Asymptotic Behaviour of Time-Inhomogeneous Evolutions on von Neumann Algebras

By

Alberto Frigerio* and Gabriele Grillo*

Abstract

We consider a sequence \(r_n \) of dynamical maps of a von Neumann algebra \(\mathcal{M} \) into itself, each of which has a faithful normal invariant state \(\omega_n \), and we investigate conditions under which the time-evolved \(\varphi_n = \varphi_0 \circ \tau_1 \cdots \circ \tau_n \) of an arbitrary normal initial state \(\varphi_0 \) is such that \(\lim_{n \to \infty} \| \varphi_n - \omega_n \| = 0 \). This is proved under conditions on the spectral gap of \(\tau_n \) extended to a contraction on the GNS space of \((\mathcal{M}, \omega_n)\), and on the difference (in a sense to be made precise below) between \(\omega_n \) and \(\omega_{n-1} \); we do not require detailed balance of \(\tau_n \) w.r.t. \(\omega_n \). We also give conditions on the sequence of relative Hamiltonians \(h_n \) between \(\omega_n \) and \(\omega_{n-1} \) ensuring that the result holds. Finally, we prove that the techniques of the present paper do not admit a simple generalization to \(C^* \)-algebras and non-normal states.

§ 1. Introduction

By “time-inhomogeneous evolution” on a von Neumann algebra \(\mathcal{M} \) we mean a sequence \(\{ \tau_n : n = 1, 2, \ldots \} \) of completely positive weakly* continuous linear maps of \(\mathcal{M} \) into itself, with \(\tau_n(1) = 1 \) (dynamical maps in the sequel). To help intuition, \(\tau_n \) may be regarded as the map describing evolution of the observables of a physical system from times \(t_{n-1} \) to time \(t_n \), where \(0 = t_0 < t_1 < \cdots < t_n \to \infty \). We assume that each \(\tau_n \) has a unique (faithful normal) invariant state \(\omega_n \), and we investigate under which conditions, for any initial normal state \(\varphi_0 \) on \(\mathcal{M} \), the time-evolved state \(\varphi_n = \varphi_0 \circ \tau_1 \cdots \circ \tau_n \) becomes indistinguishable from \(\omega_n \) in the limit as \(n \to \infty \).

Several results exist in the literature for the case when all \(\tau_n \) are the same map with a faithful normal invariant state, or \(\tau_n = \exp[\lambda(t_n - t_{n-1})\mathcal{L}] \), \(\mathcal{L} \) being the generator of a dynamical semigroup (asymptotic behaviour of dynamical...
semigroups with a faithful normal invariant state) [1-7].

Our generalization is primarily motivated by such problems as simulated annealing [8-10], where a time-inhomogeneous evolution of a (fictitious classical) physical system is used to minimize a nonnegative function U on a space X (interpreted as the energy function of the system); then the instantaneous invariant states ω_n are Gibbs states with energy function U and inverse temperatures β_n diverging to $+\infty$. More complicated situations where also U depends on "time" n have been considered in connection with adaptive algorithms [11]. Some noncommutative generalizations of the above results have been studied in [12, 13]. As compared with our previous work on the same subject [12, 13], the class of evolutions for which this asymptotic indistinguishability holds is extended to cover situations in which the maps τ_n need not be symmetric with respect to their invariant states ω_n. In order to prove our results, we need two kinds of assumptions:

i) an estimate on the spectral gap of τ_n extended to a contraction operator on the GNS space of (\mathcal{H}, ω_n);

ii) an estimate on the difference (in a suitable sense to be defined in § 3) between ω_n and ω_{n-1}.

In particular, we need $\omega_{n-1} \leq \lambda_n \omega_n$ for suitable constants $\lambda_n > 0$ for all n.

We do not address ourselves to the question i), and we just remind the reader that results have been obtained in [10, 14] for finite classical systems, in [12] for finite quantum systems, in [15] for some infinite quantum systems and in [16, 17] for a class of infinite classical systems. Concerning ii) we give sufficient conditions on the sequence of relative Hamiltonians h_n between ω_n and ω_{n-1} ensuring that the above mentioned difference is small enough to allow application of our general argument.

The paper is organized as follows. In § 2 we collect some preliminary results on von Neumann algebras and on dynamical maps which we require in the following. The general argument is outlined in § 3. In § 4 we investigate conditions on the relative Hamiltonians under which the arguments of § 3 can be applied. In § 5 we explore the possibility of generalizing the arguments in § 3; we show that there is no simple generalization to the case where the ω_n are disjoint states on a C*-algebra \mathcal{A}. However, we show that, at the price of some complication in the statement of the conditions, the assumption that $\omega_{n-1} \leq \lambda_n \omega_n$ can be relaxed.

§ 2. Preliminaries

Let \mathcal{M} be a von Neumann algebra of operators on a separable Hilbert space \mathcal{H}, with a cyclic and separating vector Ω. Denote by ω and by ω' the faithful normal states on \mathcal{M} and on the commutant \mathcal{M}' respectively defined by
Let \mathcal{M} and \mathcal{N} be the modular operator and the modular involution canonically associated with the pair $(\mathcal{M}, \mathcal{N})$ by the Tomita-Takesaki theory, and let $V = \mathcal{A}_{\mathcal{N}}\mathcal{M}$. For each normal state ϕ on \mathcal{M} there exists a unique vector Ω in V such that

$$\omega(a) = \langle \Omega, a\Omega \rangle : a \in \mathcal{M}.$$ \hfill (2.1)

$$\omega'(a') = \langle \Omega, a'\Omega \rangle : a' \in \mathcal{M}'. \hfill (2.2)$$

The relative modular operator $A_{\phi, \Omega}$ is defined by

$$A_{\phi, \Omega} = S_{\phi, \Omega} \mathcal{A}_{\mathcal{N}} \Omega,$$ \hfill (2.4)

where

$$S_{\phi, \Omega} \Omega = a\phi : a \in \mathcal{M}. \hfill (2.5)$$

Denote by $S(\mathcal{M})$ the set of all normal states on \mathcal{M} and by $S_\omega(\mathcal{M})$ the set of those normal states on \mathcal{M} which are majorized by a scalar multiple of ω.

Lemma 2.1. For any $\phi \in S(\mathcal{M})$ the following conditions are equivalent:

i) $\phi \in S_\omega(\mathcal{M})$;

ii) there exist a (unique) element $x = x_\phi$ of \mathcal{M}_+ such that

$$\omega(a) = \langle x_\phi \Omega, a\Omega \rangle : a \in \mathcal{M}; \hfill (2.6)$$

iii) the Connes cocycle $\{(D\phi : D\omega)_t = A_{\phi, \Omega}^t \mathcal{A}_{\mathcal{N}}^t : t \in \mathbb{R}\} \subseteq \mathcal{M}$ extends to an analytic function on the strip $z \in \mathbb{C} : -1/2 < \text{Im} z < 0$, continuous on the boundaries, with values in \mathcal{M}.

Moreover, one has

$$\Phi = (D\phi : D\omega)_{-1/2} \Omega, \hfill (2.7)$$

$$x_\phi = J[(D\phi : D\omega)_{-1/2}]^* (D\phi : D\omega)_{-1/2} J. \hfill (2.8)$$

An immediate consequence of the equivalence $i) \iff ii)$ is the following

Corollary 2.2. $S_\omega(\mathcal{M})$ is norm-dense in $S(\mathcal{M})$.

Let $h = h^* \in \mathcal{M}$. Then the expression

$$\Omega(h) = \sum_{k=0}^\infty (-1)^k \int_0^{1/8} dt_1 \int_0^{1/8} dt_2 \cdots \int_0^{1/8} dt_k \mathcal{A}_{\mathcal{N}}^{k-1} h \mathcal{A}_{\mathcal{N}}^{k-1} \cdots \mathcal{A}_{\mathcal{N}} h \Omega \hfill (2.9)$$

is well-defined, and h is said to be the relative Hamiltonian between the state ω^h given by

$$\omega^h(a) = \frac{\langle \Omega(h), a\Omega(h) \rangle}{\langle \Omega(h), \Omega(h) \rangle} : a \in \mathcal{M}. \hfill (2.10)$$
and \(\omega \). Note that we have adopted the same conventions concerning sign and normalization as in Donald [18], which are different from those of Araki [19].

Given \(\omega \) and \(h \), the perturbed state \(\omega^h \) is the unique faithful state in \(S(\mathcal{M}) \) maximizing the function

\[
\varphi \mapsto \langle \Phi, \log A_{\varphi} \rangle - \varphi(h),
\]

where \(\langle \Phi, \log A_{\varphi} \rangle \leq 0 \) is known as the relative entropy of \(\varphi \) with respect to \(\omega \) (the opposite sign convention is also used in the literature). This variational characterization of \(\omega^h \) makes sense also for self-adjoint operators \(h \) affiliated with \(\mathcal{M} \) which are bounded from below but unbounded from above and may possibly have \(+\infty \) as an eigenvalue (see Donald [18]). With this extended notion of \(\omega^h \), for each \(\varphi \) in \(S_w(\mathcal{M}) \) there exists a unique \(h \) such that \(\varphi = \omega^h \). However, given \(\omega \) and \(h \), the state \(\omega^h \) need not be in \(S_w(\mathcal{M}) \); a sufficient condition for \(\omega^h \in S_w(\mathcal{M}) \) is that \(A_{\omega^h} h A_{\omega^h}^* \in \mathcal{M} \) for all \(t \in [0, 1/2] \) (cf. Lemma 4.1 below).

Definition 2.3. A dynamical map \(\tau \) on \(\mathcal{M} \) is a completely positive weakly*-continuous linear map of \(\mathcal{M} \) into itself with \(\tau(1) = 1 \).

Lemma 2.4. [1, 20] Let \(\tau \) be a dynamical map on \(\mathcal{M} \), leaving \(\omega \) invariant. Then there exists a dynamical map \(\tau' \) on \(\mathcal{M}' \), leaving \(\omega' \) invariant, such that

\[
\langle \tau'(a'), \Omega \rangle = \langle a', \tau(a) \Omega \rangle : \quad a \in \mathcal{M}, \quad a' \in \mathcal{M}'.
\]

Proof (Sketch). If \(\varphi \) is in \(S_w(\mathcal{M}) \) and \(\tau \) leaves \(\omega \) invariant, then \(\varphi \circ \tau \) is in \(S_w(\mathcal{M}) \). Define \(\tau' \) by linear extension of

\[
\tau'(x_{xy}) = x_{\varphi \circ \tau} : \quad \varphi \in S_w(\mathcal{M}).
\]

Then \(\tau' \) is a positive weakly*-continuous linear map of \(\mathcal{M}' \) into itself, satisfying (2.12), and \(\tau'(1) = 1 \) since

\[
\langle \tau'(1), \Omega \rangle = \langle \Omega, \tau(a) \Omega \rangle = \langle \Omega, a \Omega \rangle : \quad a \in \mathcal{M},
\]

and \(\omega' \circ \tau' = \omega' \) since

\[
\langle \Omega, \tau'(a') \Omega \rangle = \langle \tau(1) \Omega, a' \Omega \rangle = \langle \Omega, a' \Omega \rangle : \quad a' \in \mathcal{M}'.
\]

Complete positivity is shown as follows: let \(a_1, \ldots, a_n \in \mathcal{M}, x_1, \ldots, x_n \in \mathcal{M}' \). Since \(\tau \) is completely positive, one has

\[
0 \leq \sum_{i,j=1}^n \langle x_i \Omega, \tau(a_i^* a_j) x_j \Omega \rangle = \sum_{i,j=1}^n \langle x_i^* x_j \Omega, \tau(a_i^* a_j) \Omega \rangle
\]

\[
= \sum_{i,j=1}^n \langle \tau'(x_i^* x_j \Omega) a_i^* a_j \Omega \rangle = \sum_{i,j=1}^n \langle a_i \Omega, \tau'(x_i^* x_j) a_j \Omega \rangle.
\]

Since \(\mathcal{M} \Omega \) is dense in \(\mathcal{M} \), also \(\tau' \) is completely positive.
Lemma 2.5. [21, 22] Let τ be a dynamical map on \mathcal{M}, leaving ω invariant. Then there exists a contraction T on \mathcal{H} such that

$$
T(a\Omega) = \tau(a)\Omega : \quad a \in \mathcal{M}, \\
T^*(a'\Omega) = \tau'(a')\Omega : \quad a' \in \mathcal{M}'.
$$

Proof (Sketch). By the Kadison-Schwarz inequality $\tau(a^*a) - \tau(a^*)\tau(a) \geq 0$, we have

$$
\|\tau(a)\Omega\|^\gamma = \omega(\tau(a^*)\tau(a)) \leq \omega(\tau(a^*a)) = \omega(a^*a) = \|a\Omega\|^\gamma \quad a \in \mathcal{M}.
$$

Then the linear operator T defined on $\mathcal{M}\Omega$ by (2.14) extends to a contraction on \mathcal{H}. For $a \in \mathcal{M}$, $a' \in \mathcal{M}'$ we have

$$
\langle a'\Omega, T(a\Omega) \rangle = \langle a'\Omega, \tau(a)\Omega \rangle = \langle \tau'(a')\Omega, a\Omega \rangle
$$

so that (2.15) holds.

Lemma 2.6. In the situation of Lemma 2.5, the following are equivalent (for real $\gamma > 0$):

i) $\|\tau(a)\Omega\| \leq e^{-\gamma} \|a\Omega\|$ for all a in \mathcal{M} with $\omega(a) = 0$; (2.16)

ii) $\|T\Psi\| \leq e^{-\gamma} \|\Psi\|$ for all Ψ in \mathcal{H} with $\langle \Omega, \Psi \rangle = 0$; (2.17)

iii) $\|\tau'(a')\Omega\| \leq e^{-\gamma} \|a'\Omega\|$ for all a' in \mathcal{M}' with $\omega'(a') = 0$; (2.18)

iv) $\|T^*\Phi\| \leq e^{-\gamma} \|\Phi\|$ for all Φ in \mathcal{H} with $\langle \Omega, \Phi \rangle = 0$; (2.19)

v) $\|T^*T\Phi\| \leq e^{-2\gamma} \|\Phi\|$ for all Φ in \mathcal{H} with $\langle \Omega, \Phi \rangle = 0$; (2.20)

vi) $\|TT^*\Phi\| \leq e^{-2\gamma} \|\Phi\|$ for all Φ in \mathcal{H} with $\langle \Omega, \Phi \rangle = 0$. (2.21)

Proof. Let K be the orthogonal complement of Ω in \mathcal{H}. Since $T\Omega = T^*\Omega = \Omega$, T and T^* map K into itself, and $(T|_x)^* = T^*|_x$. Then ii), iv), v) and vi) are equivalent. Clearly i) is a special case of ii) and iii) is a special case of iv). Conversely, $T|_x$ is the closure of the map $a\Omega \mapsto \tau(a)\Omega$ with $\omega(a) = \langle \Omega, a\Omega \rangle = 0$, so that i) implies ii), and $T^*|_x$ is the closure of the map $a'\Omega \mapsto \tau'(a')\Omega$ with $\omega'(a') = \langle \Omega, a'\Omega \rangle = 0$, so that ii) implies iv).

In the following, we shall refer to the equivalent conditions of Lemma 2.6 with $\gamma > 0$ as to the spectral gap condition. Indeed, if one takes the largest γ for which the above conditions hold, $1 - e^{-\gamma}$ is the gap between the eigenvalue $\lambda = 1$ of the positive self-adjoint contraction T^*T and the rest of its spectrum.
The same holds for TT^*. Obviously, when the contraction T is self-adjoint, e^{-T} is the spectral radius of its restriction to K.

In the commutative case, there is a considerable amount of literature concerning estimation of e^{-T} for self-adjoint T [10, 14], which has been extended to the non self-adjoint case by Fill [23]. Conditions v), vi) above are essentially a generalization of the multiplicative reversibilization of Fill.

Remark. The equivalent conditions of Lemma 2.6 imply that

$$\lim_{k\to\infty} \varphi \cdot \tau^k(a) = \omega(a) \quad \forall a \in \mathcal{M}, \varphi \in \mathcal{S}(\mathcal{M}).$$

The converse implication is not true in general.

§ 3. Main Result

Let \mathcal{M} be a von Neumann algebra of operators on a separable Hilbert space \mathcal{H}, and let \{\tau_n : n=1, 2, ...\} be a sequence of dynamical maps on \mathcal{M}. Assume that each τ_n has an invariant faithful normal state ω_n with representative vector $Q_n \in \mathcal{H}$ which is cyclic and separating for \mathcal{M}. Thus, by Lemma 2.4, there exists a sequence \{\tau'_n : n=1, 2, ...\} of dynamical maps on \mathcal{M}' such that

$$\langle \tau'_n(a')Q_n, aQ_n \rangle = \langle a'Q_n, \tau_n(a)Q_n \rangle : \quad a \in \mathcal{M}, \quad a' \in \mathcal{M}'. \quad (3.1)$$

Assume that each τ_n has a spectral gap, in the sense that there exist strictly positive constants $\gamma_n : n=1, 2, ...$ such that, for all $n=1, 2, ...$,

$$\|\tau_n(a)Q_n\| \leq e^{-\gamma_n} \| aQ_n \| \quad \text{for all } a \in \mathcal{M} \text{ with } \omega_n(a) = 0. \quad (3.2)$$

By Lemma 2.6, a similar spectral gap holds also for τ'_n.

Assume also that there exists a sequence $R_n : n=1, 2, ...$ of elements of \mathcal{M}' such that

$$R_nQ_n = Q_{n-1} : \quad n=2, 3, ... \quad (3.3)$$

Equivalently (see Lemma 2.1), for $n=2, 3, ...$, ω_{n-1} is majorized by a scalar multiple $\lambda_n \omega_n$ of ω_n, and $R_n \in \mathcal{M}'$ is such that

$$R_n^* R_n = x_{\omega_{n-1}} \quad (3.4)$$

where $x_{\omega_{n-1}}$ is the unique positive element of \mathcal{M}' such that

$$\omega_{n-1}(a) = \langle x_{\omega_{n-1}} Q_n, aQ_n \rangle : \quad a \in \mathcal{M}. \quad (3.5)$$

Our problem is to find conditions on $\{\gamma_n\}$ and on $\{R_n\}$ ensuring that, for any initial state $\varphi_0 \in \mathcal{S}(\mathcal{M})$, letting $\varphi_n = \varphi_{n-1} \cdot \tau_n : n=1, 2, ...$, one has

$$\lim_{n \to \infty} \| \varphi_n - \omega_n \| = 0. \quad (3.6)$$

By Corollary 2.2, it suffices to prove (3.6) for φ_0 in the dense set $S_{\mathcal{Q}}(\mathcal{M})$. Then
for a suitable positive element x_{ψ^*} of $\mathcal{M'}$, and

$$\varphi_0(a) = \langle x_{\psi^*}, \Omega_1, a \Omega_1 \rangle : a \in \mathcal{M} \quad (3.7)$$

for a suitable positive element x_{ψ^*} of $\mathcal{M'}$, and

$$\varphi_1(a) = \varphi_0(\tau_1(a)) = \langle x_{\psi^*}, \Omega_1, \tau_1(a) \Omega_1 \rangle = \langle \tau(x_{\psi^*}) \Omega_1, a \Omega_1 \rangle = \langle x_1, \Omega_1, a \Omega_1 \rangle = \langle \psi_1, a \Omega_1 \rangle : a \in \mathcal{M} , \quad (3.8)$$

where

$$x_1 = \tau_1(x_{\psi^*}) \in \mathcal{M'} ; \quad \psi_1 = x_1 \Omega_1 = T_1 \tau_1 x_{\psi^*} \Omega_1 . \quad (3.9)$$

Lemma 3.1. Let φ_1 be given by (3.8), (3.9). Under the above conditions, for each $n = 2, 3, \ldots , \varphi_n$ is a normal state on \mathcal{M} (actually, $\varphi_n \in S_{\psi_n}(\mathcal{M})$), which can be represented in the form

$$\varphi_n(a) = \langle x_n \Omega_n, a \Omega_n \rangle = \langle \psi_n, a \Omega_n \rangle : a \in \mathcal{M} , \quad (3.10)$$

where

$$x_n = x_{n-1} R_n \tau_n \in \mathcal{M} ; \quad \psi_n = x_n \Omega_n = T_n \tau_n R_n \psi_{n-1} \cdot \quad (3.11)$$

Proof. Since (3.10) holds for $n = 1$, it suffices to prove that it holds for n if it holds for $n - 1$. Indeed, for all $a \in \mathcal{M}$, we have

$$\varphi_n(a) = \varphi_{n-1}(\tau_n(a)) = \langle \psi_{n-1}, \tau_n(a) \Omega_{n-1} \rangle = \langle \psi_{n-1}, R_n \tau_n \Omega_{n-1} \rangle = \langle R_n \psi_{n-1}, \tau_n(a) \Omega_n \rangle = \langle R_n \psi_{n-1}, T_n \Omega_n \rangle = \langle T_n R_n \psi_{n-1}, a \Omega_n \rangle = \langle \psi_n, a \Omega_n \rangle ,$$

with ψ_n given by (3.11). However, $\psi_{n-1} = x_{n-1} \Omega_{n-1} = x_{n-1} R_n \Omega_n$, so that also

$$\varphi_n(a) = \langle R_n x_{n-1} R_n \Omega_n, \tau_n(a) \Omega_n \rangle = \langle R_n x_{n-1} R_n \Omega_n, \Omega_n \rangle = \langle x_n \Omega_n, \Omega_n \rangle ,$$

with x_n given by (3.11), since R_n and x_{n-1} are in $\mathcal{M'}$.

Lemma 3.2. Under the above assumptions, let

$$\alpha_n = \gamma_n - \log \| R_n \| , \quad (3.12)$$

$$\beta_n = e^{\gamma_n} \|(R_n R_n - 1) \Omega_n \| . \quad (3.13)$$

Then, for all $n = 2, 3, \ldots , \psi_n - \Omega_n = T_n \tau_n R_n \psi_{n-1} - \Omega_n = T_n \tau_n R_n \psi_{n-1} - \Omega_n \cdot \quad (3.14) \quad \psi_n - \Omega_n$$

Proof. By the preceding Lemma, and by the remarks following Lemma 2.4, we have

$$\psi_n - \Omega_n = T_n \tau_n R_n \psi_{n-1} - \Omega_n = T_n \tau_n R_n \psi_{n-1} - \Omega_n .$$

In addition, since
the spectral gap assumption and Lemma 2.6 imply that
\[\left\| \Psi_n - \Omega_n \right\| \leq e^{-\tau n} \left\| R_{n-1}^{*} \Psi_n - \Omega_n \right\|. \]
Finally, note that
\[
R_{n-1}^{*} \Psi_n - \Omega_n = R_{n}^{*} \Psi_{n-1} - \Omega_{n-1} + (R_{n}^{*} R_{n-1} - 1) \Omega_n.
\]

Theorem 3.3. Under the above assumptions, suppose also that there exist real constants \(\alpha > 0, \beta \geq 0, 1 > \delta > \varepsilon \geq 0 \) such that
\[\alpha_n \geq \alpha n^{\delta-1}, \quad \beta_n \leq \beta n^{\delta-1}; \quad n = 1, 2, \ldots \]
Then there is a constant \(C \) (depending on \(\varphi_n \)), such that
\[|\varphi_n(a) - \omega_n(a)| \leq C \| a \| n^{-\delta} \longrightarrow 0 \quad \text{as} \quad n \rightarrow \infty. \]

Proof. See [13], Proposition 2.4.

Remark. The results of the present section have been proved in [13] under the additional assumption that, for each \(n = 1, 2, \ldots \), one has
\[\omega_n(\sigma_n(b)) = \omega_n(\tau_n(a)b); \quad a, b \in \mathcal{M} \text{ (detailed balance).} \]
In that situation, one simply has
\[\tau_n(a') = J_n \tau_n(J_n a' J_n) J_n, \]
where \(J_n \) is the modular involution associated with the pair \((\mathcal{M}, \Omega_n) \) in \(\mathcal{M} \) (it may be the case that \(J_n \) is independent of \(n \), as happens when the \(\Omega_n \) are in the same natural positive cone). The new result here, contained in Lemmas 3.1, 3.2, is that detailed balance is not really needed (cf. [9] for the case of the algebra of functions on a finite space), provided one can prove a spectral gap condition without it (for instance, using the reversiblization argument of Fill [23]).

§ 4. Relative Hamiltonians

Here we assume that the sequence of states \(\{\omega_n: n = 1, 2, \ldots\} \) is constructed starting from \(\omega_1 \) and from a sequence \(\{h_n: n = 2, 3, \ldots\} \) of relative Hamiltonians in such a way that
\[\omega_n = (\omega_{n-1})^{h_n}; \quad n = 2, 3, \ldots \]
in the sense of eq. (2.10), and we estimate the quantities \(\| R_n \| \) and \(\| (R_n^{*} R_n - 1) \Omega_n \| \) in terms of \(h_n: n = 2, 3, \ldots \).
We restrict to bounded \(h_n = h_n^* \in \mathcal{M} \), although \(\omega^h \) can be defined also for self-adjoint \(h \) which is only bounded from below, since we need \(\omega_{n-1} \in S_{\omega_n}(\mathcal{M}) \) in order to have the operators \(R_n \in \mathcal{M}' \) on which our analysis is based, and this in turn implies that \(-h_n \) is bounded from below, so that \(h_n \) is bounded.

We are able to prove that \(\omega_{n-1} \in S_{\omega_n}(\mathcal{M}) \) under the assumption that the function \(t \to \sigma^{n-1}(h_n)^01(h_n) = \Delta_{n-1}^0 h_n \Delta_{n-1}^{01} \) extends to an analytic function on the strip \(\{ z \in \mathbb{C} : -1/2 < \text{Im} z < 0 \} \), continuous on the boundaries, with values in \(\mathcal{M} \); we believe that this is only a sufficient condition. In order to avoid excessive notational burdens, we give a proof of the following statement:

Lemma 4.1. Let \(\omega \) be a faithful normal state in \(\mathcal{M} \), with \(\omega(a) = \langle \Omega, a\Omega \rangle : a \in \mathcal{M} \), and with associated modular automorphism group \(\sigma_t = \Delta^0_t \cdot \Delta_t^{01} : t \in \mathbb{R} \). Let \(h = h^* \in \mathcal{M} \) be such that the function \(t \to \sigma_t(h) \) extends to an analytic function on the strip \(\{ z \in \mathbb{C} : -1/2 < \text{Im} z < 0 \} \), continuous on the boundaries, with values in \(\mathcal{M} \), and let \(\omega^h \) be defined by eq. (2.10). Denote by \(\Phi \) the normalized vector \(\Omega(h)/\|\Omega(h)\| \). Then there exists a unique \(R \) in \(\mathcal{M}' \) such that

\[
\Omega = R\Phi;
\]

\(R \) is invertible, and

\[
\|R\|, \|R^{-1}\| \leq \exp \|h\|,
\]

where

\[
\|h\| = \sup \{ \|\sigma_{-t}(h)\| : 0 \leq t \leq 1/2 \}.
\]

Proof. Consider the differential equations

\[
\begin{aligned}
\frac{d}{ds} V(s) &= -V(s)\sigma_{-s}(h) : 0 \leq s \leq \frac{1}{2} \\
V(0) &= 1
\end{aligned}
\]

(4.4)

and

\[
\begin{aligned}
\frac{d}{ds} \tilde{V}(s) &= \sigma_{-s}(h)\tilde{V}(s) : 0 \leq s \leq \frac{1}{2} \\
\tilde{V}(0) &= 1
\end{aligned}
\]

(4.5)

Both equations have unique solutions in \(\mathcal{M} \) satisfying the bounds

\[
\|V(s)\|, \|\tilde{V}(s)\| \leq \exp \{s\|h\|\} : 0 \leq s \leq \frac{1}{2}.
\]

Moreover, \(\tilde{V}(s) = V(s)^{-1} \) for all \(s \in [0, 1/2] \). Indeed,

\[
\frac{d}{ds} \left[V(s)\tilde{V}(s) \right] = V(s)\left[-\sigma_{-s}(h) + \sigma_{-s}(h) \right]\tilde{V}(s) = 0
\]

so that \(V(s)\tilde{V}(s) = 1 \) for all \(s \); and in addition the constant 1 solves the differential equation for \(\tilde{V}(s)V(s) \), which reads
\[
\begin{cases}
\frac{d}{ds} [\mathcal{V}(s)V(s)] = \sigma_{-t_{j}}(h)[\mathcal{V}(s)V(s)] - [\mathcal{V}(s)V(s)]\sigma_{-t_{j}}(h) : \quad 0 \leq s \leq \frac{1}{2} \\
\mathcal{V}(0)V(0) = 1.
\end{cases}
\]

By the uniform boundedness of \(\sigma_{-t_{j}}(h)\) on \([0, 1/2]\), the solution to the latter equation is unique, so that \(\mathcal{V}(s)V(s) = 1\) for all \(s\).

Now we have the iterated series
\[
V(s) = \sum_{k=0}^{\infty} (-1)^{k} \int_{0}^{s} ds_{1} \cdots \int_{0}^{s_{k-1}} ds_{k} \sigma_{-t_{j}}(h) \cdots \sigma_{-t_{2}}(h) \sigma_{-t_{1}}(h),
\]
and it is clear that
\[
\mathcal{Q}(h) = V(1/2)\mathcal{Q} = J \mathcal{Q} V(1/2)^{*} \mathcal{Q}
\]
\[
= J \mathcal{Q} V(1/2)^{*} \mathcal{Q} J \mathcal{Q} = J V(1/2)J \mathcal{Q},
\]
where the last equality follows from the explicit expression of \(V(s)\). Hence
\[
\Phi = \|V(1/2)\mathcal{Q}\|^{-1} J V(1/2)J \mathcal{Q}
\]
or
\[
\mathcal{Q} = \|V(1/2)\mathcal{Q}\| J \mathcal{V}(1/2)J \Phi = R \Phi.
\]
Since \(\Phi\) is cyclic and separating for \(\mathcal{H}\) and for \(\mathcal{M}'\) as \(\mathcal{Q}\) is, it follows that \(R \in \mathcal{M}'\) is uniquely determined to be
\[
R = \|V(1/2)\mathcal{Q}\| J \mathcal{V}(1/2)J.
\]

An obvious estimate gives
\[
\|R\| \leq \|V(1/2)\| \|\mathcal{V}(1/2)\|
\]
\[
\leq \exp \left\{ \frac{1}{2} \|h\| \right\} \exp \left\{ \frac{1}{2} \|h\| \right\} = \exp \{\|h\|\}.
\]

Moreover,
\[
R^{-1} = \|V(1/2)\mathcal{Q}\|^{-1} J V(1/2)J.
\]
We have
\[
1 = \|\mathcal{Q}\| = \|\mathcal{V}(1/2)V(1/2)\mathcal{Q}\| \leq \|\mathcal{V}(1/2)\mathcal{Q}\| \|V(1/2)\mathcal{Q}\|
\]
so that
\[
\|V(1/2)\mathcal{Q}\|^{-1} \leq \|\mathcal{V}(1/2)\|
\]
Hence
\[
\|R^{-1}\| \leq \|\mathcal{V}(1/2)\| \|V(1/2)\| \leq \exp \{\|h\|\}.
\]

Proposition 4.2. Suppose that the sequence \(\{h_{n} : n = 2, 3, \ldots\}\) of relative Hamiltonians is such that the functions \(t \mapsto \sigma_{x_{n}^{-1}}(h_{n})\) extend to analytic functions on the strip \(\{z \in \mathbb{C} : -1/2 < \text{Im} z < 0\}\), continuous on the boundaries, with values in \(\mathcal{M}\); let \(\|h_{n}\|_{n-1} = \sup \{\|\sigma_{x_{n}^{-1}}(h_{n})\| : 0 \leq s \leq 1/2\}\). Then
\[
\|R_{n}\| \leq \exp \{\|h_{n}\|_{n-1}\}.
\]
Proof. (4.8) is proved in Lemma 4.1. Next,
\[
\| (R_n^* R_n - 1) \Omega_n \|^2 = \| R_n^* \Omega_{n-1} - \Omega_n \|^2 \\
= \| R_n^* \Omega_{n-1} \|^2 + \| \Omega_n \|^2 - 2 \text{Re} \langle R_n^* \Omega_{n-1}, \Omega_n \rangle \\
= \| R_n^* \Omega_{n-1} \|^2 + \| \Omega_n \|^2 - 2 \| \Omega_{n-1} \|^2 = \| R_n^* \Omega_{n-1} \|^2 - 1 \\
\leq \| R_n^* \| \| \Omega_{n-1} \| - 1 \leq \exp \{ 2 \| h_n \|_{n-1} \} - 1 ,
\]
which is (4.9).

Remark. In applications where the spectral gap \(\gamma_n \) tends to 0 as \(n \to \infty \), one needs \(\| h_n \|_{n-1} \to 0 \) faster than \(\gamma_n \) (at least). This implies that \(\| \omega_n - \omega_{n-1} \| \to 0 \) as \(n \to \infty \), but by no means does it necessarily follow that \(\omega_n \) converges to a limit as \(n \to \infty \).

Remark. In the most classical applications (simulated annealing on a compact state space \(X \) with time-independent energy function \(U : X \to \mathbb{R} \) and with a sequence \(\beta_n \) of inverse temperatures increasing to \(+\infty \)), one has simply \(h_n = (\beta_n - \beta_{n-1}) U \geq 0 \). The case of non-compact \(X \) and unbounded \(U \) can be handled as in [24].

§ 5. Generalizations
In the main application of the above results, simulated annealing, the states \(\omega_n \) represent thermal states at different temperatures of a fictitious finite (but large) physical system. For infinite physical systems thermal states at different temperatures are typically disjoint states on a C*-algebra \(\mathcal{A} \), meaning that for each \(n \) there is a GNS triple \((\mathcal{H}_n, \pi_n, \Omega_n) \) associated with the pair \((\mathcal{A}, \omega_n) \), the cyclic vector \(\Omega_n \) is also separating for the von Neumann algebra \(\pi_n(\mathcal{A})^\prime \), but no subrepresentation of \(\pi_n \) is unitarily equivalent to a subrepresentation of \(\pi_m \) for \(n \neq m \). Unfortunately, there is no simple generalization of the above techniques to this new situation, in view of the following

Lemma 5.1. Let \(\omega_1, \omega_2 \) be states on a C*-algebra \(\mathcal{A} \), with GNS triples \((\mathcal{H}_1, \pi_1, \Omega_1), (\mathcal{H}_2, \pi_2, \Omega_2)\) such that \(\Omega_i \) is also separating for the bicommutant \(\pi_i(\mathcal{A})^\prime \) of \(\pi_i(\mathcal{A}) \) in \(\mathcal{B}(\mathcal{H}_i) \); \(i = 1, 2 \). If the operator \(R : \pi_2(\mathcal{A}) \Omega_1 \subseteq \mathcal{H}_2 \to \mathcal{H}_1 \) defined by
\[
R \pi_2(a) \Omega_1 = \pi_1(a) \Omega_1 ; \quad a \in \mathcal{A}
\]
is closable, then \(\pi_1 \) is unitarily equivalent to a subrepresentation of \(\pi_2 \).

Proof. Let \(q \) be the densely defined quadratic form on \(\pi_2(\mathcal{A}) \Omega_1 \subseteq \mathcal{H}_2 \) given by
\[q(\pi_s(a)Q) = \|\pi_s(a)Q\|^2 = \|R\pi_s(a)Q\|^2 : \quad a \in \mathcal{A}. \] (5.2)

Since \(R \) is closable, \(q \) is closable. Let \(x \) be the positive self-adjoint operator in \(\mathcal{K}_s \) associated with the closure \(\bar{q} \) of \(q \): then \(\pi_s(\mathcal{A})Q \subseteq \mathcal{D}(x^{1/2}) \) and
\[\|x^{1/2}\pi_s(a)Q\|^2 = \|\pi_s(a)Q\|^2. \] (5.3)

For unitary \(u \in \mathcal{A} \), one has
\[\|x^{1/2}\pi_s(u)\pi_p(a)Q\|^2 = \|\pi_p(u)\pi_p(a)Q\|^2 = \|\pi_p(a)Q\|^2 = \|x^{1/2}\pi_p(a)Q\|^2 \]
so that \(\pi_s(u)*x\pi_s(u) = x \) in the sense of quadratic forms, and the spectral projections of \(x \) commute with \(\pi_s(u) \). Since a Banach *-algebra is generated as a linear space by its unitary elements, \(x \) is affiliated with the commutant \(\pi_s(\mathcal{A})' \), and
\[\|\pi_p(a)x^{1/2}Q\|^2 = \|x^{1/2}\pi_p(a)Q\|^2 = \|\pi_p(a)Q\|^2 : \quad a \in \mathcal{A}. \] (5.4)

Let \(\mathcal{K} \) be the closed subspace of \(\mathcal{K}_s \) given by \(\mathcal{D}(x^{1/2}Q) \); \(\mathcal{K} \) is stable under \(\pi_s(\mathcal{A}) \). Let \(U \) be the linear operator mapping \(\pi_s(\mathcal{A})Q \subseteq \mathcal{K}_1 \) into \(\mathcal{K} \) defined by
\[U\pi_s(a)Q = \pi_s(a)x^{1/2}Q : \quad a \in \mathcal{A}. \] (5.5)

By (5.4), \(U \) extends to an isometry of \(\mathcal{K}_1 \) into \(\mathcal{K} \). Moreover, \(U \) is actually unitary from \(\mathcal{K}_1 \) onto \(\mathcal{K} \). Indeed, for all \(a, b \in \mathcal{A} \), one has
\[\langle U\pi_s(a)Q, \pi_p(b)x^{1/2}Q \rangle = \langle \pi_p(a)x^{1/2}Q, \pi_p(b)x^{1/2}Q \rangle \]
\[= \langle \pi_p(a)Q, x\pi_s(b)Q \rangle = \langle \pi_s(a)Q, \pi_p(b)Q \rangle \]
where the last two equalities follow from the fact that \(x \) is affiliated with \(\pi_s(\mathcal{A})' \) and by polarization from (5.3), respectively. Hence \(U\pi_s(b)x^{1/2}Q = \pi_s(b)Q \) and \(UU^*\pi_s(b)x^{1/2}Q = \pi_s(b)x^{1/2}Q_s \). By density, \(UU^* = 1 \) on \(\mathcal{K} \).

Now it is an easy exercise to prove that
\[U\pi_s(a)U^* = \pi_s(a) |_{\mathcal{K}} \quad \forall a \in \mathcal{M} \] (5.6)
which proves that \(\pi_1 \) is unitarily equivalent to a subrepresentation of \(\pi_s \).

For this reason, the only generalization running on the same lines as the arguments of \(\S \, 3 \) can be obtained by assuming the following: we have dynamical maps \(\tau_n : n = 1, 2, \ldots \), all defined on the same von Neumann algebra \(\mathcal{M} \), each map with an invariant faithful normal state \(\omega_n = \langle Q, \cdot Q_n \rangle \), and there exist closed operators \(R_n : n = 2, 3, \ldots \), affiliated with \(\mathcal{M}' \), such that
\[Q_n \in \mathcal{D}(R_n), \quad R_n Q_n = Q_{n-1} : \quad n = 2, 3, \ldots \] (5.7)
Conditions equivalent to (5.7) with closed unbounded \(R_n \) are discussed in Kosaki [25]. In particular, it is not true that, if \(\omega_n \) is a faithful normal state on \(\mathcal{M} \),
each normal state on \mathcal{M} can be represented in this form.

In order to make sense of the formulas in Lemma 3.1 in this more general situation, it suffices to assume that

$$T_{n-1}^* \text{ maps } \mathcal{H} \text{ into } D(R_n^*) \quad \forall n=2, 3, \ldots.$$ \hspace{1cm} (5.8)

However, something more is needed to imitate the estimates in Lemma 3.2 and Theorem 3.3. To be specific, we assume the following.

Assumption 5.2. Each τ_n can be written as the product of two dynamical maps τ_n and $\tilde{\tau}_n$

$$\tau_n = \tilde{\tau}_n \tau_n$$ \hspace{1cm} (5.9)

with similar properties: i.e. $\bar{\tau}_n$ and $\tilde{\tau}_n$ leave ω_n invariant, so that they are associated with contractions \hat{T}_n and \hat{T}_n on \mathcal{H} such that

$$\hat{T}_n(a\Omega_n) = \bar{\tau}_n(a)\Omega_n; \quad \hat{T}_n(a\Omega_n) = \tilde{\tau}_n(a)\Omega_n;$$ \hspace{1cm} (5.10)

moreover $\bar{\tau}_n$ satisfies a spectral gap condition with a constant e^{-n}, so that

$$\| \hat{T}_n^* \Psi \| \leq e^{-n} \| \Psi \| \quad \forall \Psi \in \mathcal{H} \text{ with } \langle \Omega_n, \Psi \rangle = 0,$$ \hspace{1cm} (5.11)

and finally

$$T_{n-1}^* \text{ maps } \mathcal{H} \text{ into } D(R_n^*): \quad n=2, 3, \ldots.$$ \hspace{1cm} (5.12)

The above conditions are rather natural if

$$\tau_n = \exp \left[(t_n - t_{n-1}) \mathcal{L}_n \right]$$ \hspace{1cm} (5.13)

with $t_n > 0$, \mathcal{L}_n being the generator of a semigroup of dynamical maps: one can take

$$\bar{\tau}_n = \exp \left[(t_n - t_{n-1}) (1 - \zeta_n) \mathcal{L}_n \right], \quad \tilde{\tau}_n = \exp \left[(t_n - t_{n-1}) \zeta_n \mathcal{L}_n \right]$$ \hspace{1cm} (5.14)

with $0 < \zeta_n < 1$. In the case of classical Langevin diffusion on \mathbb{R}^n (cf. [26]), in which \mathcal{L}_n is a differential operator of the form $-\Delta + \beta_n V U \cdot \nabla$, a condition of the form (5.12) follows from suitable intrinsic hypercontractivity properties of the semigroup generated by \mathcal{L}_n provided that U grows at infinity fast (typically, faster than $(\text{const.}) |x|^s$, cf. [27]).

As a consequence of (5.9), we have

$$T_n^* = \hat{T}_n^* \hat{T}_n^*; \quad n=1, 2, \ldots.$$ \hspace{1cm} (5.15)

As a consequence of (5.12) and of the closed graph theorem, the operators \hat{R}_n^* defined by

$$\hat{R}_n^* = R_n^* T_{n-1}^*; \quad n=2, 3, \ldots.$$ \hspace{1cm} (5.16)

are everywhere defined and bounded.

Now define a sequence $\tilde{\nu}_n$ of vectors in \mathcal{H} by
Then the vectors Ψ_n such that

$$\varphi_n(a) = \langle \Psi_n, a\Omega_n \rangle : a \in \mathcal{M}$$

are given by

$$\Psi_n = \hat{T}^*_n \Psi_n : n = 1, 2, \ldots .$$

(5.18)

Lemma 5.3. Under the above assumptions, let

$$\alpha_n = \tilde{\gamma}_n - \log \| \hat{R}_n \| ,$$

(5.19)

$$\beta_n = e^{-\gamma} \| (\hat{R}_n^* \hat{R}_n - 1) \Omega_n \| .$$

(5.20)

Then, for all $n = 2, 3, \ldots$.

$$\| \Psi_n - \Omega_n \| \leq \alpha_n \| \hat{R}^* \Psi_{n-1} - \Omega_n \| + \beta_n .$$

(5.21)

Proof. We have

$$\Psi_n - \Omega_n = \hat{T}^*_n \hat{R}_n^* \hat{R}_n \Psi_{n-1} - \Omega_n = \hat{T}^*_n (\hat{R}_n^* \hat{R}_n - 1) \Omega_n .$$

Moreover, $\hat{R}_n^* \hat{R}_n - 1$ is orthogonal to Ω_n since

$$\langle \hat{R}_n^* \hat{R}_n - 1, \Omega_n \rangle = \langle \hat{R}_n^* \hat{R}_n \Psi_{n-1}, \Omega_n \rangle - \langle \Omega_n, \Omega_n \rangle = \langle \Psi_{n-1}, \Omega_n \rangle - \langle \Omega_n, \Omega_n \rangle = \varphi_{n-1}(1) - \omega_n(1) = 0 .$$

Then

$$\| \Psi_n - \Omega_n \| \leq e^{-\gamma} \| \hat{R}^* \Psi_{n-1} - \Omega_n \| .$$

Note that

$$\hat{R}_n^* \hat{R}_n - 1 \Omega_n = \hat{T}^*_n (\hat{R}_n \Psi_{n-1} - \Omega_n) + \hat{R}_n^* \Omega_{n-1} \Omega_n$$

and

$$\hat{T}^*_n \Omega_{n-1} = \hat{T}^*_n (\hat{R}_n \Psi_{n-1} - \Omega_n) + \hat{T}^*_n \hat{R}_n \Omega_{n-1} = \hat{T}^*_n \hat{R}_n \Omega_n .$$

Theorem 5.4. Under the above assumptions, suppose also that there exist real constants $\alpha > 0$, $\beta \geq 0$, $1 > \delta > \varepsilon \geq 0$ such that

$$\alpha_n \leq \alpha n^{\delta} \cdot \beta_n \leq \beta n^{\varepsilon} : n = 1, 2, \ldots .$$

(5.22)

Then there is a constant C (depending on φ_n), such that

$$| \varphi_n(a) - \omega_n(a) | \leq C \| a \| n^{\delta - \varepsilon} \longrightarrow 0 \quad \text{as} \quad n \rightarrow \infty .$$

(5.23)

Proof. We have

$$| \varphi_n(a) - \omega_n(a) | = | \langle \Psi_n - \Omega_n, a\Omega_n \rangle |$$

$$\leq \| \Psi_n - \Omega_n \| \| a \Omega_n \| = \| \hat{T}^*_n (\hat{R}_n \Psi_{n-1} - \Omega_n) \| \| a \Omega_n \| \leq \| \Psi_n - \Omega_n \| \| a \| .$$

It suffices to prove that

$$\| \Psi_n - \Omega_n \| \leq C n^{\delta - \varepsilon} ,$$
and this is accomplished exactly as in Theorem 3.3, taking advantage of Lemma 5.3.

References

[18] Donald, M. J., Relative hamiltonians which are not bounded from above, J. Funct. Anal., 91 (1990), 143-173.

