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Abstract. Let M be a compact orientable 3-manifold. The set of characters of SL2(C )-
representations of π1(M) forms a closed affine algebraic set. We show that its coordinate ring
is isomorphic to a specialization of the Kauffman bracket skein module, modulo its nilradical.
This is accomplished by realizing the module as a combinatorial analog of the ring in which tools
of skein theory are exploited to illuminate relations among characters. We conclude with an
application, proving that a small manifold’s specialized module is necessarily finite dimensional.
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1. Introduction

The Kauffman bracket skein module is an invariant of 3-manifolds which, until
recently, was both difficult to compute and topologically mysterious. A suggestion
of its significance came with the discovery that it dominates the ring of SL2(C)-
characters of the fundamental group [3]. The relationship also provided computa-
tional tools [4] and estimates of the module’s size [2, 3]. The central result of this
paper sharpens the focus considerably, for we show that a specialization, modulo
its nilradical, is exactly the ring of characters.

An oriented knot determines a conjugacy class in the fundamental group of a
3-manifold M . It also determines a function on any set of characters of the group:
simply evaluate each character on the conjugacy class. Now suppose that CLM is
the vector space spanned by links inM , thatX(M) is the set of characters obtained
from representations in SL2(C), and that CX(M) is the algebra of functions on
X(M). Let

Φ̃ : CLM → CX(M)

be the linear map determined by sending each knot to the negative of its naturally
induced function, and each link to the product of the images of its components.

The characters form an affine algebraic set [5] whose coordinate ring R(M) lies
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in CX(M). The Kauffman bracket skein module of M acquires a ring structure
when its parameter is specialized to negative one. This algebra, denoted V (M),
is a quotient of CLM . Our main result and its immediate topological consequence
can be summarized as:

Theorem. The map Φ̃ descends to V (M). Its image is the coordinate ring of
X(M) and its kernel is the nilradical of V (M).

Theorem. If M contains no non-boundary parallel, incompressible surfaces, then
V (M) is finite dimensional.

In the next section (which recapitulates parts of [3] and [5]) we cover the
necessary background and definitions. The proof that Φ̃ descends to a map Φ
on V (M) is quite simple, depending primarily on the following observation: the
Kauffman bracket skein relation maps to the fundamental SL2(C) trace identity,

tr(AB) + tr(AB−1) = tr(A)tr(B).

That Φ maps onto R(M) is also fairly elementary. The bulk of the paper is
therefore devoted to characterizing ker Φ.

This begins in Section 3 with an investigation of trace identities on the SL2(C)-
representations of a free group. There is a map, Ψ, carrying polynomials in traces
to elements of the skein module of a handlebody. Together, Φ and Ψ make skein
theory into a graphical calculus for manipulating relations among characters. It
turns out that ker Φ contains exactly those trace identities which Ψ does not
send to zero. The central result is that any homogeneous trace identity on 2× 2
matrices—restricted to SL2(C)—lies in the kernel of Ψ. The proof turns on a
classification theorem due independently to Procesi [14] and Razmyslov [16].

Section 3 attains sufficient conditions for a trace identity to vanish in the skein
module of a handlebody. Section 4 provides the finishing touch. We rely on a
parameterization of the character set given in [8]. Most of the defining polynomials
turn out to be specialized Procesi identities, while the remaining few succumb to
other tools from Section 3. It follows from a standard result of algebraic geometry
that the only trace identities not vanishing in the skein module are nilpotent. It
is then a small step to extend the result to arbitrary compact 3-manifolds.

The author would like to thank Professors Charles Frohman, Xaio-Song Lin,
Józef Przytycki and Bruce Westbury for many helpful conversations; the referee for
suggesting stylistic improvements; Adam Sikora in particular for his insight into
the importance of nilpotents; and the organizers and participants of the Banach
Center’s 1995 Mini Semester on Knot Theory, where the ideas in this paper first
began to coalesce.



Vol. 72 (1997) Rings of SL2(C )-characters and the Kauffman bracket skein module 523

L L0 L∞

Figure 1.

2. Definitions and background

Let M be a compact, orientable 3-manifold. Its Kauffman bracket skein module,
K(M), is built from the set LM of unoriented, framed links in M . By a framed
link we mean an embedded collection of annuli considered up to isotopy in M ,
and we include the empty collection ∅. Three links L, L0 and L∞ are said to be
Kauffman skein related if they can be embedded identically except in a ball where
they appear as shown in Figure 1. (Framings are vertical with respect to the page).
The notation Lq© indicates the union of L with an unlinked, 0-framed unknot.

Let R denote the ring of Laurent polynomials C[A±1] and RLM the free R-
module with basis LM . If L, L0 and L∞ are Kauffman skein related then L −
AL0−A−1L∞ is called a skein relation. For any L in LM the expression Lq©+
(A2 +A−2)L is called a framing relation. Let S(M) be the smallest submodule of
RLM containing all possible skein and framing relations. We define K(M) to be
the quotient RLM/S(M).

The indeterminate A is often interpreted as a complex number so that K(M)
becomes a vector space. It seems that the simplest value is A = −1, and we let
V (M) denote this specialization. Notice that the specialized skein relations imply

=

in V (M). There is a product on links, L1L2 = L1 ∪ L2, which makes V (M) into
a commutative algebra with ∅ serving as the identity. If follows from [1, Theorem
1] that V (M) is generated by a finite set of knots.

By a representation we mean a homomorphism of groups

ρ : π1(M)→ SL2(C).

The character of a representation is the composition

χρ = trace ◦ ρ,

and X(M) denotes the set of all characters. For each γ ∈ π1(M) there is a function
tγ : X(M)→ C given by χρ 7→ χρ(γ).
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The following theorem appears to have been discovered independently by Vogt
[17] and Fricke [6], first proved by Horowitz [9], and then rediscovered by Culler
and Shalen [5].

Theorem 1. (Vogt, Fricke, Horowitz, Culler–Shalen). There exits a finite set of
elements {γ1, . . . , γm} in π1(M) such that every tγ is an element of the polynomial
ring C[tγ1 , . . . , tγm ].

For Culler and Shalen, Theorem 1 was an initial step in a much deeper result.

Theorem 2. (Culler–Shalen). If every tγ is an element of C[tγ1 , . . . , tγm ], then
X(M) is the zero set of an ideal in C[tγ1 , . . . , tγm ].

Recall that a closed algebraic set X in Cm is the common zero set of an ideal
of polynomials in C[x1, . . . , xm]. The elements of C[x1, . . . , xm] are polynomi-
al functions on X , and the functions xi are coordinates on X . The quotient of
C[x1, . . . , xm] by the ideal of polynomials vanishing on X is called the coordinate
ring of X . Different choices of coordinates would clearly lead to different parame-
terizations of X , but it follows from [5] that any two parameterizations of X(M)
are equivalent via polynomial maps. Hence their coordinate rings are isomorphic
and we may identify them as one object: the ring of characters of π1(M), which
we denote by R(M).

Each knot K determines a unique tγ as follows. Let ~K denote an unspecified
orientation on K. Choose any γ ∈ π1(M) such that γ ' ~K (meaning the loop γ is
freely homotopic to an embedding of ~K). Since trace is invariant under conjugation
it makes sense to define χρ( ~K) = χρ(γ). Since tr(A) = tr(A−1) in SL2(C) we can
also define χρ(K) = χρ(γ). Thus K determines the map χρ 7→ χρ(γ). Conversely,
any tγ is determined by some (non-unique) K. The main theorem of [3] is that
this correspondence is well defined at the level of V (M).

Theorem 3. The map Φ : V (M)→R(M) given by

Φ(K)(χρ) = −χρ(K)

is a well defined surjective map of algebras. If V (M) is generated by the knots
K1, . . . ,Km then Φ(K1), . . . ,Φ(Km) are coordinates on X(M).

Proof. Let CX(M) denote the algebra of functions from X(M) to C. Define a map

Φ̃ : CLM → CX(M)

as follows. If K is a knot set

Φ̃(K)(χρ) = −χρ(K).



Vol. 72 (1997) Rings of SL2(C )-characters and the Kauffman bracket skein module 525

If L is a link with components K1, . . . ,Kn set

Φ̃(L) =
n∏
i=1

Φ̃(Ki).

Let Φ̃(∅) = 1 and extend linearly.
Consider the image of S(M) under Φ̃. For a framing relation, Lq©+ 2L, we

have

Φ̃(Lq©+ 2L)(χρ) = Φ̃(L)Φ̃(©+ 2 ∅)
= Φ̃(L)(−χρ(©) + 2)

= Φ̃(L)(−tr(Id) + 2)
= 0.

Next, let L+L0 +L∞ be a skein relation in which L and L0 are knots. It follows
that L∞ has two components, K1 and K2. Assume embeddings as in Figure 1
and choose a base point ∗ in the neighborhood where L, L0 and L∞ differ. It is
now possible to find loops a and b in π1(M, ∗) so that a slight perturbation of ab
is ~L. With favorable orientations on the other knots we have ab−1 ' ~L0, a ' ~K1,
and b ' ~K2. Given any χρ, set A = ρ(a) and B = ρ(b) so that

Φ̃(L+ L0 + L∞)(χρ) = −χρ(L)− χρ(L0) + χρ(K1)χρ(K2)

= −tr(AB)− tr(AB−1) + tr(A)tr(B)
= 0.

Finally, note that every skein relation can be written as L′∪L+L′∪L0 +L′∪L∞
where L and L0 are knots. Hence Φ̃ descends to a well defined map of algebras,

Φ : V (M)→ CX(M),

which is determined by its values on knots.
Let K1, . . . ,Km be generators of V (M). Every element of V (M) can be written

as a polynomial in these knots, so the image of Φ lies in C[Φ(K1), . . . ,Φ(Km)].
Since each tγ is equal to −Φ(K) for some knot K, Theorems 1 and 2 imply that the
functions Φ(Ki) are coordinates on X(M). It follows that Φ maps onto R(M).�

*
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a
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Figure 2.
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3. Trace identities

In the previous section we obtained a surjection Φ : V (M) → R(M) based on
a natural correspondence between knots and functions on X(M). Under this
correspondence elements of S(M) were sent to polynomials that vanish on X(M),
making Φ well defined. Our ultimate goal is to show that ker Φ is the set of
nilpotent elements in V (M). To this end we reverse the correspondence, mapping
polynomials on X(M) to elements of V (M). For now, we will treat only the case
where M is a handlebody. In this setting the kernel of Φ consists of polynomials
that vanish on X(M) but not in V (M).

For the time being we will be concerned only with free groups, so throughout
this section H will denote the manifold P × I where P is the planar surface in
Figure 2. We also fix a base point ∗ in P and a set of generators {a1, . . . , an} for
π1(H, ∗). Each loop ai travels once across the i-th handle in the direction shown
in Figure 2. Let W denote π1(H, ∗) modulo the equivalence generated by

w ∼ w′ ⇐⇒ w′ = w−1, or w′ = gwg−1 for some g ∈ π1(H, ∗).

Consider the ring of polynomials C[W].

Example 1.

p = (a1)(a2)(a3)− (a1a2)(a3)− (a1a3)(a2)− (a2a3)(a1) + (a1a2a3) + (a1a3a2)

Example 2.

q = (a1)2 + (a2)2 + (a3)2 + (a1a2)2 + (a1a3)2 + (a2a3)2

+ (a1a2a3)2 + (a1a2)(a1a3)(a2a3) + (a1a2a3)(a1)(a2)(a3)
− (a1a2a3)(a1)(a2a3)− (a1a2a3)(a2)(a1a3)− (a1a2a3)(a3)(a1a2)
− (a1)(a2)(a1a2)− (a1)(a3)(a1a3)− (a2)(a3)(a2a3)− 4

The parentheses are necessary to distinguish multiplication in π1(H) from
multiplication in C[W]. Note that there is some ambiguity in the notation for
an individual element of C[W]. For instance (w2) + (1) − (w)2 is the same as
(ww) + (ww−1)− (w)(w−1). Occasionally it will be convenient to write a polyno-
mial using non-reduced words.

A representation of π1(H, ∗) in SL2(C) is any assignment of matrices to each ai.
Letting parentheses denote the operation of trace, each element of C[W] becomes
a function from the representation space to C. The elements of C[W] that vanish
as functions on the set of representations are called SL2(C)-trace identities. They
form an ideal I ⊂ C[W].
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Each w ∈ W corresponds, up to free homotopy, to a unique unoriented curve in
H. We will use Kw to denote any knot in this homotopy class. Since crossings are
irrelevant, Kw represents a unique element of V (H). The assignment w 7→ −Kw

defines a surjection of algebras,

Ψ : C[W]→ V (H).

The map Ψ turns an element of C[W] into a linear combination of links in
V (H). The basic tool for calculating in the skein module is a resolving tree. Let
T be a finite, connected, contractible graph in which no vertex has valence greater
than three. Suppose each vertex is labeled cL for some c ∈ C and some L ∈ LH .
Assume further that there is a distinguished vertex c0L0 called the root. Define the
potential of a vertex to be the number of edges in a path to the root. A (necessarily
univalent) vertex that is not adjacent to one of higher potential is called a leaf.
We say T is a resolving tree for c0L0 if each vertex cL satisfies exactly one of the
following:

(1) cL is a leaf.
(2) cL is adjacent to exactly one higher potential vertex, −2cL.
(3) cL is adjacent to exactly two higher potential vertices, c′L′ and c′′L′′, in which

case cL− c′L′ − c′′L′′ is a skein relation.
Figure 3, in which the dots represent a thrice punctured plane, is a resolving

tree for any knot that projects to the leftmost diagram. It is also an example of
the most common way to produce a resolving tree. Beginning with a projection of
the root, the tree grows by smoothing one crossing at a time. Once all crossings
have been eliminated, trivial circles are removed via framing relations. The sum
of the leaves is the standard resolution of the root—an element of CLH which is
equal to the root in V (H). Although the procedure given here does not result
in a unique tree, the following theorem [15] implies uniqueness of the standard
resolution in CLH .

Theorem 4. (Przytycki). The links in H represented by diagrams in P with no
crossings and no trivial circles are a basis for V (H).

A resolving forest for an element of CLH is simply a collection of trees, one
for each term in the linear combination. As with individual links, there is a
standard resolution of each element of CLH . Summing the potential function over
all vertices assigns a useful complexity to a forest, the total potential.

The remainder of this section is devoted to the establishment of conditions
under which Ψ maps a polynomial to zero.

Lemma 1. In Examples 1 and 2 we have Ψ(p) = Ψ(q) = 0.

Proof. For Example 1, suppose that P has been deformed to look like Figure 4
and that its fundamental group is generated by the indicated loops. The map Ψ
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Figure 5.

applied to −(a1a2a3) is the root of Figure 3. The leaves of the tree, reading down
the page, are

− 2Ψ((a1a3a2)) + Ψ((a1a3a2))−Ψ((a1a2)(a3)) + Ψ((a1a3a2))
+ Ψ((a1)(a2)(a3))−Ψ((a2a3)(a1))−Ψ((a1a3)(a2)) + Ψ((a1a3a2)).

Since the sum of the leaves of a resolving tree is equal to its root, Ψ(p) = 0.
To see that Ψ(q) = 0, resolve the diagram of −Ψ((a1a2)(a1a3)(a2a3)) shown

in in Figure 5. �

If p is a trace identity then a natural way to produce a new trace identity, q,
is to substitute new words for each ai in p. If Ψ(p) = 0 then one would hope
Ψ(q) = 0 as well. Although this is true, the proof requires some effort.

Lemma 2. Let p ∈ C[W]. If there exist words w1 and w2 such that (w1w2) +
(w1w

−1
2 ) − (w1)(w2) divides p, then Ψ(p) = 0. Also, if p is divisible by (1) − 2

then Ψ(p) = 0.

Proof. In the first case consider the loop w1w2, but perturbed slightly so as to
become an embedding. The resulting knot is, by definition, someKw1w2 . Similarly,
perturb w1w

−1
2 , w1, w2 to obtain K

w1w
−1
2

, Kw1 , Kw2 . The perturbations may be
chosen to create embeddings of Kw1w2 , K

w1w
−1
2

and Kw1Kw2 that coincide outside
of a small neighborhood of the base point. Within that neighborhood they can be
made to look like Figure 1, so they form a Kauffman skein triple. We now have

0 = −Kw1w2 −Kw1w
−1
2
−Kw1Kw2

= Ψ((w1w2) + (w1w
−1
2 )− (w1)(w2)),
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which implies Ψ(p) = 0.
In the second case Ψ(p) contains a factor of©+2 ∅, which also implies Ψ(p) = 0.

�

Proposition 1. Let p ∈ C[W]. Choose words w1, . . . , wn, and form a new poly-
nomial q by substituting wi for ai in p. If Ψ(p) = 0 then Ψ(q) = 0.

Proof. The proof is by induction on a complexity, κ(p), which we define as follows.
For each w ∈ W choose a diagram in P representing Kw. Express Ψ(p) as an
element of CLH using these diagrams, and then choose a forest for its standard
resolution. Define κ(p) to be the minimum total potential over all choices of
diagrams and forests.

Assume first that κ(p) = 0, implying diagrams in which Ψ(p) is expressed as its
own standard resolution. If Ψ(p) = 0, we can invoke Theorem 4 to conclude that
this particular expression of Ψ(p) is formally zero in CLH . It is not possible for
a diagram to represent more than one w, so p (and hence q) must be identically
zero.

Now assume that κ(p) > 0. Choose diagrams and a forest realizing κ(p); also
select a root cL which is not a leaf. There are three cases depending on the first
resolution of cL.

Case 1: The resolution removes a self crossing of some component. Letting K
denote that component, we construct loops in π1(H, ∗). Begin by choosing a point
x near the crossing in question. Let α0 be an arc running from ∗ to x; let α1 be
an arc running parallel to ~K until it returns to x; and let α2 be an arc parallel to
the remaining portion of ~K. Set γ1 = α0α1α

−1
0 and γ2 = α0α2α

−1
0 . We now have

K = Kγ1γ2 . Furthermore, the resolution changes K into K
γ1γ
−1
2

and Kγ1Kγ2 .
The term of p represented by cL must contain the indeterminate (γ1γ2). Re-

place that appearance of (γ1γ2) with (γ1)(γ2)−(γ1γ
−1
2 ), creating a new polynomial

p′. Since p− p′ is divisible by r = (γ1γ2) + (γ1γ
−1
2 )− (γ1)(γ2), Lemma 2 implies

Ψ(p′) = 0. Let q′ and r′ be the results of substituting wi for ai in p′ and r (re-
spectively). Removing the root cL from the forest for Ψ(p) produces a forest for
Ψ(p′) with lower total potential. Hence κ(p′) < κ(p) and, by induction, Ψ(q′) = 0.
Furthermore, r′ has the form (γ′1γ

′
2) + (γ′1γ

′
2
−1)− (γ′1)(γ′2). Since r′ divides q− q′

we have Ψ(q) = 0.
Case 2: The resolution removes a crossing between two components. In this

case the components involved in the crossing correspond to loops γ1 and γ2, for
which the resolution produces Kγ1γ2 and K

γ1γ
−1
2

. As in Case 1 we create p′

by replacing (γ1)(γ2) in p with (γ1γ2) + (γ1γ
−1
2 ). The proof then proceeds by

induction as before.
Case 3: The resolution removes a trivial circle. The trivial circle corresponds

to an appearance of (1) in p. Form p′ by replacing that (1) with the scalar 2. Then
create q and q′ as above, noting that (1) − 2 divides both p − p′ and q − q′. As
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above, κ(p′) < κ(p), and it follows that Ψ(q) = 0. �

We would now like to consider a more general sort of trace identity. Let Sn
denote the group of permutations of the set {a1, . . . , an}. Let Sm denote a group
of permutations of some subset {ai1 , . . . , aim}. Consider the group algebra CSm.
By writing the elements of Sm in cycle notation, including trivial cycles, we obtain
expressions in C[W]. (Example 1, for instance). In fact, since no inverses appear
in these expressions, they can be regarded as functions on the set of m-tuples of
2 × 2 matrices. If an element of CSm, regarded as such a function, vanishes for
every assignment of 2× 2 matrices we call it a Procesi identity on Sm. Note that
a Procesi identity is clearly an SL2(C) trace identity, but that the converse is just
as clearly false.

Using the group algebra to encode Procesi identities is useful for the theorem
we are about to prove, but there is a drawback as well. Multiplication in CSm is
not the same as multiplication in C[W]. If p and q are elements of CSm we denote
their product in the group algebra as p · q, always assuming that p, q and p · q are
written in cycle notation. Note that pq need not lie in CSm, and that p · q may
involve elements ofW which do not appear in either p or q. Fortunately, the skein
module keeps track of how multiplication in Sm rearranges the elements of W.

Proposition 2. Let p ∈ CSm. If Ψ(p) = 0 then Ψ(τ · p) = 0 for every τ ∈ Sn.

Proof. As an initial simplification assume that τ = (aiaj) with i < j, and that Sm
permutes the set {a1, . . . , am}. There are three cases, depending on the intersec-
tion of {a1, . . . , am} and {ai, aj}.

Case 1: m < i. As an element of C[W], τ · p factors into (aiaj)p. Hence
Ψ(p) = 0 implies Ψ(τ · p) = 0.

Case 2: i ≤ m < j. Each term of p contains a cycle in which ai appears.
Assume that it is written (aiα) and write τ · (aiα) as (ajaiα). Fix a diagram for
each term of Ψ(p) with the property that it traverses handles 1 through m exactly
once and misses the others. In a resolving forest for the standard resolution of
Ψ(p) the skein relations take place in neighborhoods away from the handles, and
no trivial circle runs once over a handle. Therefore every diagram in the forest
meets the handles in precisely the same set of arcs, and we can apply the operation
shown in Figure 6 to the entire forest. Note that this changes the diagram for
Ψ((aiα)) into a diagram for Ψ((ajaiα)), producing a resolution of Ψ(τ · p). By
Theorem 4, the resolution of Ψ(p) is formally zero in CLH . Since the resolution
of Ψ(τ · p) is obtained by applying Figure 6 to each term, it must also be zero.

Case 3: j ≤ m. Each term of p contains either a cycle (aiαajβ) or a product
of cycles (aiα)(ajβ). The action of τ interchanges the two possibilities. Notice
that the operation in Figure 7 interchanges the diagrams for Ψ((aiα)(ajβ)) and
Ψ((aiαajβ)). The proof then follows the resolving argument of Case 2.

Subject to our initial simplification, we now have Ψ(τ · p) = 0. Retaining the
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i j

Figure 6.
Band sum of Ψ(aiα) and Ψ(aj).

ji

Figure 7.
Band relating Ψ((aiα)(ajβ)) and Ψ(aiαajβ).

assumption that τ = (aiaj), we next allow Sm to permute any set {ai1 , . . . , aim}.
A substitution converts this set into {a1, . . . , am}, but preserves that fact that τ is
a transposition. Hence, by Proposition 1, we again have Ψ(τ ·p) = 0. Finally, since
any element of Sn is a product of transpositions, Ψ(τ · p) = 0 for all τ ∈ Sn. �

Our interest in Procesi identities stems from a classification theorem due inde-
pendently to Procesi [14] and Razmyslov [16]. Leron [12] is an excellent reference
for the proof. For the sake of completeness we include some definitions taken
from [7, Chapter 4]. A Young diagram for Sm is a collection of m boxes arranged
in left justified rows of decreasing length. A Young tableau is an assignment of
ai1 , . . . , aim to the boxes. Figure 8 is an example of a Young diagram for S10 and
a tableau using {a1, . . . , a10}. Given a tableau Y define PY to be the subgroup of
Sm stabilizing the rows. For the tableau in Figure 8

PY ∼= S3 × S3 × S2.

Similarly, define QY to be the column stabilizer. The Young symmetrizer corre-
sponding to Y is the element( ∑

σ∈PY

σ

)
·

 ∑
τ∈QY

sgn(τ)τ

 ∈ CSm.
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Theorem 5. (Procesi, Razmyslov). Procesi identities on a fixed Sm constitute
an ideal in CSm. The ideal is generated by Young symmetrizers corresponding to
diagrams with at least three rows.

Lemma 3. Let Y be a Young tableau on {a1, . . . , am}, and assume that am oc-
cupies the last box of a row and column as shown schematically in Figure 9. Let
Y ′ be the tableau obtained from Y by removing the box containing am. Using the
notation rs+1 = ct+1 = am, we can express PY and QY as the following disjoint
unions:

(1) PY =
s+1⋃
i=1

(riam) · PY ′ , and

(2) QY =
t+1⋃
i=1

(ciam) ·QY ′ .

Proof. Let λ1, . . . , λx be the lengths of the rows of Y ′. A row stabilizer is a product
of symmetric groups, so

|PY ′ | = (λ1!) · · · (λx!), and

|PY | = (s+ 1)(λ1!) · · · (λx!).

Each coset (riam)·PY ′ stabilizes the rows of Y and, since each contains the element
(riam), they are disjoint. Counting elements finishes the proof for PY . The proof
for QY is similar. �

Theorem 6. If p is a Procesi identity then Ψ(p) = 0.

Proof. Implicit in the statement is the fact that p is a Procesi identity on some Sm,
so we proceed by induction on m. By Theorem 5 and Proposition 2 we may assume
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Figure 9.

that p is a Young symmetrizer corresponding to a digram with at least three rows.
If m = 3 there is only one such diagram and p is the result of substituting ai1 , ai2
and ai3 into Example 1. By Lemma 1 and Proposition 1, Ψ(p) = 0.

Now assume m > 3. Choose a diagram with at least three rows and a tableau Y
satisfying the hypotheses of Lemma 3. A symmetrizer corresponding to any other
tableau with the same diagram is obtained from this one by by a substitution.
Therefore, by Proposition 1, it suffices to consider only Y . With notation as in
Lemma 3, let p′ be the symmetrizer corresponding to the tableau Y ′. We now
have

p =

( ∑
σ∈PY

σ

)
·

 ∑
τ∈QY

sgn(τ)τ


=

s+1∑
i=1

 ∑
σ∈PY ′

(riam) · σ

 ·
t+1∑
j=1

 ∑
τ∈QY ′

sgn((cjam) · τ)(cjam) · τ


=
∑
i,j

sgn(cjam)(riam) · (cjam) ·

 ∑
σ∈PY ′

σ

 ·
 ∑
τ∈QY ′

sgn(τ)τ


=
∑
i,j

sgn(cjam)(riam) · (cjam) · p′.

By induction and Proposition 2, Ψ(p) = 0. �
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4. The coordinate ring

Consider the following diagram of algebra maps:

V (H)
Ψ

←−−−− C[W]yΦ
y

R(H)
?

←−−−− C[W]/I

We know that Ψ and Φ are surjections. If we can establish an identification along
the bottom row, then the kernel of Φ will be exactly those elements of I that do
not lie in ker Ψ. In Section 3 we developed conditions under which a trace identity
does map to zero; what we lack is a list of generators for I. In order to complete
the picture we will have to choose coordinates on X(H). In other words, we need
a finitely generated subalgebra of C[W] and an explicitly described ideal so that
the quotient is R(H). The subalgebra and the ideal (up to nilpotents) are taken
from [8]. Our tasks are to show that the restricted Ψ is still onto, to prove that
it carries the ideal to zero, and to clarify the bottom row of the diagram. This
will establish the main theorem for handlebodies, after which it extends easily to
compact, oriented 3-manifolds.

Not only did Vogt [17], Fricke [6], and Culler and Shalen [5] apparently discover
Theorem 1 independently, they all arrived at the same set of generators. Let
γ = ai1 · · · aim be an element of G in which each aij is distinct. Following [8]
we adopt the shorthand notation ti1···im for the map tγ . The generating set in all
versions of Theorem 1 is T = {ti1···im | i1 < i2 < · · · < im}.

Note thatC[T ] becomes a subring ofC[W] by replacing ti1···im with (ai1 · · · aim),
so Ψ is well defined on C[T ]. Theorem 1 says that for every p ∈ C[W] there exists
q ∈ C[T ] such that p and q represent the same element of R(H). To maintain
surjectivity of Ψ we need a stronger result, for which we turn to the combinatorial
construction of T in [1].

Theorem 7. Let K be a set of knots containing exactly one Kγ for each tγ ∈ T .
Any link L ∈ LH has a resolving tree whose leaves are monomials in C[K].

Corollary 1. For every p ∈ C[W] there exists q ∈ C[T ] such that Ψ(p) = Ψ(q).

The main result of [8] is the construction of an ideal, JH , which defines X(H)
in the coordinates T0 = {ti1···im ∈ T | m ≤ 3}. The radical of this ideal,

√
JH ,

is the ideal of trace identities in C[T0]. The authors of [8] prove that the trace
identities in C[T0] generate those inC[T ], but once again we need a slightly stronger
statement.

Lemma 4. (Compare [8, Lemma 4.1.1]). Choose distinct indices i, j, k,m1, . . . ,ml
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and let α = m1 · · ·ml. If

q =− 2tijkα + tiktjtα − titjtkα − tjtktαi − tiktjα
+ tijtkα + tjktαi − tikjtα + titjkα + tjtkαi + tktαij

then Ψ(q) = 0.

Proof. Let pxyz denote the Procesi identity of Example 1 with the substitutions
a1 = ax, a2 = ay and a3 = az. Consider the polynomial

p′ = (a1a3) · p234 − (a3a4) · p124 − (a1a4) · p123

as an element of C[W]. By Theorem 5, p′ is a Procesi identity, implying Ψ(p′) = 0.
Substituting a1 = ai, a2 = aj , a3 = ak and a4 = am1 · · ·aml in p′ gives q, so
Proposition 1 implies Ψ(q) = 0. �

Proposition 3. For every q ∈ C[T ] there exists q0 ∈ C[T0] such that Ψ(q) =
Ψ(q0).

Proof. Let q ∈ C[T ]. Define l to be the maximum length of a subscript appearing
in q and let m be the number of maximum length subscripts. We say that the
complexity of q is the ordered pair (l,m). The proof is by induction on complexity,
ordered lexicographically. If l ≤ 3 then q can be converted to q0 ∈ C[T0] by
repeated application of the identity in Example 1 (perhaps with a substitution
of indices). The difference between any pair of successive stages is divisible by a
Procesi identity, so Theorem 6 implies Ψ(q) = Ψ(q0).

If l > 3 then q contains some tijkα in which ijkα is a maximum length subscript.
The identity of Lemma 4 allows us to replace tijkα with an expression involving
only shorter subscripts. The result is a new polynomial, q′, with lower complexity
and Ψ(q) = Ψ(q′). �

We now state the main result of [8]. Let

Mii = t2i − 4, and
Mij = Mji = 2tij − titj , if i < j.

Theorem 8. (González-Acuña–Montesinos). X(M) is the zero set of the ideal
JH in C[T0] generated by the following polynomials.

q1 = t2i + t2j + t2k + t2ij + t2ik + t2jk + t2ijk + tijtiktjk + tijktitjtk

− tijktitjk − tijktjtik − tijktktij − titjtij − titktik − tjtktjk − 4,
in which i, j and k are distinct.
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q2 =

∣∣∣∣∣∣∣
M11 M12 M1i M1j
M21 M22 M2i M2j
Mi1 Mi2 Mii Mij

Mj1 Mj2 Mji Mjj

∣∣∣∣∣∣∣ , with 2 < i < j ≤ n.

q3 =

∣∣∣∣∣∣∣
M11 M12 M13 M1i
M21 M22 M23 M2i
M31 M32 M33 M3i
Mj1 Mj2 Mj3 Mji

∣∣∣∣∣∣∣ , with 3 < i < j ≤ n.

q4 = (t123 − t132)(2tijk + titjtk − titjk − tjtik − tktij)−

∣∣∣∣∣∣∣
t1 t1i t1j t1k
t2 t2i t2j t2k
t3 t3i t3j t3k
2 ti tj tk

∣∣∣∣∣∣∣ ,
in which 1 ≤ i < j < k ≤ n and tmm denotes t2m − 2.

The next step is to show that all of these polynomials lie in ker Ψ. The proofs
involved in this are closely modeled on those in [8]. Our contribution is the ob-
servation that q2, q3 and q4 lift to Procesi identities, and that q1 follows directly
from a resolving tree. We will introduce further notation from [8] as it becomes
necessary.

Lemma 5. Ψ(q1) = 0.

Proof. Example 2, Lemma 1 and Proposition 1. �

Let A1, . . . , A4 be 2× 2 matrices with

Ai =
(
αi βi
γi δi

)
.

Define

M(Ai) =


α1 β1 γ1 δ1
α2 β2 γ2 δ2
α3 β3 γ3 δ3
α4 β4 γ4 δ4

, J =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

, and J∗ =


0 0 0 1
0 −1 0 0
0 0 −1 0
1 0 0 0

.
In general, (cij) will denote a 4 × 4 matrix and |cij | its determinant. We use At

to denote the transpose of A.

Lemma 6. (Compare [8, Lemma 4.6]). The polynomial p = |2(xiyj)− (xi)(yj)| is
a Procesi identity on the symmetric group permuting {x1, x2, x3, x4, y1, y2, y3, y4}.

Proof. Clearly p is an element of the group algebra over the permutations of
{x1, x2, x3, x4, y1, y2, y3, y4}. To see that p is an identity, assign matrices Ai and
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Bj to each xi and yj . Direct calculation shows that

(tr(AiBj)) = M(Ai)JM(Bj)t,

and
(tr(AiBj)− tr(Ai)tr(Bj)) = −M(Ai)JJ∗M(Bj)t.

Since |I − J∗| = 0 we have

|2 tr(AiBj)− tr(Ai)tr(Bj)| = |M(Ai)J(I − J∗)M(Bj)t| = 0.
�

Lemma 7. (Compare [8, Corollary 4.12]). The polynomial

p = [(x1x2x3)− (x1x3x2)]
× [2(y1y2y3) + (y1)(y2)(y3)− (y1)(y2y3)− (y2)(y1y3)− (y3)(y1y2)]

−

∣∣∣∣∣∣∣
(x1) (x1y1) (x1y2) (x1y3)
(x2) (x2y1) (x2y2) (x2y3)
(x3) (x3y1) (x3y2) (x3y3)

2 (y1) (y2) (y3)

∣∣∣∣∣∣∣
is a Procesi identity on {x1, x2, x3, y1, y2, y3}.

Proof. (Compare [8, Lemma 4.10 and Proposition 4.11]). For any 2 × 2 matrices
A1, . . . , A4, B1, . . . , B4 we have

|tr(AiBj)| = |M(Ai)JM(Bj)|
= |J ||M(Ai)||M(Bj)|
= −|M(Ai)||M(Bj)|.

If A4 = I then, by direct calculation,

|M(Ai)| = tr(A1A2A3)− tr(A1A3A2).

If B4 = I as well then

|tr(AiBj)| = −[tr(A1A2A3)− tr(A1A3A2)][tr(B1B2B3)− tr(B1B3B2)].

Changing columns in |tr(AiBj)| and applying the identity of Example 1, we see
that p vanishes for an arbitrary assignment of 2× 2 matrices. As in Lemma 6, it
is clearly an element of the appropriate group algebra. �

Lemma 8. (Compare [8, Proposition 4.8]). Ψ(q2) = 0.
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Proof. Create p ∈ C[W] by specializing the Procesi identity of Lemma 6 at x1 =
y1 = a1, x2 = y2 = a2, x3 = y3 = ai and x4 = y4 = aj . Theorem 6 and
Proposition 1 imply Ψ(p) = 0. Note that p and q2 are determinants of matrices
that differ only along their diagonals. The differences between diagonal terms are
of the form

2(a2
m)− (am)2 − t2m + 4,

which can be rewritten as

2(a2
m)− 2(am)2 + 2(1)− 2(1) + 4.

Hence, q2 may be obtained from p by a finite sequence of substitutions of the form
(a2
m) = (am)2 − (1) or (1) = 2. Each step involves a pair of polynomials whose

difference is divisible either by (amam) + (ama−1
m ) − (am)(a−1

m ) or by (1) − 2, so
Lemma 2 implies Ψ(q2) = Ψ(p) = 0. �

Lemma 9. (Compare [8, Proposition 4.9]). Ψ(q3) = 0.

Proof. Specialize the identity of Lemma 6 at x1 = y1 = a1, x2 = y2 = a2,
x3 = y3 = a3, x4 = ai and y4 = aj . Then proceed as in Lemma 8. �

Lemma 10. (Compare [8, Corollary 4.12]). Ψ(q4) = 0.

Proof. Specialize the Procesi identity of Lemma 7 at y1 = ai, y2 = aj, y3 = ak
and xm = am for m = 1, 2, 3. If i > 3 this is precisely q. If not, then proceed as
in Lemmas 8 and 9, using the fact that tmm denotes t2m − 2. �

This is enough to prove the main theorem for H, but we may as well consider an
arbitrary compact, orientable 3-manifold. Let M be the result of adding 2-handles
to H along curves {c1, . . . , cm} in ∂H. Choose words wi in π1(H) so that, as a
loop, each wi is freely homotopic to some orientation of ci. For each i and j form
the polynomial pij = (wiaj) − (aj) ∈ R(H). Using the obvious identification
R(H) ∼= C[T0]/

√
JH , create an ideal JM in C[T0] generated by JH ∪ {pij}.

Theorem 9. (González-Acuña–Montesinos). X(M) is the zero set of JM in
C[T0].

It follows immediately thatR(M) = C[T0]/
√
JM . We know that Φ maps V (M)

onto R(M) and it is clear that Ψ maps C[W] onto V (H), and hence onto V (M).
Using these maps, we can now see how V (M) compares to R(M). Henceforth,
consider Ψ to be the restriction to C[T0].

Proposition 4. JM ⊂ ker Ψ ⊂
√
JM

Proof. That JH lies in ker Ψ is the content of Lemmas 5, 8, 9, and 10. To see that
Ψ(pij) = 0, construct a knot Kaj for each generator aj . For each i and j, there
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is a band sum ci#bKaj producing a knot Kwiaj . Since ci#bKaj ' Kaj in M , we
have Ψ(pij) = Kaj −Kwiaj = 0.

For the second containment, note that Corollary 1 and Proposition 3 imply
that Ψ|C[T0] is still onto. It should now be clear that

C[T0] Ψ→ V (M) Φ→R(M) ∼= C[T0]/
√
JM

is the canonical projection. �

There are various phrasings of the immediate implication of Proposition 4.

Theorem 10. Let M be a compact orientable 3-manifold with Φ, Ψ, JM , and T0
defined as above. Denote the ideal of nilpotents in V (M) by

√
0.

(1) X(M) is the zero set of ker Ψ in C[T0].
(2)
√

ker Ψ =
√
JM .

(3) ker Φ =
√

0.
(4) Φ induces an isomorphism Φ̂ : V (M)/

√
0→R(M).

(5) Ψ induces an isomorphism Ψ̂ : C[T0]/
√
JM → V (M)/

√
0.

(6) Under the identification of R(M) with C[T0]/
√
JM , the maps Ψ̂ and Φ̂ are

inverses.

Proof.
(1) This is immediate from Proposition 4 and the fact the X(M) is the zero set of

both JM and
√
JM .

(2) Nullstellensatz.
(3) Since R(M) cannot, by definition, contain a non-zero nilpotent element, Φ(

√
0)

= 0. Suppose now that Φ(α) = 0, and write α as Ψ(β). We have seen that

C[T0] Ψ→ V (M) Φ→R(M) ∼= C[T0]/
√
JM

is the canonical projection. Hence, β ∈
√
JM . It follows from Theorem 10(2)

that Ψ(βn) = 0 for some n, meaning α is nilpotent.
(4) Theorem 3 and Theorem 10(3).
(5) The composition

C[T0] Ψ→ V (M) π→ V (M)/
√

0 Φ̂→R(M) ∼= C[T0]/
√
JM .

is the canonical projection. (Here π is also projection). Hence, ker(π ◦ Ψ)
=
√
JM .

(6) It is easy to see that both

C[T0]/
√
JM Ψ̂→ V (M)/

√
0 Φ̂→R(M) ∼= C[T0]/

√
JM
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and

V (M)/
√

0 Φ̂→R(M) ∼= C[T0]/
√
JM Ψ̂→ V (M)/

√
0

are the identity. �

We conclude with an application. The author would like to thank Charles
Frohman for suggesting that this result might follow quickly, Victor Camillo for
encouraging us to disregard nilpotents, and Bernadette Mullins for pointing out
the result from ring theory used in the proof. Recall that a 3-manifold is small if
it contains no incompressible, non-boundary parallel surface.

Theorem 11. (Compare [2, Corollary 1]). If M is small then dim V (M) <∞.

Proof. Suppose that X(M) has positive dimension. If follows that some component
of X(M) contains a curve whose smooth projective resolution has an ideal point.
From [5, 2.2.1] we then have a non-trivial splitting of π1(M), meaning M is not
small. Hence, X(M) consists of a finite set of points andR(M) is finite dimensional
as a vector space. It is a standard result of commutative algebra that an ideal in
a Noetherian ring contains some power of its radical. Thus, from Theorem 10(2),
we obtain (√

JM
)n
⊂ ker Ψ ⊂

√
JM

for some n. Since R(M) ∼= C[T0]/
√
JM , it is a simple exercise to show that

C[T0]/
(√
JM
)n is finite dimensional. The result now follows from the fact that

V (M) ∼= C[T0]/ ker Ψ, which in turn is the homomorphic image of C[T0]/
(√
JM
)n.

�
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