Measure and Integration — On Brooks-Jewett, Vitali-Hahn-Saks and Nikodym convergence theorems for quasi-triangular functions, by Paola Cavaliere and Paolo de Lucia.

Dedicated to the memory of Renato Caccioppoli

Abstract. — Connections are established between Brooks-Jewett, Vitali-Hahn-Saks and Nikodym type convergence theorems for quasi-triangular functions on Boolean rings satisfying the Subsequential Completeness Property and valued into Hausdorff topological spaces.

Key words: Non-additive functions, Convergence theorems.

Mathematics Subject Classification: 28A12, 28A33.

1. Introduction

In 1928, in dealing with sufficient conditions for interchanging limit and Stieltjes integral, R. Caccioppoli [1] introduced the following definition of uniformly bounded variation for families of countably additive real-valued functions. Let \mathcal{A} be the σ-algebra of Lebesgue measurable subsets of a rectangle $[a, b] \subset \mathbb{R}^m$. A sequence $(\mu_n)_{n \in \mathbb{N}}$ of countably additive real-valued functions defined on \mathcal{A} is said to be of uniformly bounded variation if, for every sequence $(A_i)_{i \in \mathbb{N}}$ in \mathcal{A} such that

\begin{equation}
\bigcap_{k \in \mathbb{N}} \bigcup_{i \geq k} A_i = \emptyset,
\end{equation}

the real sequence $(\mu_n(A_i))_{i \in \mathbb{N}}$ converges to zero, uniformly in n.

In a footnote, Caccioppoli observed that condition (1.1) could be relaxed on requiring that the A_i’s are pairwise disjoint. However, he did not further investigate on this possibility. The notion of uniformly bounded variation was recovered only sixteen years later by V. M. Dubrovniki [14, 15] and exploited by F. Cafiero in [2], [3, Chapter V] and [4], under the name of uniform additivity.

In 1943, in connection with the study of the decomposition of additive set functions, R. Rickart [25] suggested the following definition of exhaustivity for finitely additive vector-valued functions. Let \mathcal{A} be a σ-algebra of sets and let X be a normed linear space. A finitely additive function $\mu : \mathcal{A} \to X$ is said to be exhaustive if, for every sequence $(A_i)_{i \in \mathbb{N}}$ of pairwise disjoint elements of \mathcal{A}, the sequence $(\mu(A_i))_{i \in \mathbb{N}}$ converges to the zero element of X.
Plainly, as long as families of countably additive real-valued functions are taken into account, the definition of uniform exhaustivity agrees with that of uniformly bounded variation to which Caccioppoli alluded in the aforementioned footnote (see [10] for more information). Hence, the notion of an exhaustive function may be regarded as an extension of that of finitely additive vector measures of bounded variation and countably additive measures on a σ-algebra, whose additional advantage relies on its versatility. Its applicability extends far beyond the classes of finitely additive functions valued into topological groups or uniform semigroups, for example in the setting of non-additive functions.

On the other hand, recent years have witnessed an increasing interest in the study of non-additive functions. Research in this topic is motivated by theoretical and applied problems where even an assumption of finite additivity is too restrictive (see, e.g., [12, 16, 18, 21, 22, 23, 29, 32] and the references therein). As a consequence, the additivity assumption has to be replaced by a considerably weaker assumption, and various additional conditions have to be required in order to introduce special kinds of non-additive measures. The present paper is concerned with the class of quasi-triangular functions—see, e.g., [5, 6, 7, 19, 20, 26, 27, 28]. The importance of this class of functions mainly stems from the following two facts. First, it provides us with a generalization of the class of classical finitely additive functions where the additivity assumption is removed and no algebraic structure is required on the range space as well. Second, it includes various families of non-additive functions extensively studied in the literature, as elucidated by several examples in [6].

In the present paper we continue our investigations, initiated in [5, 6], on the issue of whether classical convergence theorems are available for quasi-triangular functions acting on Boolean rings satisfying the Subsequential Completeness Property. In this framework, we prove a Nikodým type theorem, and establish connections between theorems of Brooks-Jewett [5], Vitali-Hahn-Saks [6] and Nikodým type. This is the content of Theorem 2.1, where these results are shown to be in fact equivalent, provided that the range space is a Tychonoff space. Thus, Theorem 2.1 may be regarded as an extension to the quasi-triangular case of a well-known result of L. Drewnowski [13] (see also [11]) concerning finitely additive functions. Moreover, as a straightforward corollary, we deduce that each one of the aforementioned convergence theorems can be derived as a consequence of Cafiero criterion for uniform exhaustivity [5, 27, 28].

The outline of this note is as follows. Section 2 contains some basic definitions and the statement of our main result. The latter consists of various implications, whose proofs, which require tools of different nature, are given in separate subsections of Section 3.

2. Statement of the main result

Throughout this note \(\mathcal{R} \) stands for a Boolean ring, whose least point is denoted by \(0_{\mathcal{R}} \) or 0, and \(\mathcal{S} = (S, \tau) \) for a Hausdorff topological space. On \(\mathcal{S} \) we assume that a point \(e \in \mathcal{S} \) is arbitrarily fixed and use the notation \(\tau[e] \) to denote one of its fundamental system of \(\tau \)-neighborhoods.
We denote by $M[e]$ the family of all functions $\varphi : \mathcal{R} \to \mathcal{I}$ such that $\varphi(0) = e$. Recall that if $\varphi \in M[e]$, then

i) φ is said to be (e-)exhaustive if, whenever $(a_k)_{k \in \mathbb{N}}$ is a sequence of pairwise disjoint elements of \mathcal{R}, then $\lim_k \varphi(a_k) = e$;

ii) φ is said to be (e-)order continuous if, whenever $(b_k)_{k \in \mathbb{N}}$ is a monotone decreasing sequence in \mathcal{R} whose infimum is 0$_\mathcal{R}$ (briefly, decreasing to 0$_\mathcal{R}$ or $b_k \downarrow 0_\mathcal{R}$), then $\lim_k \varphi(b_k) = e$;

iii) φ is said to be quasi-triangular if, for every $U \in \tau[e]$ there exists $V = V(U) \in \tau[e]$ such that for each pair of disjoint elements a, b in \mathcal{R}, it holds

$$\varphi(a) \in V, \varphi(b) \in V \Rightarrow \varphi(a \lor b) \in U;$$

$$\varphi(a) \in V, \varphi(a \lor b) \in V \Rightarrow \varphi(b) \in U.$$

Note that the uniform version of the above definitions can be easily formulated for any given subcollection $\Phi := (\varphi_i)_{i \in I}$ of $M[e]$.

In what follows, for any function $\varphi \in M[e]$ and each $a \in \mathcal{R}$ we adopt the notation $\varphi([0,a])$, or simply $\varphi(a)$, for the set $\{\varphi(b) : b \in \mathcal{R}, b \leq a\}$. Moreover, whenever φ is quasi-triangular, we simply denote by $V(0)$ the intersection $U \cap V(U)$ of the sets appearing in the definition iii) above and then $V^{(1)} := V(0) \cap V(V(0))$.

We will use the following notion, introduced in [6] mymicking [18, 31].

Definition 2.1. Let (\mathcal{S}_o, τ_o) be a topological space and $e_o \in \mathcal{S}_o$ be arbitrarily fixed. If $\psi \in M[e]$ and $v \in M[e_o]$, then ψ is said to be v-continuous ($\psi \ll v$, for short) if, and only if, for every $U \in \tau[e]$ there exists some $V \in \tau_o[e_o]$ such that $v([0,a]) \subseteq V$ implies that $\psi([0,a]) \subseteq U$. Moreover, ψ is said to be equivalent to v, in symbols $\psi \asymp v$, whenever both $\psi \ll v$ and $v \ll \psi$.

Finally let us recall that \mathcal{R} is said to satisfy the Subsequential Completeness Property (briefly SCP) (see, e.g., [8, 17, 30] for more details), if for each sequence $(a_k)_{k \in \mathbb{N}}$ of pairwise disjoint elements in \mathcal{R} there is an infinite part M of \mathbb{N} ($M \in \mathcal{I}_\infty(\mathbb{N})$) such that the supremum of the set $\{a_k : k \in M\}$ exists in \mathcal{R}, denoted by $\bigvee_{k \in M} a_k$ as usual.

Now we are in a position to state our main result dealing with connections between generalized versions of three convergence theorems classically known as the Brooks-Jewett Theorem, the Vitali-Hahn-Saks Theorem and the Nikodým Theorem.

Theorem 2.1. If \mathcal{R} is a SCP-Boolean ring and $(\varphi_n)_{n \in \mathbb{N}}$ is a sequence of exhaustive and uniformly quasi-triangular elements of $M[e]$ converging pointwise in \mathcal{R} to an exhaustive element φ of $M[e]$, then the implications

(a): (BJ) implies (VHS)

(b): (VHS) implies (N)

(c): (BJ) implies (N)

(d): (N) implies (BJ), when the range space \mathcal{I} is a Tychonoff space
hold among the following statements:

(BJ): Then the sequence \((\varphi_n)_{n \in \mathbb{N}}\) is uniformly exhaustive;

(VHS): If each \(\varphi_n\) is \(v\)-continuous, where \(v\) belongs to \(\mathcal{M}[e_0]\) and \(e_0\) is an arbitrarily fixed point in some topological space \((\mathcal{S}_0, \tau_0)\), then the sequence \((\varphi_n)_{n \in \mathbb{N}}\) is uniformly \(v\)-continuous;

(N): If each \(\varphi_n\) is order continuous, then the sequence \((\varphi_n)_{n \in \mathbb{N}}\) is uniformly order continuous.

Consequently, (BJ), (VHS) and (N) are in fact equivalent when the range space \(\mathcal{S}\) is a Tychonoff space.

Let us mention that implication (a) is proved in [6], whereas the Brooks-Jewett Theorem is established in [5] via a Cafiero criterion of uniform exhaustivity for quasi-triangular functions. So, by implication (b), here we prove a Nikodým type theorem. Moreover our main result yields as a corollary that each one of the above convergence theorems can be deduced via such criterion.

3. Proof of the main result

3.1. (VHS) implies (N)

Before going into details, it is worth noting that in the spirit of [13] we employ Fréchet-Nikodým topologies on rings (briefly, \(FN\)-topologies) as powerful tool in obtaining our conclusions. The reader may refer to [9, 31] for a comprehensive treatment of \(FN\)-topologies in the additive context and to [6] for a similar analysis in the non-additive setting of quasi-triangular functions. In order to keep this paper self-contained, using Definition 2.1, we gather together the special results from [6] needed hereafter in the following

Remark 3.1.1. If \(\varphi\) is quasi-triangular, then

(i) \(\varphi\) generates a \(FN\)-topology (namely \(\Gamma_\varphi\)) on the underlying ring \(\mathcal{R}\) having as neighbourhood base at each \(a \in \mathcal{R}\) the family \(\Gamma_\varphi(a) := \{\{x \in \mathcal{R} : \varphi(x \Delta a) \subseteq U\} \cup \mathcal{B}[e] \}$, where \(\mathcal{B}[e]\) is a neighbourhood base at the point \(e \in \mathcal{S}\);

(ii) there exists a finitely additive function \(\mu\), acting on the same Boolean ring \(\mathcal{R}\) and valued in some topological Abelian group \((\mathcal{G}_0, \tau_0)\), with \(\mu(0) = e_0\), which is equivalent to \(\varphi\), i.e. \(\mu \asymp \varphi\). Consequently, the \(FN\)-topologies generated by \(\varphi\) and \(\mu\), respectively, coincide, i.e. \(\Gamma_\varphi = \Gamma_\mu\).

Our first aim is to strengthen conclusion (ii) of the previous remark, proving that the additional assumption of order continuity of \(\varphi\) yields to the countable additivity of the function \(\mu\). To this end we need the following
LEMMA 3.1.2. Let \(\varphi \) be quasi-triangular. Then \(\varphi \) is order continuous if, and only if, for every \(U \in \tau[e] \) and every sequence \((b_k)_{k \in \mathbb{N}} \) in \(\mathcal{R} \) decreasing to \(0_{\mathcal{R}} \) there exists some \(k_o \in \mathbb{N} \) such that \(\varphi([0, b_k]) \subseteq U \) for every \(k \geq k_o \).

PROOF. Given \(\varphi \in \mathcal{M}[e] \) quasi-triangular, suppose first that \(\varphi \) is order continuous and, by way of contradiction, the condition is not satisfied. Then there exist some \(U_o \in \tau[e] \) and some sequence \((b_k)_{k \in \mathbb{N}} \) decreasing to \(0_{\mathcal{R}} \) such that for each \(i \in \mathbb{N} \) there is an index \(k_i > i \) and an element \(y_i \in \mathcal{R} \) such that \(\varphi(y_i \land b_{k_i}) \notin U_o \). In particular, this implies that corresponding to \(V^{(0)} := U_o \cap V(U_o) \) one may construct inductively a strictly increasing sequence \((i_j)_{j \in \mathbb{N}} \) such that
\[
\varphi(y_{i_j} \land b_{k_{i_j}}) \notin U_o, \quad \varphi(y_{i_j} \land b_{k_{i_{j+1}}}) \in V^{(0)} \quad \forall j \in \mathbb{N}.
\]

The quasi-triangularity of \(\varphi \) then tells us that

\[
(3.1.1) \quad \varphi(y_{i_j} \land (b_{k_{i_j}} \land b_{k_{i_{j+1}}})) = \varphi(c_j \land b_{k_{i_{j+1}}}) \notin V^{(0)} \quad \forall j \in \mathbb{N},
\]

where \(c_j := (y_{i_j} \land b_{k_{i_j}}) \lor b_{k_{i_{j+1}}}. \) Since \((b_k)_{k \in \mathbb{N}} \) decreases to \(0_{\mathcal{R}} \), clearly so is \((c_j)_{j \in \mathbb{N}} \). So by the order continuity of \(\varphi \), corresponding to \(V^{(1)} \), there exists some \(j_o \in \mathbb{N} \) such that
\[
\varphi(c_j) \in V^{(1)}, \quad \varphi(b_{k_{i_{j+1}}}) \in V^{(1)} \quad \forall j \geq j_o.
\]

This clearly contradicts (3.1.1), because of the quasi-triangularity of \(\varphi \), ending the proof. The converse implication follows immediately from definition ii) (and clearly works without assuming \(\varphi \) quasi-triangular).

Now we are able to state

LEMMA 3.1.3. Let \(\varphi \) be quasi-triangular. Then \(\varphi \) is order continuous if, and only if, there exists a countably additive function \(\mu_\sigma \), acting on the same Boolean ring \(\mathcal{R} \) and valued in some topological Abelian group \((\mathcal{G}_o, \tau_0) \), with \(\mu_\sigma(0_{\mathcal{R}}) = e_o \), which is equivalent to \(\varphi \), i.e. \(\mu_\sigma \asymp \varphi \).

PROOF. Assume first that \(\varphi \) is quasi-triangular as well as order continuous. According to Remark 3.1.1(i) and Lemma 3.1.2, the FN-topology \(\Gamma_\varphi \) generated by \(\varphi \) on \(\mathcal{R} \) is order continuous. Hence the FN-topology \(\Gamma_\mu \) generated on \(\mathcal{R} \) by the finitely additive function \(\mu \) equivalent to \(\varphi \) (see Remark 3.1.1(ii)) is order continuous as well. This implies that \(\mu \) is actually countably additive, by [9, (2.4) in Chap. III]. The converse implication follows directly because countable additivity implies order continuity as well as \(\Gamma_{\mu_\sigma} \equiv \Gamma_\varphi \) by assumption.

PROOF OF THEOREM 2.1(b). Let \((\varphi_n)_{n \in \mathbb{N}} \) be a sequence of exhaustive, order continuous and uniformly quasi-triangular elements of \(\mathcal{M}[e] \) converging pointwise in \(\mathcal{R} \) to an exhaustive element \(\varphi \) of \(\mathcal{M}[e] \). By (the proof of) Lemma 3.1.3, for each \(n \) the FN-topology \(\Gamma_{\varphi_n} \) generated by \(\varphi_n \) on \(\mathcal{R} \) is order continuous. Hence
\[
(3.1.2) \quad \Gamma_{\varphi_n} \subseteq \Gamma_o := \sqrt{\{\Gamma \in FN(\mathcal{R}) : \Gamma \text{ order continuous}\}},
\]
where $FN(\mathcal{R})$ denotes the distributive complete lattice (with the inclusion as partial order) of all FN-topologies on \mathcal{R} (see [31, Proposition 1.5(a)]). Since Γ_o is order continuous, according to [9, (2.3)–(2.4) in Chap. III], there is a countably additive function μ_o defined on \mathcal{R} and valued into some topological Abelian group G_o such that $\Gamma_o \equiv \Gamma_{\mu_o}$. Thus, according to (3.1.2), each φ_n is actually μ_o-continuous. Now (VHS) tells us that the sequence $(\varphi_n)_{n \in \mathbb{N}}$ is uniformly quasi-triangular. As the countable additivity of μ_o guarantees that, for any sequence $(b_k)_{k \in \mathbb{N}}$ decreasing to 0, then $\lim_k \mu_o(b_k \wedge x) = e_o$ uniformly respect to $x \in \mathcal{R}$, the proof ends. \qed

3.2. (BJ) implies (N)

PROOF OF THEOREM 2.1(c). Let $(\varphi_n)_{n \in \mathbb{N}}$ be a sequence of exhaustive, order continuous and uniformly quasi-triangular elements of $\mathcal{M} [e]$ converging pointwise in \mathcal{R} to an exhaustive element φ of $\mathcal{M} [e]$. Then (BJ) states that the sequence $(\varphi_n)_{n \in \mathbb{N}}$ is uniformly exhaustive.

Now suppose, by way of contradiction, that $(\varphi_n)_{n \in \mathbb{N}}$ fails to be uniformly order continuous. Then, passing to a subsequence if needed, there are some $U_o \in \tau[e]$ and some sequence $(b_k)_{k \in \mathbb{N}}$ decreasing to 0 such that $\varphi_i(b_i) \notin U_o$ for each i. So, taken $V(0) := U_o \cap V(U_o)$, one may construct inductively a strictly increasing sequence $(i_j)_{j \in \mathbb{N}}$ such that $\varphi_{i_j}(b_{i_j+1}) \in V(0)$ for every j. The uniform quasi-triangularity of $(\varphi_n)_{n \in \mathbb{N}}$ then implies that $\varphi_{i_j}(b_{i_j} \wedge b_{i_{j+1}}) \notin V(0)$ for each j. This clearly contradicts the uniform exhaustivity of the sequence $(\varphi_n)_{n \in \mathbb{N}}$ just stated, since $(b_j \wedge b_{j+1})_{j \in \mathbb{N}}$ is disjoint in \mathcal{R}.

\textbf{Remark 3.2.1.} By [24, Theorem 1.3.23], the above result improves the one established in [26].

3.3. (N) implies (BJ), If \mathcal{R} is a Tychonoff Space

Our approach to the proof depends mainly on two lemmas, which are closely modeled on [13].

\textbf{Lemma 3.3.1.} Let \mathcal{R} be a SCP-Boolean ring and let $\eta: \mathcal{R} \to [0, +\infty]$ be a monotone increasing function vanishing in 0. If η is exhaustive, then for each sequence $(a_k)_{k \in \mathbb{N}}$ of pairwise disjoint elements of \mathcal{R} there is a subsequence $(a_{k_h})_{h \in \mathbb{N}}$ so that η is order continuous on the SCP-Boolean ring generated by $(a_{k_h})_{n \in \mathbb{N}}$.

\textbf{Proof.} We first claim that, given a disjoint sequence $(a_k)_{k \in \mathbb{N}}$ in \mathcal{R}, for each $I \in \mathcal{I}_{\omega}(\mathbb{N})$ and every $\varepsilon > 0$ there is some $M \in \mathcal{I}_{\omega}(I)$ such that $\bigvee_{k \in M} a_k$ exists in \mathcal{R} and $\eta(\bigvee_{k \in M} a_k) < \varepsilon$. To see this, partition I into a pairwise disjoint sequence $(I_h)_{h \in \mathbb{N}}$ of infinite sets. As \mathcal{R} satisfies the subsequential completeness property, then for each $h \in \mathbb{N}$ there is some $N_h \in \mathcal{I}_{\omega}(I_h)$ such that $\bigvee_{k \in N_h} a_k := b_h$ exists in \mathcal{R}. Clearly, $(b_h)_{h \in \mathbb{N}}$ is a pairwise disjoint sequence in \mathcal{R}. By the exhaustivity of η, then there is some positive integer h_ε such that $\eta(\bigvee_{k \in N_h} a_k) < \varepsilon$ for each $h \geq h_\varepsilon$. One gets the claim setting $M := N_{h_\varepsilon}$. \qed
A recursive application of the claim just stated leads to the existence of a monotone decreasing sequence \((M_n)_{n \in \mathbb{N}}\) in \(\mathcal{F}_\infty(\mathbb{N})\) satisfying the following conditions:

\[(3.3.1) \quad M_n \leq M_{n-1} \setminus \{\min M_{n-1}\}, \quad \exists \bigvee_{k \in M_n} a_k, \quad \eta \left(\bigvee_{k \in M_n} a_k \right) < \frac{1}{n}, \]

where \(M_0 := \mathbb{N}\).

Writing \(k_n := \min M_n, n \in \mathbb{N}\), the subsequence \((a_{k_n})_{n \in \mathbb{N}}\) is well-defined and fulfils the properties

\((\star)\) for any \(n \in \mathbb{N}\) and every \(J \in \mathcal{P}(\mathbb{N} \setminus \{1, \ldots, n\})\) such that \(\bigvee_{j \in J} a_{k_j}\) exists in \(\mathcal{R}\), it holds that

\[\bigvee_{j \in J} a_{k_j} \leq \bigvee_{k \in M_n} a_k; \]

moreover \(\eta(\bigvee_{j \in J} a_{k_j}) < \frac{1}{n}\).

The latter condition follows from the monotonicity of \(\eta\) together with the last estimate in (3.3.1).

Now we claim that \(\eta\) is order continuous on the SCP-Boolean ring \(\mathcal{R}_o\) generated by \((a_{k_n})_{n \in \mathbb{N}}\). Indeed, let \((b_m)_{m \in \mathbb{N}}\) be a sequence in \(\mathcal{R}_o \setminus \{0\}_{\mathcal{R}}\) decreasing to \(0_{\mathcal{R}}\). This means in particular that for each \(m\) there is some non-empty \(J_m \in \mathcal{P}(\mathbb{N})\) such that \(b_m = \bigvee_{j \in J_m} a_{k_j}\) and, moreover, \(\lim_m \min J_m = +\infty\). Hence for any \(n \in \mathbb{N}\) then there exists some \(m_0\) such that index sets \(J_m\) belong to \(\mathcal{P}(\mathbb{N} \setminus \{1, \ldots, n\})\) for \(m \geq m_0\). Thus, by \((\star)\), \(\eta(b_m) < \frac{1}{n}\) for \(m \geq m_0\), i.e. \(\eta(b_m) \to 0\), as claimed.

Lemma 3.3.2. Let \(\mathcal{R}\) be a SCP-Boolean ring, \(\mathcal{P} = (S, p)\) a pseudometric space and \((\varphi_n)_{n \in \mathbb{N}}\) a sequence of exhaustive elements of \(\mathcal{M}[e]\). Then any sequence \((a_k)_{k \in \mathbb{N}}\) of pairwise disjoint elements of \(\mathcal{R}\) admits a subsequence \((a_{k_i})_{i \in \mathbb{N}}\) such that

- the supremum \(\bigvee_{i \in \mathbb{N}} a_{k_i}\) exists in the SCP-Boolean ring \(\mathcal{R}_p\) generated by it;
- each function \(\varphi_n\) is order continuous on \(\mathcal{R}_p\).

Proof. For each \(n \in \mathbb{N}\), let us define \(\psi_n : \mathcal{R} \to [0, +\infty]\) by

\[\psi_n(a) := \sup_{x \in \mathcal{R}} p(e, \varphi_n(x)), \quad a \in \mathcal{R}, \]

and then

\[\eta : a \in \mathcal{R} \mapsto \sum_{n \in \mathbb{N}} \frac{1}{2^n}(1 \land \psi_n(a)). \]
Clearly each φ_n is η-continuous. Moreover it is easily to check that the function η fulfils the assumptions of Lemma 3.3.1. Therefore for any sequence $(a_k)_{k \in \mathbb{N}}$ of pairwise disjoint elements of \mathcal{R} one may extract a subsequence $(a_k)_{i \in \mathbb{N}}$ such that η is order continuous on the SCP-Boolean ring \mathcal{R}_p generated by it. Without loss of generality one may suppose that $\bigvee_{i \in \mathbb{N}} a_k$ belongs to \mathcal{R}_p. Then, being η-continuous, each φ_n is actually order continuous on the SCP-Boolean ring \mathcal{R}_p.

Now we are in position to prove the last implication in Theorem 2.1.

Proof of Theorem 2.1(d). Let $(\varphi_n)_{n \in \mathbb{N}}$ be a sequence of exhaustive and uniformly quasi-triangular elements of $\mathcal{M}[\varepsilon]$ converging pointwise in \mathcal{R} to an exhaustive element φ of $\mathcal{M}[\varepsilon]$.

If (BJ) fails, there are $U_o \in \tau[\varepsilon]$, a disjoint sequence $(a_k)_{k \in \mathbb{N}}$ in \mathcal{R} and subsequence $(\varphi_{n_k})_{k \in \mathbb{N}}$ of $(\varphi_n)_{n \in \mathbb{N}}$ such that

$$\tag{3.3.2} \varphi_{n_k}(a_k) \notin U_o \quad \text{for each } k.$$

As \mathcal{S} is a Tychonoff space, there is some uniformity \mathcal{U} on S which generates the topology τ of \mathcal{S}. In particular there is some pseudometric p on S, belonging to the gage D of \mathcal{U}, such that $U_o \in \tau_p[\varepsilon]$, where τ_p is the topology generated by p on S. Thus Lemma 3.3.2 yields to the existence of a subsequence $(a_k)_{i \in \mathbb{N}}$ of $(a_k)_{k \in \mathbb{N}}$ so that each φ_{n_k} is order continuous on the SCP-Boolean ring \mathcal{R}_p generated by it and the supremum $\bigvee_{i \in \mathbb{N}} a_k$ belongs to \mathcal{R}_p as well.

Passing to the metric identification of (S, p) if needed, i.e. the metric space of the equivalence classes in S under the equivalence relation defined by $x \sim y$ iff $p(x, y) = 0$, since $(\varphi_{n_k})_{k \in \mathbb{N}}$ converges pointwise on \mathcal{R}_p, (N) garantees that the sequence $(\varphi_{n_k})_{k \in \mathbb{N}}$ is actually uniformly order continuous on \mathcal{R}_p. As $(\bigvee_{i \geq i_0} a_k)_{i \in \mathbb{N}}$ is clearly a sequence in \mathcal{R}_p decreasing to 0, a straightforward uniform version of Lemma 3.1.2 implies that there is some $i_0 \in \mathbb{N}$ such that $\varphi_{n_i}(\{0, \bigvee_{j \geq i} a_k\}) \subseteq U_o$ for $i \geq i_0$, uniformly in k. Hence, in particular, $\varphi_{n_i}(a_k) \in U_o$ for $i \geq i_0$, which contradicts (3.3.2). \hfill \square

References

Received 20 May 2009,
and in revised form 21 July 2009.

Paola Cavaliere
Dipartimento di Matematica e Informatica
Università di Salerno
Via Ponte don Melillo—84084 FISCIANO (Sa)
pcavaliere@unisa.it

P. de Lucia
Dipartimento di Matematica e Applicazioni “R. Caccioppoli”
Università di Napoli “Federico II”
Via Cinthia—80126 NAPOLI
padeluci@unina.it