Calculus of Variations — On a Sobolev-type inequality, by Angelo Alvino.

Dedicated to the memory of Renato Caccioppoli

Abstract. — A new proof of the classical Sobolev inequality in \(\mathbb{R}^n \) with the best constant is given. The result follows from an intermediate inequality which connects in a sharp way the \(L^p \) norm of the gradient of a function \(u \) to \(L^{p^*} \) and \(L^{p^*} \)-weak norms of \(u \), where \(p \in]1, n[\) and \(p^* = \frac{np}{n-p} \) is the Sobolev exponent.

Key words: Sobolev inequality, Isoperimetric inequalities, one-dimensional Calculus of Variations.

Mathematical Subject Classification: 49K20, 26D10, 39B62.

1. Introduction

The celebrated Sobolev inequality states that

\[
S(n, p) \| u \|_{L^{p^*}} \leq \| \nabla u \|_{L^p},
\]

where \(u \) is a sufficiently smooth function, defined in \(\mathbb{R}^n \), \(\nabla u \) is the gradient of \(u \), \(p \in]1, n[\), \(p^* = \frac{np}{n-p} \).

The optimal value of \(S(n, p) \) in (1) is

\[
\pi^{1/n} n^{1/p} (n - p)^{(p-1)/p} (p - 1)^{1/(n-(p-1)/p)} p^{-1/n} \left[\frac{\Gamma\left(\frac{n}{p}\right) \Gamma\left(n - \frac{2}{p}\right)}{\Gamma(n) \Gamma\left(\frac{2}{p}\right)} \right]^{1/n}.
\]

This means that (2) is the infimum of the functional

\[
F(u) = \frac{\| \nabla u \|_{L^p}}{\| u \|_{L^{p^*}}};
\]

it is actually attained (see [1], [8] and, also, [2]) when

\[
u(x) = \frac{h}{\left[1 + k |x|^{(p-1)(n-p)/p}\right]},
\]

where \(h, k \) are positive constants.

The proof proceeds in two steps. The first one consists of a symmetrization procedure: \(u \) is replaced by its rearrangement \(u^\# \) which is a spherically
symmetric function and decreases with respect to $|x|$. Moreover $u, u^\#$ have the same distribution function, hence they have the same L^p norm. On the other side, the L^p norm of the gradient decreases as a consequence of the following Pólya Principle

\[\int_{\mathbb{R}^n} |\nabla u^\#|^p \, dx \leq \int_{\mathbb{R}^n} |\nabla u|^p \, dx. \]

(4)

In conclusion $F(u) \geq F(u^\#)$; so only radial functions compete in reaching the best constant in (1).

We stress the central role of (4) and recall that it follows from a combined use of the Hölder inequality and the classical isoperimetric inequality

\[P(E) \geq n^{(n-1)/n} \omega_n^{1/n} \min\{|E|, |\mathbb{R}^n \setminus E|\}^{(n-1)/n}; \]

here $|E|$ is the Lebesgue measure of a Caccioppoli set E, $P(E)$ is the perimeter of E in the sense of De Giorgi [5],

\[\omega_n = \frac{n \pi^{n/2}}{\Gamma(1 + \frac{n}{2})} \]

is the measure of the unitary $(n - 1)$-dimensional sphere.

The problem thus becomes a classical question of one-dimensional Calculus of Variation with constraints. It can be dealt with turning it into a Lagrange Problem whose extremals are available. These form a Mayer field; introducing the Weierstrass excess function leads to the result.

As for the second step our proof appeals to simpler tools for free functionals of the Calculus of Variations. A more general Sobolev-type inequality, involving the norm of u in a Marcinkiewicz space, is established. The classical Sobolev inequality (1), with the optimal value (2) of the constant, easily follows.

2. Main result

Let $a > 0$ and consider the following one-parameter family of extremals (3)

\[u_e(x) = u_e(|x|) = \frac{e^{(n-p)/p}}{[1 + (ae|x|)^{p/(p-1)}]^{(n-p)/p}}. \]

(5)

These functions have the same L^p^\ast norm

\[\|u_e\|_{L^p^\ast} = a^{-n} 2\pi^{n/2} \left(\frac{p - 1}{p} \right) \frac{\Gamma(\frac{n}{p}) \Gamma(n - \frac{n}{p})}{\Gamma(\frac{2}{p}) \Gamma(n)}. \]

Moreover they all solve the nonlinear partial differential equation

\[-\Delta_p u_e = n \left(\frac{n - p}{p - 1} \right)^{p-1} a^p u_e^{p^\ast - 1}, \]
which is the Euler-Lagrange equation of the functional
\[
J(u) = \frac{1}{p} \int_{\mathbb{R}^n} |\nabla u|^p \, dx - \frac{1}{p} \frac{(n-p)^p}{(p-1)^{p-1}} a^p \int_{\mathbb{R}^n} |u|^p \, dx,
\]
or
\[
(6) \quad J(u) = \frac{\omega_n}{p} \int_0^\infty |u'|^p r^{n-1} \, dr - \frac{\omega_n}{p} \frac{(n-p)^p}{(p-1)^{p-1}} a^p \int_0^\infty |u|^p r^{n-1} \, dr
\]
if \(u \) is a radial function.

The curve
\[
(7) \quad y = \frac{(p-1)^{(n-p)(p-1)/p^2}}{p^{(n-p)/p}} (ar)^{-(n-p)/p} = \gamma_a(r), \quad r > 0,
\]
envelopes the graphs \(y = u_\varepsilon(r) \); these cover the region of the first quadrant which lies below the curve (7) and will be called \(T \).

If \(v \) is a non negative, sufficiently smooth, compactly supported, radial function let
\[
\|v\|_{p^*, \infty} = \sup_{r > 0} [r^{n/p^*} v(r)]
\]
be its norm in the Marcinkiewicz space of the functions weakly \(L^{p^*} \). If we choose
\[
(8) \quad a = \frac{(p-1)^{(p-1)/p}}{p} \frac{1}{\|v\|_{p^*(n-p), \infty}^{p/(n-p)}},
\]
the minimum value such that \(v(r) \leq \gamma_a(r) \), for all \(r \) positive, the envelope (7) becomes
\[
y = \|v\|_{p^*, \infty} r^{-(n-p)/p} = \gamma(r).
\]

Each graph \(y = u_\varepsilon(r) \) touches the envelope at a point which splits it into two curves \(C_1(\varepsilon), C_2(\varepsilon) \). These two families of curves are the trajectories of two different fields of extremals of the functional (6), and both defined in the same set \(T \).

We denote by \((1, q_1(r, y)) \) the former and by \((1, q_2(r, y)) \) the latter. As usual, \(q_1(r, y) \) is the slope of the extremal of the first family passing through \((r, y)\); \(q_2(r, y) \) has an analogous meaning. The envelope also touches the graph of \(v \) at least in a point \(P = (x, \gamma(x)) \) which splits it into two arcs \(\Gamma_1, \Gamma_2 \). Moreover, we simply denote by \(C_1, C_2 \), respectively, the arcs of the families \(C_1(\varepsilon), C_2(\varepsilon) \) passing through \(P \).

In Figure 1 (2) the graphs of the envelope \(y = \gamma(r), \Gamma_1 (\Gamma_2), C_1 (C_2) \) are sketched, together with some further arcs of extremals.
Setting

\[f(r, v, v') = \frac{\omega_p}{p} r^{n-1} \left[|v'|^p - \frac{(n - p)^p}{(p - 1)^{p-1}} q^p |v|^p \right] \]

gives

\[J(v) = \int_0^\alpha f(r, v, v') \, dr + \int_{\alpha}^{\infty} f(r, v, v') \, dr = J_1(v) + J_2(v). \]

We begin by estimating \(J_1(v) \) from below; to this aim we refer to the first field of extremals.

Since \(f \) is convex with respect to the last variable, we get

\[\mathcal{E}(r, v, v', q_1) = f(r, v, v') - f(r, v, q_1) - (v' - q_1) f_{v'}(r, v, q_1) \geq 0, \]

where \(\mathcal{E} \) is the well-known Weierstrass excess function. Therefore

\[J_1(v) \geq \int_0^\alpha \left[f(r, v, q_1) + (v' - q_1) f_{v'}(r, v, q_1) \right] \, dr. \]
Since the 1-form

\[\frac{1}{2} f(r, v, q_1) \left[q_1 f_v'(r, v, q_1) - q_1 f_{u_v}(r, v, q_1) \right] \, dr + f_{u_v}(r, v, q_1) \, dv \]

is exact, the integral on the right-hand side of (9) equals the line integral of (10) along a segment of the vertical axis, which is null, plus the integral line along the curve \(C_1 \) (see Figure 1). The latter is

\[J_1(u_v) = \int_0^x f(r, u_v, u_v') \, dr. \]

Thus, we have

\[J_1(v) \geq J_1(u_v). \]

A similar procedure applies to \(J_2(v) \). We integrate the exact 1-form

\[\frac{1}{2} f(r, v, q_2) \left[q_2 f_v'(r, v, q_2) - q_2 f_{u_v}(r, v, q_2) \right] \, dr + f_{u_v}(r, v, q_2) \, dv \]

along the closed path delineated in Figure 2. A simple asymptotic argument allows us to claim that the line integral of (12) along the vertical segment \(S_\beta \) is infinitesimal when \(\beta \) goes to infinity. Therefore

\[J_2(v) = \int_x^\infty f(r, v, v') \, dr \geq J_2(u_v) = \int_x^\infty f(r, u_v, u_v') \, dr. \]
Collecting (11) and (13) gives \(J(v) \geq J(u_e) \). Hence, computing \(J(u_e) \) leads to

\[
\int_{\mathbb{R}^n} |\nabla v|^p \, dx \geq \alpha_p \left[\frac{(n-p)^p}{(p-1)^{p-1}} \|v\|_{p^*}^p + \alpha^{p-n} 2\pi^{n/2} \frac{(n-p)^{p-1}}{(p-1)^{p-2}} \Gamma \left(\frac{n}{p} \right) \Gamma \left(\frac{n}{p} - \frac{n}{2} \right) \Gamma \left(\frac{n}{2} \right) \right].
\]

If we recall the value (8) of \(\alpha \), by density arguments, we have the following result.

Theorem 2.1. If \(v \) belongs to the Sobolev space \(W^{1,p}(\mathbb{R}^n) \) and \(p \in]1,n[\), then

\[
\|v\|_{p^*,\infty}^p |\nabla v|^p \geq A(n,p)\|v\|_{p^*}^p + B(n,p)\|v\|_{p^*,\infty}^p,
\]

where

\[
A(n,p) = \left(\frac{n-p}{p} \right)^p
\]

and

\[
B(n,p) = 2\pi^{n/2} \frac{(n-p)^{p-1}}{(p-1)^{n-1-p}} \frac{\Gamma \left(\frac{n}{p} \right) \Gamma \left(\frac{n}{p} - \frac{n}{2} \right) \Gamma \left(\frac{n}{2} \right)}{\Gamma(n)\Gamma \left(\frac{n}{2} \right)}.
\]

Remark 2.1. Handling with a sole extremal field leads to trivial outcomes. Namely it is not possible to assemble the graphs of \(v \) and of an extremal, and make a closed path along which calculate the integral of an exact 1-form as above. This becomes possible if one thinks of the extremal fields as a unique field defined on a surface, a sort of cylinder, squashed onto \(T \). In some sense we deal with a sheet with two pages: when an extremal touches the envelope it passes from one page to another. Therefore, the extremals can be viewed as closed paths which describe a complete ring. The same happens to the graph of \(v \) when it touches the envelope. In some sense the graphs of \(v \) and of each extremal are in the same homotopy class.

Remark 2.2. Recently the problem of the optimality of the Sobolev constant has been tackled by different tools (see [4]). Instead of a symmetrization procedure and the Pólya inequality (4), mass transport methods and a subtle result by Brenier [3] are used. Both methods have deep, but different, geometric flavours.

3. The Sobolev Inequality

Inequality (14) can be viewed as a generalization of the Sobolev inequality. Namely (1) can be deduced from (14) dividing by \(\|v\|_{p^*,\infty}^p \) and minimizing the right-hand side with respect to \(\|v\|_{p^*,\infty} \).

We can also argue in a different way. For instance, if \(p = 2 \) and \(n = 3 \), (14) becomes

\[
|\nabla v|^2 \geq \frac{1}{4} \frac{\|v\|^6}{\|v\|_{6,\infty}^4} + \pi^2 \|v\|_{6,\infty}^2.
\]
By Young inequality we get
\[
\|\nabla v\|_2^2 \geq 3 \left(\frac{\pi^2 - \sigma^2}{4} \right)^{2/3} \|v\|_6^2 + \sigma^2 \|v\|_{6, \infty}^2
\]
for any $\sigma \in [0, \pi]$. If $\sigma = 0$ we obtain the Sobolev inequality, whereas, if $\sigma = \pi$, we have
\[
\|\nabla v\|_2 \geq \pi \|v\|_{6, \infty}.
\]
However the value of the constant in (16) is not sharp, as the following result shows.

Theorem 3.1. Let $u \in W^{1,2}(\mathbb{R}^n)$. Then
\[
(n - 2)\omega_n \|u\|_{2n/(n-2), \infty}^2 \leq \|\nabla u\|_{L^2}^2.
\]
It is obviously sufficient to deal with spherically decreasing and spherically symmetric functions. For the sake of simplicity we assume
\[
\sup_{r > 0} (r^{(n-2)/2} u(r)) = r_0^{(n-2)/2} u(r_0) = 1
\]
for a suitable $r_0 > 0$. Among all functions satisfying (18) the one with the lowest energy is
\[
w(r) = \begin{cases}
 r_0^{-(n-2)/2} & \text{if } r \leq r_0 \\
 r_0^{(n-2)/2} r^{2-n} & \text{if } r > r_0
\end{cases}
\]
The energy of w is $(n - 2)\omega_n$, then we get (17). Moreover the constant is sharp.

Remark 3.1. As for (15), if $S < 3(\pi^2/4)^{2/3}$, one could ask for the best constant $C(S)$ such that
\[
\|\nabla v\|_2^2 \geq S\|v\|_6^2 + C(S)\|v\|_{6, \infty}^2.
\]
Analogous question can be set when we remove any restriction on p and n.

References

Received 14 May 2009,
and in revised form 15 July 2009.

Dip. di Matematica e Appl. “R. Caccioppoli”
Università degli Studi di Napoli “Federico II”
Complesso Univ. Monte S. Angelo
via Cintia, 80126 Napoli (Italy)
angelo.alvino@unina.it