union is over all v ∈WL(Y )

such that τv ∈WL(Z) and l(w) = l(wv) + l(v). In particular,

BwB− ∩ Z =
⋃

(B ×B−)(wv, v)z
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union over all v ∈WL(Z) such that l(w) = l(wv) + l(v).

Proof. We apply the results of 1.2 and 1.4 to the group G×G with Borel subgroup
B ×B−, maximal torus T × T and Weyl group W ×W . Recall that Z is induced
from a regular completion of a central quotient of a Levi subgroup. Using 1.2 and
induction over the semisimple rank of G, it follows that the (G ×G)-action on Z
is cancellative.

In the case where Y = (B ×B−)(w, τ)y, set L := L(Y ) and decompose w as

w = σρ ∈WLWL.

Moreover, set
Y ′ := (B ∩ L)× (B− ∩ L)(ρ, 1)y.

Let (w1, w2) ∈W ×W such that l(w1) + l(w2) = codim(G×G)Y (Y ) = l(w) + l(τ).
Then we have by 1.2:

(w1, w2) ∈ (W ×W )(Y )⇔ (w1σ,w2τ) ∈ (WL ×WL)(Y ′)
⇔ w2τ ∈WL and ρ = (w1σ)−1w2τ ⇔ w2τ ∈WL and w = w−1

1 w2τ.

Moreover, d(Y, (w1, w2)) = 1 for all such (w1, w2). Therefore, by Theorem 1.4, Y
meets Z properly in (G × G)Y with all multiplicities equal to one. Moreover, a
(B × B−)-subvariety C ⊂ Z is an irreducible component of Y ∩ Z if and only if
(W×W )(C) meets (W×W )(Y ); then (W×W )(C) is contained in (W×W )(Y ). We
can write C = (B ×B−)(u1, u2)z where u1 ∈ W and u2 ∈ WL(Z). By 1.2 again,
(W ×W )(C) contains (u−1

1 , u−1
2 ). It follows that u−1

2 τ ∈WL, wτ−1 = u1u
−1
2 and

l(u1) + l(u2) = l(w) + l(τ). Thus, we have (u1, u2) = (wv, τv) where v ∈WL and
l(wv) + l(τv) = l(w) + l(τ). Because τ ∈ WL, we have l(τv) = l(τ) + l(v) and
therefore l(wv) + l(v) = l(w). The converse is obtained by reversing the previous
arguments.

Corollary. Notation being as above, any (B × B−)-invariant subvariety of X is
smooth in codimension one. Moreover, (B ×B−)(w, τ)y is smooth at all points of
(B ×B−)(wv, τv)z.

Proof. Let Y ∈ B(X) and let Z ⊂ X be a boundary divisor of (G×G)Y . Because
Y meets Z properly with multiplicity one, the non-singular locus of Y meets all
components of Y ∩Z by [F] 7.2. Therefore, it is enough to show that Y ∩ (G×G)y
is non-singular in codimension one, where y is the base point of (G×G)Y .

We use the notation of the proof of the theorem, and we set for simplicity
P (Y ) := P and L(Y ) := L. Then the map

BσQ×B−τP × Y ′ → Y
(g1, g2, x) 7→ (g1, g2)x
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is surjective. It follows that any irreducible (B×B−)-invariant divisor in Y ∩(G×
G)y can be written as (B ×B−)y′ where
(i) y′ = (σρ′, τ)y with ρ′ ∈WL such that (B ∩L)× (B− ∩L)(ρ′, 1)y is a divisor in
Y ′ ∩ (L× L)y, or
(ii) y′ = (σ′ρ, τ)y with σ′ ∈WL such that Bσ′Q is a divisor in BσQ, or
(iii) y′ = (σρ, τ ′)y with τ ′ ∈WL such that B−τ ′P is a divisor in B−τP .

In case (i), the point (ρ′, 1)y is non-singular in Y ′ by normality of Schubert
varieties in L, see e.g. [MS]. Moreover, the map

(Bσ ∩ σRu(P ))× (B−τ ∩ τRu(Q))× Y ′ → Y
(g1, g2, x) 7→ (g1, g2)x

is an open immersion, and its image contains y′ = (σ, τ)(ρ′, 1)y. This implies our
claim.

In case (ii), the point σ′ is non-singular in BσQ by normality of Schubert
varieties in G. Therefore, the set

G(σ, σ′) := {g ∈ Ru(P ) | σ′g ∈ BσQ ∪Bσ′Q}

is a locally closed, smooth subvariety of G containing 1. Moreover, the map

G(σ, σ′) → BσQ/Q
g 7→ σ′gQ/Q

is an open immersion. It follows that the induced map

G(σ, σ′)× (B−τ ∩ τRu(Q))× (B ∩ L)× (B− ∩ L)(ρ, 1)y → Y ′

is an open immersion as well, which implies our claim.
Finally, case (iii) is similar to case (ii).
The second assertion follows from the fact that (B ×B−)(wv, τv)z is an open

orbit of B × B− in (B ×B−)(w, τ)y ∩ Z and from the criterion for multiplicity
one (see [F] 7.2).

Question. Is it true that all (B × B−)-invariant subvarieties of regular group
completions are normal ? By the Corollary above, this would hold if they were
Cohen-Macaulay.

2.2. Tangent spaces to closures of double classes

The group PGL(2) has a unique regular completion X : the projectivization of the
space of 2× 2 matrices where GL(2)×GL(2) acts by left and right multiplication.
Moreover, the closure in X of the standard Borel subgroup B ⊂ PGL(2) is the
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projectivization of the subspace of upper triangular matrices. So B is non-singular;
but this case is exceptional, as we will see. To state our result, we need the following

Definition. A simple root α is isolated (in the Dynkin diagram of G) if α is
orthogonal to all other simple roots.

Observe that G has no isolated simple root if and only if the adjoint group of
G does not contain PGL(2) as a direct factor.

Theorem. Let X be a regular completion of G, let w ∈ W and let x ∈ X be a
fixed point of B ×B−.
(i) If w(α) ∈ Φ+ whenever α is an isolated simple root, then the tangent space of
BwB− at x is equal to the tangent space of X at x.
(ii) If w is not a product of reflections associated to isolated simple roots, then
BwB− is singular at x.

Proof. (i) Set Z := (G×G)x. Observe that the tangent space TxBwB− contains
Tx(BwB− ∩ Z) and that x = (w0, w0)z where z is the base point of Z. Applying
Theorem 2.1, we obtain

BwB− ∩ Z ⊃ (B ×B−)(w, 1)z ∪ (B ×B−)(1, w−1)z ⊃ (1×G)x ∪ (G× 1)x.

It follows that TxBwB− contains TxZ.
Now we show that the quotient space TxBwB−/TxZ is equal to the normal

space TxX/TxZ. By Proposition A1 below, the point x has an open affine (T×T )-
invariant neighborhood Xx in X , which is (T ×T )-equivariantly isomorphic to the
space of a representation of T × T . Let X1, . . . , Xr be the boundary divisors of
X which contain Z. Then, for 1 ≤ i ≤ r, the divisor Xi ∩ Xx has an equation
fi ∈ C[Xx] (the algebra of regular functions over Xx) which is unique up to scalar
multiplication. In particular, each fi is an eigenvector of T × T ; let χi be the
opposite of its weight. Because X is regular, the characters χ1, . . . , χr are linearly
independent, and

TxX = TxZ ⊕
r⊕
i=1

Li

where each Li is a (T × T )-invariant line with weight χi. Moreover, the weights
of T × T in TxZ are the (−β, 0) and (0, β) for β ∈ Φ+.

LetMX,x be the ideal of x in C[Xx]. Because TxX is the dual ofMX,x/M2
X,x,

we can choose (T × T )-eigenvectors fβ,0, f0,−β in MX,x (for β ∈ Φ+) which lift
a basis of the dual of TxZ. By the graded Nakayama lemma, the ideal MX,x is
generated by the fβ,0, f0,−β (β ∈ Φ+) and by f1, . . . , fr.

For 1 ≤ i ≤ r, we denote by res(fi) the restriction of fi to BwB− ∩ Xx.
Because BwB− meets all orbits of G×G in X , each res(fi) is a non-zero element
of M

BwB−,x
(the ideal of x in C[BwB− ∩ Xx]). Using the linear independence
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of χ1, . . . , χr, it is enough to show that no res(fi) is contained in M2
BwB−,x

.
Otherwise, we can write

χi =
r∑
j=1

njχj + (−β, γ)

where the nj are non-negative integers and where β, γ are sums of positive roots.
By Proposition A2 below, the span of χ1, . . . , χr intersects the span of Φ × Φ
along the span of the (−α, α) (α ∈ ∆). It follows that γ = β. By Proposition A2
again, (−β, β) is in the convex cone generated by χ1, . . . , χr. Writing (−β, β) =∑r
j=1 mjχj with non-negative m1, . . . ,mr, we obtain

χi =
r∑
j=1

(nj +mj)χj .

By linear independence of χ1, . . . , χr, it follows that nj = mj = 0 for j 6= i and
that χi = (−β, β). By Proposition A2, we must have β = α ∈ ∆. In other words,
we have

χi = (−α, 0) + (0, α)

for some α ∈ ∆. Then this decomposition is unique; therefore, we have up to a
multiplicative constant:

res(fi) = res(fα,0) res(f0,−α).

But (res(fi) = 0) = Xi ∩Xx ∩ BwB− where Xi is (G × G)-invariant. It follows
that the divisor (res(fα,0) = 0) is (B ×B−)-invariant. Therefore, the same holds
for (res(fα,0) = 0) ∩ Z and in particular for (res(fα,0) = 0) ∩ (G× 1)x.

We claim that α is isolated. To check this, choose root vectors xβ (β ∈ Φ) in
the Lie algebra of G. Denote by T the tangent space to (res(fα,0) = 0)∩ (G× 1)x
at x. Then a basis of T consists in the (x−β , 0)x where β ∈ Φ+ and β 6= α; by
the previous discussion, T is invariant under the Lie algebra of B. If α is not
isolated, then there exists α′ ∈ ∆ such that α+α′ is a root. Then [xα′ , x−α−α′ ] is
a non-zero multiple of x−α. Therefore,

xα′(x−α−α′ , 0)x = ([xα′ , x−α−α′ ], 0)x

is a non-zero multiple of (x−α, 0)x. But (x−α−α′ , 0)x ∈ T and (x−α, 0)x /∈ T , a
contradiction.

Finally, we claim that w(α) /∈ Φ+. Let Zα ⊂ X be the (G × G)-invariant
subvariety such that Zα contains Z as a divisor and that the normal space to
Z in Zα at x has weight χi = (−α, α) (in other words, Zα = ∩j 6=iXj). Then
P (Zα) = Pα. Let zα be the base point of Zα. By Theorem 2.1, we have

BwB− ⊃ (B ×B−)(w, 1)zα.
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If w(α) ∈ Φ+, then w−1(α) ∈ Φ+ (because α is isolated) and therefore

(B ×B−)(w, 1)zα ⊃ (w, 1)(B ∩ Lα)× (B− ∩ Lα)zα = (w, 1)(Lα × Lα)zα

where Lα is the Levi subgroup of Pα which contains T . It follows that the tangent
space to BwB− in X at any point of Z contains the normal direction to Z in Zα,
which contradicts the assumption that res(fi) ∈ M2

BwB−,x
.

(ii) Let I be the set of isolated simple roots α such that w(α) /∈ Φ+. Then we
have by the proof of (i):

dimTxBwB− ≥ dim(Z) + r − |I| = 2|Φ+|+ r − |I|.

On the other hand, we can write

w = (
∏
α∈I

sα)w′

where w′ is a product of simple reflections associated to non-isolated simple roots.
Then l(w) = |I|+ l(w′) and therefore:

dimBwB− = dim(G) − l(w) = 2|Φ+|+ r − |I| − l(w′).

Thus, if BwB− is smooth at x, then w′ = 1 and w =
∏
α∈I sα.

Corollary. Let Y ⊂ X be a (B × B−)-invariant subvariety. Write Y =
(B ×B−)(ρσ, τ)y with ρ, τ ∈WL(Y ) and σ ∈WL(Y ).
(i) If σ(α) ∈ Φ+ whenever α is an isolated simple root in the Dynkin diagram of
L(Y ), then for any x ∈ Y , the composite map

TxY → Tx(G ×G)Y → Tx(G×G)Y/Tx(G×G)x

is surjective.
(ii) If σ is not a product of reflections associated to isolated simple roots in the
Dynkin diagram of L(Y ), then Y is singular in codimension two.

Proof. Because (G × G)Y is induced from a regular completion of a quotient of
L(Y ) by a central torus, we easily reduce to the case where (G×G)Y = X . Then
Y = BwB− for some w ∈W .

(i) For 1 ≤ i ≤ r, let IXi be the ideal sheaf of Xi in X . Then the set

Ei := {x ∈ Y | IXi,x ⊂ IY,x +M2
X,x}

is closed and (B×B−)-invariant. By the theorem above, Ei does not contain any
fixed point of B×B−. Therefore, Ei is empty: the image of IXi,x in OY,x is never
contained in M2

Y,x. So the map

TxY → TxX/TxXi
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is surjective whenever x ∈ Y ∩Xi.
(ii) We show that there exists a boundary divisor Z of X such that Y ∩ Z

contains two irreducible components C1 and C2 which meet along a divisor in C1
and C2, and that TxY is not contained in TxZ for some x ∈ C1 ∩ C2. Then the
tangent space TxY contains Tx(C1 ∪C2) and surjects to TxX/TxZ. Therefore, we
have

dim(TxY ) ≥ dimTx(C1 ∪ C2) + 1 > dim(C1) + 1 = dim(Y )

and Y is singular along C1 ∩ C2.
By assumption, there exists a non-isolated simple root α such that w(α) /∈ Φ+.

Then we can write w = τsα where l(w) = l(τ) + 1. Let P ⊃ B be the maximal
parabolic subgroup such that −α is not a root of P ; then sα ∈ WL. Let Z ⊂ X
be a boundary divisor such that P (Z) = P , and let z be the basis point of Z. By
Theorem 2.1, Y ∩Z contains (B ×B−)(w, 1)z and (B ×B−)(τ, sα)z as irreducible
components. Moreover, both components contain (B ×B−)(w, sα)z as a common
divisor. Indeed, let Uα ⊂ B be the one-parameter unipotent subgroup associated
to α. Then 1× Uα fixes z, because Uα ⊂ Ru(P ). Therefore,

(B ×B−)(w, 1)z ⊃ (1× U−αTUα)(w, 1)z

contains (w, sα)z, as U−αTUα contains sα. Similarly, as τ(α) ∈ R+, we have

(B ×B−)(τ, sα)z ⊃ (Uτ(α)T × 1)(τ, sα)z = (τ, sα)(UαTU−α × 1)z

and the latter contains (τsα, sα)z = (w, sα)z. Finally, as α is not isolated, TxY is
not contained in TxZ, by the proof of the theorem above.

Remark. The results of this section do not extend to regular completions of
arbitrary spherical homogeneous spaces. For example, let G = SO(n) act on Cn by
its standard representation and let X = Pn−1 be the projectivization of Cn. Then
X is a regular completion of the spherical homogeneous space SO(n)/O(n− 1) by
a homogeneous divisor Z, the quadric in Pn−1. Choose a Borel subgroup B ⊂ G
and a B-fixed point x ∈ Z. Let Y ⊂ Pn−1 be the tangent hyperplane of Z at x.
Clearly, Y is non-singular, B-invariant and not contained in Z; but TxY is equal
to TxZ.

2.3. Closures of parabolic subgroups

We describe how the closure of a parabolic subgroup meets a closed orbit in a
regular completion of G. As an application, we construct a degeneration of the
diagonal of a flag variety to a sum of Schubert cycles.

Proposition. Let X be a regular completion of G, let P ⊃ B be a parabolic
subgroup of G with Levi subgroup L ⊃ T and let Z ⊂ X be a closed (G×G)-orbit
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with (B− ×B)-fixed point z. Then

P ∩ Z =
⋃

w∈W,w−1∈WL

(B ×B)(w,w0,Lw)z =
⋃

w∈W,w−1∈WL

(P × P )(w,w)z

(decomposition into irreducible components). If moreover no isolated simple root
of G is a root of L, then

P
reg ∩ Z =

⋃
w∈W,w−1∈WL

(P × P )(w,w)z

where P
reg

denotes the non-singular locus of P .

Proof. Observe that
P = Bw0,LB = Bw0,Lw0B−w0.

Applying Theorem 2.1, we obtain

P ∩ Z =
⋃

(B ×B)(u,w0v)z

union over all (u, v) ∈ W ×W such that w0,Lw0 = uv−1 and that l(w0,Lw0) =
l(u) + l(v). This amounts to w0v = w0,Lu and l(w0,L) + l(u) = l(w0,Lu), that is,
u−1 ∈WL. This proves the first assertion.

For the second assertion, let x ∈ P reg∩Z. Then, because P is (P×P )-invariant,
(P ×P )x is contained in P

reg ∩Z. Moving x in its (P ×P )-orbit, we may assume
that x = (u, v)z with u, v in W and u−1, v−1 in WL. The irreducible components
of P∩Z which contain x are exactly the (B ×B)(w,w0,Lw)z, such that w−1 ∈WL,
w ≤ u (for the Bruhat order) and v ≤ w0,Lw. By [De] Lemma 3.5, this amounts to:
w−1 ∈ WL and v ≤ w ≤ u. If moreover u 6= v then we may take either w = u or
w = v. In other words, x belongs to at least two irreducible components of P ∩Z.
Using Corollary 2.2 (ii), we then obtain dimTx(P ∩ Z) > dimP , a contradiction.
So u = v and x = (u, u)z.

Remark. Identifying Z with G/B ×G/B instead of G/B− ×G/B, we obtain

P ∩ Z =
⋃

w∈W,w−1∈WL

Pww0B/B × PwB/B.

Using the construction in 1.6, this leads to a geometric interpretation of a well-
known formula for the class of the diagonal in A∗(G/P ×G/P ):

[diag G/P ] =
∑

w∈WL

[BwP/P ×Bw0wP/P ]
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(see [G] for more on the class of the diagonal). Indeed, consider the canonical map

π : (G×G)×(P×P ) P → G = X

(g1, g2, x)(P × P ) 7→ (g1, g2)x

Then, as in 1.6, π is equidimensional and its fibers identify with closed subschemes
of G/P ×G/P via the projection

p : (G×G)×(P×P ) P → G/P ×G/P.

Moreover, the fiber of π at the identity of G is the diagonal diag G/P , and the
class of the fiber over the (B ×B)-fixed point in Z is∑

w∈WL

[BwP/P ×Bw0wP/P ].

Therefore, the fibers of π realize a degeneration of the diagonal to the cycle above.

3. Intersection theory in regular group completions

3.1. Equivariant Chow rings of regular group completions

Let X be a smooth, projective variety with an action of a torus T . To describe
the Chow ring A∗(X), it is useful to introduce the equivariant Chow ring A∗T (X)
(see [EG]). Indeed, A∗T (X) is a graded algebra over the symmetric algebra S of
the character group X∗(T ). Moreover, A∗(X) is the quotient of A∗T (X) by its
homogeneous ideal generated by all characters of T (see [Br] Corollary 2.3.1).

In turn, the equivariant Chow ring A∗T (X) can be described via the localization
theorem: the inclusion of the fixed point set ι : XT → X induces a S-algebra
homomorphism ι∗ : A∗T (X)→ A∗T (XT ) which is injective over Q and whose image
is determined by the fixed point sets of codimension one subtori of T (see [Br]
Theorem 3.3). In the case where X is a regular embedding of G, we consider
the action of T × T with corresponding symmetric algebra S × S. Then, by
Proposition A1, the set XT×T is contained in the union Xc of the closed (G×G)-
orbits in X ; moreover, all such orbits are isomorphic to G/B−×G/B. Therefore,
A∗T×T (X) embeds into A∗T×T (Xc) and the latter is a product of copies of the ring
A∗T×T (G/B− ×G/B) (see [KK1], [KK2] and [Br] §6 for descriptions of this ring).

To analyse further XT×T and Xc, we consider the torus embedding T where
T acts by left multiplication. Let F be the associated fan in X∗(T ) ⊗R and let
F(l) be the set of maximal cones of F . Because T is invariant under diagW ,
the fan F is invariant under W , too. Using Proposition A2 below, it follows
that F = WF+ where F+ is the set of cones of F which are contained in the
positive Weyl chamber. Then F+ is a subdivision of this chamber. Moreover,
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F+(l) parametrizes the closed (G×G)-orbits in X , by Proposition A1. So XT×T

is parametrized by F+(l)×W ×W .
For σ ∈ F+(l), we denote by Zσ ' G/B− × G/B the corresponding closed

orbit with base point zσ, and by

iσ : A∗T×T (X)→ A∗T×T (Zσ) = A∗T×T (G/B− ×G/B)

the restriction map. Moreover, for f ∈ A∗T×T (Zσ) and u, v ∈ W , we denote by
fu,v the restriction of f to the point (u, v)zσ. Then fu,v is in S ⊗ S (the (T × T )-
equivariant Chow ring of the point).

Theorem. For any projective regular embedding X of G, the map∏
σ∈F+(l)

i∗σ : A∗T×T (X)→
∏

σ∈F+(l)

A∗T×T (G/B− ×G/B)

is injective and its image consists in all families (fσ) (σ ∈ F+(l)) in S ⊗ S, such
that
(i) fσ,usα,vsα ≡ fσ,u,v (mod (u(α), v(α)) whenever α ∈ ∆ and the cone σ ∈ F+(l)
has a facet orthogonal to α, and that
(ii) fσ,u,v ≡ fσ′,u,v (mod χ) whenever χ ∈ X∗(T ) and the cones σ, σ′ ∈ F+(l) have
a common facet orthogonal to χ.

Proof. We begin by describing all (T × T )-invariant irreducible curves in X . Let
γ be such a curve. Then there exists a unique (G × G)-orbit O in X such that
γ ∩ O is open in γ. Let z be the base point of O and let P be the associated
parabolic subgroup. Then (G×G)z contains a conjugate of the isotropy subgroup
of a general point of γ; thus, the rank of (G×G)z is at least 2l−1. By Proposition
A1, it follows that one of the following three cases occurs.
(1) P = B and z is fixed by T × {1}.
(2) P = Pα for some α ∈ ∆, and (T × {1})z = C × {1} (recall that C denotes the
connected center of L).
(3) P = B and (T × {1})z has codimension one in T × {1}.

In case (1), the orbit O is closed in X . It follows that γ is conjugate in W ×W
to a curve joigning z to (sα, 1)z or to (1, sα)z (see e.g. [Br] 6.5).

In case (2), (L× L)z := X ′ is an equivariant completion of the group L/C
and the latter is isomorphic to (P)SL(2). Moreover, (G×G)γ = (G×G)z is
isomorphic to (G ×G) ×(Q×P ) X

′. Thus, σ has a facet orthogonal to α, and γ is
conjugate in W ×W to a (T × T )-invariant curve γ′ ⊂ X ′ which is not contained
in the closed (G ×G)-orbit Oσ ⊂ O and which contains the base point zσ of Oσ.
So γ′ joins zσ to (sα, sα)zσ.

In case (3), (T × T )z := γ′ is a projective line joigning the base points of two
closed orbits (G×G)-orbits Oσ, Oσ′ . Thus, the cones σ, σ′ ∈ F+(l) have a common
facet. Moreover, γ is conjugate to γ′ in W ×W .
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In particular, the set of irreducible (T×T )-invariant curves in X is finite. Thus,
we can apply [Br] Theorem 3.4 to describe the image of

i∗ : A∗T×T (X)→ A∗T×T (XT×T ) :

it is defined by linear congruences fx ≡ fy (mod χ) whenever x, y ∈ XT×T are
connected by an invariant curve where T × T acts through the character χ. In
our case, the congruences associated to curves of type (1) define the image of∏
σ∈F+(l) i

∗
σ, whereas curves of type (2) and (3) lead to congruences (i) and (ii).

To obtain a simpler description of A∗(X), we consider the (G×G)-equivariant
Chow ring A∗G×G(X). The latter is isomorphic over the rationals to the ring of
(W × W )-invariants in A∗T×T (X) (see [EG]). Moreover, the rational Chow ring
A∗(X)Q is isomorphic to the quotient of A∗G×G(X)Q by its ideal generated by all
homogeneous elements of SWQ ⊗ SWQ (see [Br] Corollary 6.7).

Corollary 1. The ring A∗G×G(X)Q consists in all families (fσ) (σ ∈ F+(l)) of
elements of SQ ⊗ SQ such that:
(1) (sα, sα)(fσ) ≡ fσ (mod (α, α)) whenever σ ∈ F has a facet orthogonal to
α ∈ ∆, and
(2) fσ ≡ fσ′ (mod χ) whenever σ, σ′ ∈ F+(l) have a common facet orthogonal to
χ ∈ X∗(T ).

Proof. By [Br] 6.6, the ring A∗G×G(G/B × G/B−) is isomorphic to S ⊗ S via
restriction to zσ. Moreover, restriction of f ∈ S⊗S to (u, v)zσ is equal to (u, v)fσ
where fσ denotes restriction of f to zσ. So relations (i) and (ii) of the Theorem
reduce to (1) and (2).

In the case where G is a torus, both statements above reduce to the known
description of the equivariant Chow ring of a smooth, complete torus embedding,
as the ring of continuous, piecewise polynomial functions on the corresponding fan
(see e.g. [Br] 5.4). Back to arbitrary G, we have the following relation between
A∗G×G(X) and A∗T×T (T ), due to Littelmann and Procesi for semisimple adjoint
groups and equivariant cohomology (see [LP] Theorem 2.3).

Corollary 2. There is an isomorphism of SQ ⊗ SQ-algebras

A∗G×G(X)Q ' (SQ ⊗A∗T (T ))WQ .

Proof. Let N be the normalizer of T in G and let N be its closure in X . Observe
that N is the disjoint union of the (w, 1)T for w ∈ W . In particular, N contains
all fixed points of T × T . It follows that restriction

A∗T×T (X)→ A∗T×T (N)
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is injective. Furthermore, by the proof of the Theorem above, N contains all
(T × T )-invariant curves which are not in a closed (G × G)-orbit (that is, which
contribute to relations (i) and (ii)). Thus, restriction to N induces isomorphisms

A∗T×T (X)W×W ' A∗T×T (N )W×W ' A∗T×T (T )W ' (S ⊗A∗T (T ))W .

3.2. Equivariant classes of (B ×B−)-invariant subvarieties

Let X be a projective regular embedding of G. Recall that the S ⊗ S-module
A∗T×T (X) is generated by equivariant classes of (B × B−)-invariant subvarieties
Y ⊂ X (see [Br] 6.1). By the previous section, the description of these classes
reduces to calculating their restriction i∗σ[Y ] to any closed (G×G)-orbit Z = Zσ.

For this, we write Y = (B ×B−)(w, τ)y as in 2.1 and we denote by σY ∈ F+
the cone associated to (G×G)Y . Then we may assume that σY is contained in σ;
otherwise Z is not contained in (G×G)Y and therefore i∗σ[Y ] = 0. We denote by
σY (1) ⊂ σ(1) the sets of edges (or extremal rays) of these cones. Each e ∈ σ(1)
determines a character χe of T : the unique primitive character which vanishes at
all edges of σZ except at e where it takes non-negative values.

We identify Z to G/B−×G/B. For w, τ ∈W , we denote by Ω(w, τ) the equiv-
ariant class of BwB−/B− ×B−τB/B in A∗T×T (G/B− ×G/B). These “Schubert
classes” are a basis of the S⊗S-module A∗T×T (G/B−×G/B). Finally, we denote
by

cT×T : X∗(T × T )→ A∗T×T (G/B ×G/B)

the characteristic homomorphism (see e.g. [Br] 6.5).

Proposition. Notation being as above, we have

i∗σ[Y ] =
( ∏
e∈σY (1)

cT×T (χe,−χe)
) ∑

v

Ω(wv, τv)

(sum over all v ∈WL(Y ) such that l(w) = l(wv) + l(v)).

Proof. Recall that (G×G)Y is the transversal intersection of the boundary divisors
of X which contain it, and that these divisors are indexed by the set σY (1); we
denote by Xe the boundary divisor corresponding to the edge e. Thus, by the
self-intersection formula, we have in A∗T×T ((G×G)Y ):

i∗X,(G×G)Y [Y ] =
( ∏
e∈σY (1)

cT×T1 (Xe)
)

[Y ].

Moreover, we have

i∗σ[Y ] = i∗X,Z [Y ] = i∗(G×G)Y,Z i
∗
X,(G×G)Y [Y ]

=
( ∏
e∈σY (1)

cT×T1 (Xe)
)
i∗(G×G)Y,Z [Y ] =

( ∏
e∈σY (1)

cT×T1 (Xe)
)

[Y ∩ Z]
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where the latter equation holds because Y meets Z properly in (G×G)Y . Finally,

[Y ∩ Z] =
∑
v

Ω(wv, τv)

by Theorem 2.1, and each cT×T1 (Xe) restricts to A∗T×T (Z) as cT×T (χe,−χe) by
Proposition A1 below.

Using the equivariant Chevalley formula (see [KK1] or [Br] 6.6), one can obtain
an explicit but complicated expansion of i∗σ[Y ] in the basis of Schubert classes.
We now describe the image of i∗σ in terms of the ring D of operators of divided
differences. Recall that D is the ring of endomorphisms of the abelian group
S generated by multiplications by elements of S, and by the operators Dα :=
α−1(1− sα) for α ∈ ∆. The left S-module D has a canonical basis (Dw) (w ∈W )
where Dw is composition of the Dα associated to a reduced expression of w.

For any scheme X with an action of G, the ring D acts naturally on the
equivariant Chow group AT∗ (X), and we have

Dw[Y ] = d(Y,w)[BwY ]

for any Y ∈ B(X) (see [Br] 6.3). It follows that D⊗D acts on A∗T×T (X) for any
regular completion X of G. For brevity, the Dw ⊗Dτ will be called the operators
of divided differences.

Let Z ⊂ X be a closed (G×G)-orbit. Define a class δG ∈ A∗T×T (Z) by setting

δG =
∑
w∈W

Ω(w0w,w).

Identifying Z with G/B− × G/B, we see that δG is the equivariant class of the
reduced subscheme ⋃

w∈W
Bw0wB−/B

− ×B−wB/B.

By 2.3, δG is closely related to the class of the diagonal in G/B ×G/B.
More generally, for any parabolic subgroup P ⊃ B, define δP ∈ A∗T×T (Z) by

δP =
∑
w∈WL

Ω(w0w,w0w0,Lw)

so that δP is the equivariant class of the reduced subscheme⋃
w∈WL

B−wB−/B− ×Bw0,LwB/B ⊂ Q/B− × P/B.
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This interprets δP as the class δ associated to a Levi subgroup of P .

Corollary. Notation being as above, the images under i∗σ of the equivariant classes
of (B ×B−)-invariant subvarieties in X are obtained by applying the operators of
divided differences to the classes( ∏

e∈σ(1)

cT×T (χe,−χe)
)
δP (ϕ)

where ϕ is a face of the cone σ, and where P (ϕ) ⊃ B is the parabolic subgroup
associated to the set of simple roots which are orthogonal to ϕ.

Proof. Let Y be a (B × B−)-invariant subvariety of X and let P ⊃ B be the
corresponding parabolic subgroup. Observe that P = P (σY ): indeed, it follows
from Proposition A1 that a Levi subgroup of P is the centralizer of a general
element of σY ∩X∗(T ).

Let y be the base point of Y as in 2.1. Observe that (G×G)y contains a unique
closed (B ×B−)-orbit, that is,

O := (B ×B−)(w0, w0w0,L)y.

Moreover, it follows from Theorem 2.1 that

i∗σ[O] = δP .

Finally, we have
Y = (B ×B−)(ww0, τw0,Lw0)O

and dim(Y ) = l(ww0) + l(τw0,Lw0) + dim(O). Thus, we have

[Y ] = (Dww0 ⊗Dτw0,Lw0)[O]

in A∗T×T (X). We conclude by recalling that the action of D ⊗D commutes with
i∗σ (see [Br] 6.3).

3.3. The case of the canonical completion of an adjoint semisimple
group

In this section, we consider a connected semisimple adjoint group G and its min-
imal regular completion X constructed by De Concini and Procesi (see [DP1]).
As an application of the Bialynicki-Birula decomposition (see [Bi]), we construct a
basis of the abelian group A∗(X) consisting of classes of certain (B×B−)-invariant
subvarieties; then, by [Br] Corollary 3.2.1, the (T ×T )-equivariant classes of these
varieties are a basis of the S ⊗ S-module AT×T∗ (X).
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Recall that X contains a unique closed (G×G)-orbit Z, isomorphic to G/B−×
G/B, and that the fan F associated to T consists in all Weyl chambers and their
faces. In particular, the cone σ asociated to Z is the positive Weyl chamber, and
the characters χe associated to edges of σ are the simple roots. So the faces of σ
are indexed by the subsets of ∆. For such a subset I, we denote by zI the base
point of the corresponding (G×G)-orbit and by P (I) ⊃ B the associated parabolic
subgroup; then I is the set of simple roots of the Levi subgroup L(I) of P (I). We
set WI := WL(I) and W I := WL(I).

Theorem. Notation being as above, the abelian group A∗(X) is freely generated
by the classes

[(B ×B−)(w, τ)zI ]

where w, τ ∈W and I = {α ∈ ∆ | τ(α) ∈ Φ+} (in particular, τ ∈W I).

Proof. Let ρ be the one-parameter subgroup of T such that 〈ρ, α̌〉 = 1 for all α ∈ ∆.
Then w0(ρ) = −ρ. Define a one-parameter subgroup λ of T × T by

λ(t) = (ρ(t), ρ(t−n))

where n is a large integer. Then (w0, w0)(λ) = −λ.
We check that the fixed point set of λ in X is XT×T and that the closures of

the corresponding “cells”

X(x, λ) := {p ∈ X | lim
t→0

λ(t)p = x}

(where x ∈ XT×T ) are the (B ×B−)(w, τ)zI as above. Then our statement will
follow from the Bialynicki-Birula decomposition.

Given p ∈ X , we determine limt→0 λ(t)p. We can write p = (b, b−)(w, τ)zI
with obvious notation. Then λ(t)p = λ(t)(b, b−)λ(t−1)λ(t)(w, τ)zI and

λ(t)(b, b−)λ(t−1) = (ρ(t)bρ(t−1), ρ(t−n)b−ρ(tn))

converges as t→ 0 to a point of T×T . Therefore, we may assume that p = (w, τ)zI .
Now we consider zI as a point of the Grassmanian Grass(G ⊕ G) of subspaces of
the Lie algebra of G×G, see [DP1] or the Appendix below. Choose root vectors
xβ (β ∈ Φ) in G. Then it follows from Proposition A1 below that the linear space
(w, τ)zI has a basis consisting of: the (x−w(β), 0) and (0, xτ(β)) (β ∈ Φ+ \ΦI), the
(xw(β), xτ(β)) (β ∈ ΦI) and a basis of diag T where T denotes the Lie algebra of
T . For β ∈ ΦI and n large enough, observe that the limit of the line generated by

λ(t)(xw(β), xτ(β)) = (t〈ρ,w(β)〉xw(β), t
−n〈ρ,τ(β)〉xτ(β))

is the line 0× Gτ(β) if τ(β) ∈ Φ+ (that is, if β ∈ Φ+, because τ ∈ W I), and the
line Gw(β) × 0 otherwise. It follows that the linear space limt→0 λ(t)(w, τ)zI has a
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basis consisting of: the (x−w(β), 0) and (0, xτ(β)) (β ∈ Φ+) and a basis of diag T .
In other words, we have

lim
t→0

λ(t)p = (w, τ)z.

Thus, the cell X(λ, (w, τ)z) consists of the orbits (B × B−)(w, τ)zI such that
τ ∈W I .

Remark. Notation being as in 3.2, restriction toG/B−×G/B of (B ×B−)(w, τ)zI
is equal to

(Dw ⊗Dτ )
∏

α∈∆\I
cT×T (α,−α)

∑
w∈WI

[B−wB−/B− ×Bw0,IwB/B].

3.4. Intersection numbers of (B ×B−)-invariant subvarieties

We maintain the notation and assumptions of 3.3; we determine the intersection
numbers

∫
X

[Y ][Y ′] for all (B×B−)-invariant subvarieties Y , Y ′ of complementary
dimensions in X . More generally, fix a subset ∆′ ⊂ ∆ and set X ′ := (G×G)z∆′ .
For Y, Y ′ ⊂ X ′, we compute

∫
X′ [Y ][Y ′]; we begin with the case where (G ×G)Y

and (G×G)Y ′ meet properly in X ′. This condition translates combinatorially as
follows.

Theorem. Let I, I ′ be subsets of ∆ such that I ∪ I ′ = ∆′ and let

Y = (B ×B−)(w, τ)zI , Y ′ = (B ×B−)(w′, τ ′)zI′

be (B ×B−)-invariant subvarieties of X ′ of complementary dimensions. Then∫
X′

[Y ][Y ′] =
{

1 if I ∩ I ′ = ∅ and w−1w0w
′ = τ−1w0τ

′ ∈WIWI′

0 otherwise.

Proof. By assumption, we have codimX′(Y ) + codimX′(Y ′) = dim(X ′), that is,

l(w) + l(τ) + |∆′ \ I|+ l(w′) + l(τ ′) + |∆′ \ I ′| = 2l(w0) + |∆′|. (∗)

If
∫
X′ [Y ][Y ′] 6= 0, then Y ∩ (w0, w0)Y ′ is not empty and thus it contains (T × T )-

fixed points. But all such points are in Z, and the (T × T )-fixed points in Y ∩ Z
are the (w1, w2)z where w1 ≥ wv and w2 ≥ τv for some v ∈WI such that l(wv) +
l(τv) = l(w) + l(τ) (see Theorem 2.1). If moreover (w1, w2)z ∈ (w0, w0)Y ′ ∩ Z,
then

wv ≤ w1 ≤ w0w
′v′ and τv ≤ w2 ≤ w0τ

′v′
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for some v as above and v′ ∈WI′ such that l(w′v′) + l(τ ′v′) = l(w′) + l(τ ′). So we
obtain

l(w) + l(τ) = l(wv) + l(τv) ≤ l(w1) + l(w2)
≤ l(w0w

′v′) + l(w0τ
′v′) = 2l(w0)− l(w′)− l(τ ′).

(∗∗)

Together with (∗), this implies |I| + |I ′| ≤ |∆′| and therefore I ∩ I ′ = ∅. Then
equality holds in (∗∗): this forces wv = w1 = w0w

′v′ and τv = w2 = w0τ
′v′.

Thus,
w−1w0w

′ = τ−1w0τ
′ = vv

′−1.

But v ∈ WI and v′ ∈ WI′ where I and I ′ are disjoint. Therefore, v and v′

are uniquely determined: Y ∩ (w0, w0)Y ′ contains a unique (T × T )-fixed point
(wv, τv)z := x. It follows that Y ∩ (w0, w0)Y ′ consists of this point. More-
over, by Corollary 2.1, (B ×B−)x is a component of multiplicity one of Y ∩ Z,
and (B ×B−)(w0, w0)x is a component of multiplicity one of Y ′ ∩ Z. Finally,
(B ×B−)x and (w0, w0)(B ×B−)(w0, w0)x meet transversally at x in Z. It fol-
lows that

∫
X′ [Y ][Y ′] = 1.

The assumptions of the theorem are satisfied if I = ∆; then we obtain easily
the following

Corollary. For any w ∈ W and for any (B × B−)-invariant subvariety Y ⊂ X,
we have ∫

X

[Y ][BwB−] =
{

1 if Y = (B ×B−)(w0w,w0)z
0 otherwise.

In particular, for the basis of A∗(X) constructed in 3.3, the coordinate
function on [BwB−] is the scalar product (for the intersection pairing) with
[(B ×B−)(w0w,w0)z], another element of the basis. But we will see below that
the whole basis is not self-dual up to reordering.

Now, to compute
∫
X [Y ][Y ′] for arbitrary (B × B−)-invariant Y and Y ′, it is

enough to determine [X ′][Y ] for any boundary divisor X ′ ⊂ X (see the remark in
1.4). This can be done as follows. There exists a unique simple root α such that

X ′ = (G×G)z∆\{α} := Xα.

Write Y = (B ×B−)(w, τ)zI as above. If α ∈ I then Y is not contained in Xα

and Theorem 2.1 implies that

[Xα][Y ] =
∑

[(B ×B−)(wv, τv)zI\{α}]

(sum over all v ∈WI such that τv ∈W I\{α} and that l(wv) + l(v) = l(w)).
If α /∈ I then there exist unique rational numbers xαβ (β ∈ ∆) such that

α =
∑
β∈I

xαβ β +
∑
γ /∈I

xαγ ωγ
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where the ωγ are the fundamental weights of Φ (that is,
∑
β∈I xαββ is the orthog-

onal projection of α on the linear space generated by I). Setting

Dγ := BsγB−

for γ ∈ ∆, we then have in the Picard group of X :

[Xα] =
∑
β∈I

xαβ [Xβ] +
∑
γ/∈I

xαγ [Dγ ]

(as can be seen by restricting to Z). Moreover, each [Xβ][Y ] is determined as
above. To compute [Dγ ][Y ], let

p : Xα → G/Q∆\{α} ×G/P∆\{α}

be the projection. Any pair of characters λ, µ of L∆\{α} defines a homogeneous
line bundle on the image of p and we denote by c(λ, µ) its Chern class. Then

Dγ = p∗c(ω−γ , ωγ)

and we obtain [Dγ ][Y ] as a special case of the following

Lemma. Let P ⊃ B be a parabolic subgroup of G with Levi subgroup L ⊃ T .
Let X ′ be a L-variety, let X = G ×P X ′ be the induced variety with projection
p : X → G/P , and let Y = BwY ′ ⊂ X where w ∈ WL and Y ′ ⊂ X ′ is a
B-invariant subvariety. Then, for any character χ of L, we have in A∗(X):

p∗c(χ) ∩ [Y ] =
∑
β

〈χ, β̌〉d(Y ′, wsβ)[BwsβY ′]

(sum over the β ∈ Φ+ such that l(wsβ) = l(w)− 1).

Proof. In the equivariant Chow group AT∗ (X), we have [Y ] = Dw[Y ′]. Moreover,
c(χ) lifts to an equivariant Chern class cT (χ) which commutes with the action of
D (see [Br] §6). Thus,

p∗cT (χ) ∩ [Y ] = Dw(p∗cT (χ) ∩ [Y ′]).

Moreover, because p(Y ′) is the base point of G/P , we have p∗cT (χ)∩ [Y ′] = χ[Y ′].
Now we conclude by the identity

Dw(χu) = w(χ)Dw(u) +
∑
β

〈χ, β̌〉Dwsβ (u)

for any u ∈ AT∗ (X) (see the proof of Proposition 6.6 in [Br]).
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Example. Let G = PGL(3) and let X be the canonical completion of G. Let
α, β be the simple roots; then the boundary divisors of X are Xα and Xβ which
meet transversally along the closed (G×G)-orbit Z. Consider

Y := (B ×B−)(sβ , sα)zβ , Y ′ := (B ×B−)(sβsα, sαsβ)zβ.

Then Y and Y ′ are contained in Xα and their classes in A∗(X) belong to the basis
constructed in 3.3. We check that∫

X

[Y ][Y ′] = −1.

Recall that
∫
X

[Y ][Y ′] =
∫
Xα

([Xα][Y ])[Y ′]. Because α = −1
2β + 3

2ωα, we have in
the Picard group of X :

[Xα] = −1
2

[Xβ] +
3
2

[Dα].

Moreover,

[Xβ ][Y ] = [Y ∩ Z] = [(B ×B−)(sβ , sα)z] + [(B ×B−)(1, sβsα)z].

By the theorem above, we have∫
Xα

[(B ×B−)(sβ , sα)z][Y ′] =
∫
Xα

[(B ×B−)(1, sβsα)z][Y ′] = 1.

On the other hand, by the lemma above, [Dα][Y ] is a linear combination of classes
of (B × B−)-invariant subvarieties which are not contained in Z. Again by the
theorem above, we then have

∫
Xα([Dα][Y ])[Y ′] = 0 because Y ′ is not contained in

Z. This implies our assertion.

Appendix: the structure of regular group completions

We denote by X∗(T ) the group of one-parameter subgroups of T . An element
λ ∈ X∗(T ) is called dominant if the scalar product of λ with any positive coroot is
non-negative. The group W acts on X∗(T ) and the set of dominant one-parameter
subgroups is a fundamental domain for this action, as it is the intersection ofX∗(T )
with the positive Weyl chamber.

To any λ ∈ X∗(T ) we associate the subset G(λ) ⊂ G of all g such that
λ(t)gλ(t)−1 has a limit in G when t → 0. Then G(λ) is a parabolic subgroup
of G with unipotent radical RuG(λ) = {g ∈ G | limt→0 λ(t)gλ(t)−1 = 1}. More-
over, a Levi subgroup of G(λ) is the centralizer L(λ) of the image of λ, and the
parabolic subgroups G(λ), G(−λ) are opposite. Finally, G(λ) contains B if and
only if λ is dominant (see e.g. [MFK] 2.2).

Proposition A1. Let X be a regular completion of G and let O ⊂ X be a (G×G)-
orbit.
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(i) The closure T is smooth and meets O transversally into a union of (T × T )-
orbits permuted transitively by diagW .
(ii) There exists a unique z ∈ O such that (B × B−)z is open in O and that
z = limt→0 λ(t) for some λ ∈ X∗(T ). The isotropy group (G × G)z is the semi-
direct product of RuG(−λ) × RuG(λ) with diag L(λ) × (C(λ) × 1)z, where C(λ)
denotes the connected center of L(λ). In particular, G(λ) depends only on O.
(iii) The (G × G)-equivariant map O → (G × G)/(G(−λ) × G(λ)) (defined by
inclusion of (G×G)z into G(−λ)×G(λ)) extends to the closure O and makes O
the induced variety of L(λ)z, a regular completion of the group L(λ)/C(λ)z .
(iv) The orbit O is closed in X if and only z is fixed by T × T . Then

Xz := {x ∈ X | lim
t→0

λ(t)x = z}

is an open affine (B × B−)-invariant subset of X. Moreover, T z := T ∩ Xz

is isomorphic to affine l-space where T × T acts linearly through l independent
weights, and the map

ϕ : U × U− × T z → Xz

(g1, g2, x) 7→ (g1, g2)x

is an isomorphism, where U (resp. U−) denotes the unipotent radical of B (resp.
B−).

Proof. Observe that T is the fixed point set of diag T in G. It follows that T is a
component of the fixed point set Xdiag T . Therefore, T is smooth.

Denote by k[[t]] the ring of formal power series in t, and by k((t)) its field of
fractions. By [MFK] 2.1, any point of Gk((t)) can be written as g1(t)λ(t)g2(t) for
some g1(t), g2(t) in Gk[[t]] and λ ∈ X∗(T ). It follows that there exists λ ∈ X∗(T )
such that limt→0 λ(t) := z exists and belongs to O. Replacing λ by w(λ) for some
w ∈W , we may assume that λ is dominant.

Let g ∈ RuG(λ). Then

λ(t) = ((λ(t), 1)(g, g)1 = (λ(t)gλ(t)−1, g)(λ(t), 1)1.

Taking limits at 0, we obtain z = (1, g)z, that is, 1 × RuG(λ) fixes z. Similarly,
RuG(−λ) × 1 fixes z. Moreover, for g ∈ L(λ), we have λ(t) = (g, g)λ(t) and
therefore z = (g, g)z. So (G × G)z contains RuG(−λ) × RuG(λ), diag L(λ) and
of course (C(λ) × 1)z (which in turn contains λ(k∗) × 1). Because the product
(B×B−)(RuG(−λ)×RuG(λ))diag L(λ) is open in G×G, it follows that (B×B−)z
is open in O = (G×G)z.

To show that (G×G)z is the semidirect product of the groups above, we first
consider the case where O has codimension one in X . Then dim(G × G)z =
dim(G) + 1 and therefore the connected component (G × G)0

z is the product of
the groups above. It follows that the unipotent radical of (G×G)z is RuG(−λ)×
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RuG(λ). Thus, (G×G)z is contained in G(−λ)×G(λ) (the normalizer in G×G
of its unipotent radical). So (G×G)z is the product of RuG(−λ)×RuG(λ) with
(L(λ) × L(λ))z . Moreover, the latter group contains (diag L(λ))(C(λ) × 1)z as a
component, and hence it normalizes the diagonal of the derived subgroup of L(λ).
It follows that (L(λ)× L(λ))z is equal to diag L(λ)× (C(λ) × 1)z.

In the case where the codimension of O is arbitrary, we replace X by the
blow-up X̂ of O in X ; then X̂ is a regular completion of G. Let Ô be the open
(G ×G)-orbit in the exceptional divisor of X̂ and let ẑ ∈ Ô be a point as above.
Then (G×G)ẑ is the kernel of the action of (G×G)z in the normal space at O at
z. So (G×G)ẑ is the intersection of kernels of independent characters of (G×G)z .
In other words, (G × G)z is a normal subgroup of (G × G)ẑ and the quotient is
a torus; in particular, both groups have the same unipotent radical. Arguing as
above, we obtain that (G ×G)z is the product of RuG(−λ) × RuG(λ), diag L(λ)
and (C(λ)× 1)z. This implies that (T × T )z is a component of Odiag T and hence
of its subset T ∩O. Moreover, we have

codimX(O) = dim(G)− dim(G×G) + dim(G×G)z = dim(C(λ) × 1)z
= codimT (T × T ) · z.

Therefore, (T×T )z is a proper component of the intersection of T with O. Because
T is contained in Xdiag T , we have for tangent spaces:

TzO ∩ TzT ⊂ (TzO)diag T = Tz(T × T )z,

that is, the intersection is transversal at z. This proves assertions (i) and (ii).
(iii) is a consequence of (ii) together with the following result.

Lemma. Let X be a regular G-variety, let x ∈ X0
G, let P ⊂ G be a parabolic

subgroup containing the isotropy group Gx and let p : G · x → G/P be the map
g · x 7→ gP . Then p extends to a G-equivariant morphism X → G/P .

Proof of Lemma. Embed G/P into the projective space P(M) where M is a simple
G-module. Let δ ⊂ G/P be the intersection of G/P with the B-invariant hyper-
plane in M , and let D ⊂ X be the closure of the pull-back of δ to G · x. Then D
contains no G-orbit (see e.g. [BB] Proposition 2.2.1). Moreover, the corresponding
sheaf OX(D) is G-linearizable, and the G-submodule of Γ(X,OX(D)) generated
by the canonical section of OX(D) identifies to M∗. Therefore, this space of sec-
tions is base-point-free and the corresponding morphism X → P(M) maps G · x
to G/P , hence X to G/P .

Now we prove (iv). If O is closed, then (G ×G)z is parabolic in G × G, that
is, G(λ) = B and z is fixed by T × T . Conversely, if z is fixed by T × T , then
we must have C(λ) = T , i.e. L(λ) = T and (G × G)z = B− × B. Thus, O is
closed in X . Moreover, T z is an affine (T × T )-invariant neighborhood of z in the
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smooth torus embedding T . Thus, T z is isomorphic to affine space of dimension
l, where T × T acts linearly through l independent weights. Moreover, Xz is
(B × B−)-invariant and contains the identity of G. Thus, Xz is the open cell of
the Bialynicki-Birula decomposition defined by λ. In particular, Xz is isomorphic
to affine space. Moreover, the map ϕ restricts to an isomorphism over U×U−×T ,
and ϕ−1(z) is a single point. Because z is the unique closed (T × T )-orbit in Xz,
it follows that ϕ is finite. So ϕ is an isomorphism by Zariski’s main theorem.

Let C be the center of G and let Gad := G/C be the corresponding adjoint
group. Then Gad has a canonical regular completion Gad which can be constructed
as follows: for the adjoint action of Gad × Gad in its Lie algebra Gad ⊕ Gad, the
isotropy group of the diagonal diag Gad is equal to Gad. Then Gad is the closure of
the (Gad ×Gad)-orbit of diag Gad in the corresponding Grassmanian Grass(Gad ⊕
Gad). Moreover, each regular completion X of Gad dominates Gad, that is, there
exists a morphism of X to Gad which induces the identity on Gad (then such a
morphism is (Gad×Gad)-equivariant). These results are proved in [DP1] and [St];
they can be slightly generalized as follows.

Proposition A2. For a non-singular (G × G)-equivariant completion X of G,
the following assertions are equivalent:
(i) X is regular.
(ii) X dominates Gad.
If (i) holds, let z ∈ X be a fixed point of B−×B and let χ1, . . . , χr be the weights
of T ×T in the normal space to (G×G)z at z. Then the convex cone generated by
χ1, . . . , χr contains the (α,−α) (α ∈ ∆). Moreover, the intersection of the span
of χ1, . . . , χr with the span of Φ× Φ is the span of the (α,−α) (α ∈ ∆).

Proof. (i)⇒(ii) For any x ∈ X , denote by (G×G)(x) the kernel of the action of the
isotropy group (G×G)x in the normal space to the orbit (G×G)x at x. Because
X is regular, the dimension of (G×G)(x) is independent of x. We claim that

(G×G)(x) ∩ (C0 × C0) = diag C0

(where C0 denotes the connected center of C). To check this, it is enough to
consider the case where x = z is the base point of its (G × G)-orbit. Then, by
Proposition A1, the normal space TzX/Tz(G×G)z identifies to TzT/Tz(T × T )z,
and we have

(G×G)(z) ∩ (C0 × C0) ⊂ (T × T )(z).

Moreover, it is easy to see that (T × T )(z) = diag T which proves our claim.
From this, it follows that the dimension of (G ⊕ G)(x) + (C ⊕ C) is independent

of x. Therefore, identifying Grass(Gad ⊕ Gad) with the Grassmanian of subspaces
of G ⊕ G which contain C ⊕ C, we obtain a (G×G)-equivariant map

π : X → Grass(Gad ⊕ Gad)
x 7→ (G ⊕ G)(x) + (C ⊕ C).
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Moreover, π(1) is identified with the diagonal in Gad⊕Gad. Using Proposition A1,
it is easy to see that π is a morphism. Thus, π maps X onto Gad.

(ii)⇒(i) By assumption, we have an equivariant morphism π : X → Gad. Let
Z ⊂ X be a closed (G ×G)-orbit. Then π(Z) is the closed (G ×G)-orbit in Gad
which implies that Z is isomorphic to G/B−×G/B. Let z be the (B−×B)-fixed
point in Z. Then, as in the beginning of the proof of Proposition A1, we obtain
that z is contained in T and that T is smooth. Moreover, the canonical map
ϕ : U ×U−×T z is injective, because the induced map U ×U−× (T ad)π(z) → Gad

is injective. It follows that ϕ is an open immersion; thus, T is transversal to Z at
z. This implies at once that X is regular.

Denote by A (resp. Aad) the algebra of regular functions over the affine space
T z (resp. (Tad)π(z)). Observe that the semigroup of weights of T × T in A (resp.
Aad) is freely generated by−χ1, . . . ,−χr (resp. by the (−α, α), α ∈ ∆). Because π
maps T z to (Tad)π(z), the convex cone generated by the (−α, α) must be contained
in the convex cone generated by −χ1, . . . ,−χr. Moreover, because restriction of π
to T = (T × T )/diag T is the quotient by C ×C, the fraction field of Aad consists
in the (C × C)-invariants in the fraction field of A. This means that the span
of the (−α, α) is the intersection of the span of χ1, . . . , χr with the span of the
character group of (T × T )/(C × C), that is, with the span of Φ× Φ.
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