Rings of Fractions of $B(H)$

By

Yoshinobu Kato *

§ 1. Introduction

In this paper we discuss the following question: What are rings of fractions of $B(H)$, the algebra of all bounded linear operators on a separable, infinite dimensional, Hilbert space H? We recall the definition of a ring of fractions of a (generally non-commutative) ring according to [4].

Definition. A subset S of a ring A with a unit 1 is called a (right) denominator set if S satisfies the following conditions:

1. If $s, t \in S$, then $st \in S$ and $1 \in S$.
2. If $s \in S$ and $a \in A$, then there exist $t \in S$ and $b \in A$ such that $sb = at$.
3. If $sa = 0$ with $s \in S$, then $at = 0$ for some $t \in S$.
4. S does not contain 0. (to avoid triviality).

Definition. The ring $A[S^{-1}]$ of fractions of a ring A with respect to a (right) denominator set S is defined by $A[S^{-1}] = (A \times S)/\sim$, where \sim is the equivalence relation on $A \times S$ defined as $(a, s) \sim (b, t)$ if there exist $c, d \in A$ such that $ac = bd$ and $sc = td \in S$. We define addition and multiplication of $(a, s)\sim$, $(b, t)\sim \in (A \times S)/\sim$ in the obvious way:

$$(a, s)\sim + (b, t)\sim = (ac + bd, u)\sim$$

for some $c \in A$, u and $d \in S$ with $u = sc = td$,

$$(a, s)\sim \cdot (b, t)\sim = (ac, tu)\sim$$

for some $c \in A$ and $u \in S$ with $sc = bu$.

Moreover if A has a scalar (complex number) multiple, then also does $A[S^{-1}]$. Then $\varphi(a) = (a, 1)\sim$ defines a homomorphism $\varphi : A \to (A \times S)/\sim = A[S^{-1}]$.
Our main theorem asserts that any ring of fractions \(B(H)[S^{-1}] \) is isomorphic to \(B(H) \) or the quotient ring \(B(H)/J \) of \(B(H) \) by the ideal \(J \) of finite rank operators. The next problem is the existence of such a denominator set \(S \). It clear that \(B(H)[S^{-1}] = B(H) \) if we take \(S = \{1\} \). We shall show that there exist at least countably infinite many different denominator sets \(S \) such that \(B(H)[S^{-1}] \) are isomorphic to \(B(H)/J \).

§ 2. Main Theorem

An operator \(x \in B(H) \) is a Fredholm operator if \(\text{ran } x \) is closed, \(\dim \ker x \) is finite and \(\dim \ker x^* \) is finite, where \(\text{ran } x \) is the range of \(x \) and \(\ker x \) is the kernel of \(x \). The collection of Fredholm operators is denoted by \(F \). The ind is the function from \(F \) to the integers \(\mathbb{Z} \) defined by \(\text{ind } x = \dim \ker x - \dim \ker x^* \). This function enjoys the following property: For \(x, y \in F \), \(\text{ind } xy = \text{ind } x + \text{ind } y \), \(\text{ind } x^* = - \text{ind } x \), \(\text{ind } 1 = 0 \). Put \(F_0 = \{ x \in F \mid \text{ind } x = 0 \} \). Then \(F \) and \(F_0 \) satisfy (S0). Moreover \(F \) and \(F_0 \) are invariant under compact perturbations ([1]). If \(x \) and \(y \in B(H) \) satisfy \(xy = x, yx = y, (xy)^* = xy \) and \((yx)^* = yx \), then \(y \) is called a Moore-Penrose inverse of \(x \) and \(y \) is denoted by \(x^t \). A Moore-Penrose inverse \(x^t \) does not always exist but it is unique if it exists. It is known that \(x^t \) exists if and only if \(\text{ran } x \) is closed ([3]). In particular if \(x \) is in \(F \), then \(x \) has \(x^t \).

We need the following Theorem in [2; Theorem 3.6]:

Theorem F-W. Let \(S \) be in \(B(H) \). If \(\text{ran } s \) is not closed, then there exists a unitary \(u \in B(H) \) such that \(\text{ran } s \cap \text{ran } us = \{0\} \).

We shall show that a denominator is automatically a Fredholm operator.

Theorem 1. If a subset \(S \subset B(H) \) is a denominator set of \(B(H) \), then \(S \) is contained in the set \(F \) of Fredholm operators.

Proof. Let \(s \in S \). Assume that \(\text{ran } s \) is not closed. Then by Theorem F-W, there exists a unitary \(u \) such that \(\text{ran } s \cap \text{ran } us = \{0\} \). The condition \((S1) \) implies that there exist \(t \in S \) and \(b \in B(H) \) such that \(sb = (us)t \). Then

\[
\text{ran } ust = \text{ran } sb = \text{ran } sb \cap \text{ran } ust \subset \text{ran } s \cap \text{ran } us = \{0\}.
\]

Therefore \(ust = 0 \). Then \(S \) contains \(st = 0 \). This contradicts to \((S3) \). Hence \(\text{ran } s \) is closed. Next assume that \(\dim \ker s^* = +\infty \). Then there exists a unitary \(u \) such that \(\text{ran } u \cap \text{ran } us = \{0\} \), since \(\dim (\text{ran } s)^\perp = \dim \ker s^* = +\infty \). By the same argument of the proceeding paragraph, \(S \) contains \(0 \). This is a contradiction. Therefore \(\dim \ker s^* < +\infty \). Next we shall show that \(\dim \ker s < +\infty \). Since \(\text{ran } s \)
is closed, s^\dagger exists. Put $a = 1 - s^\dagger s$, then $sa = 0$. By (S2) there exists $t \in S$ such that $at = 0$. Since $a = a^*$, $t^*a = 0$, that is, $\text{ran } a \subseteq \ker t^*$. Then $\text{dim ran } a \leq \text{dim ker } t^* < +\infty$, because $t \in S$. Thus $\text{dim ker } s = \text{dim ran } a < +\infty$. Therefore $s \in S$ is a Fredholm operator.

Consider the canonical homomorphism $\varphi : B(H) \rightarrow B(H)[S^{-1}]$ defined by $\varphi(x) = (x, 1)^\sim$.

Lemma 2. The canonical map $\varphi : B(H) \rightarrow B(H)[S^{-1}]$ is onto.

Proof. Take $(a, s) \in B(H)[S^{-1}]$. Then s^\dagger exists by Theorem 1. Put $z = 1 - s^\dagger s$. Since $sz = 0$, there exists $c \in S$ such that $zc = 0$ by (S2). Then $c = s^\dagger sc$. Put $x = as^\dagger$ and $d = sc$. Then

$$ac = as^\dagger sc = as^\dagger d \in B(H) \quad \text{and} \quad sc = ld \in S.$$

This shows that $(a, s) \sim (as^\dagger, 1)$. Then $\varphi(x) = (as^\dagger, 1)^\sim = (a, s)^\sim$. Thus φ is onto.

The following main theorem gives the possible rings of fractions of $B(H)$ completely:

Theorem 3. Let S be a denominator set of $B(H)$. If S contains a non-invertible operator, then the ring $B(H)[S^{-1}]$ of fractions is isomorphic to the quotient ring $B(H)/J$ of $B(H)$ by the ideal J of finite rank operators. If S does not, then $B(H)[S^{-1}]$ is isomorphic to $B(H)$.

Proof. By Lemma 2, $B(H)[S^{-1}]$ is isomorphic to $B(H)/\ker \varphi$. We note that

$$\ker \varphi = \{x \in B(H) \mid xc = 0 \text{ for some } c \in S\}.$$

If S does not contain non-invertible elements, then $\ker \varphi = \{0\}$, so $B(H)[S^{-1}]$ is isomorphic to $B(H)$. Now suppose that S contains a non-invertible operator s. Then $s^\dagger s \not= 1$ or $ss^\dagger \not= 1$. If $ss^\dagger \not= 1$, then $x = 1 - ss^\dagger \not= 0$ and $x \in \ker \varphi$, because $xs = s - ss^\dagger s = 0$ and $s \in S$. If $s^\dagger s \not= 1$, put $x = 1 - s^\dagger s$. Since $sx = 0$, $xt = 0$ for some $t \in S$ by (S2). Thus $x \not= 0$ and $x \in \ker \varphi$. In any case we have that $\ker \varphi \not= \{0\}$. Next we shall show that $\ker \varphi \subseteq J$. Let $x \in \ker \varphi$. By (\ast) there exists $c \in S$ such that $xc = 0$. Since $c^*x^* = 0$, ran $x^* \subseteq \ker c^*$. By Theorem 1, c is a Fredholm operator and $\dim \ker c^* < +\infty$. Hence x^* is a finite rank operator, so $x \in J$. Since J is a non-trivial minimal two-sided ideal of $B(H)$, $\ker \varphi = J$. Therefore if S contains a non-invertible element, then $B(H)[S^{-1}]$ is isomorphic to $B(H)/J$.
§ 3. Examples of Denominator Sets

In this section we shall give some examples of a denominator set S such that $B(H)[S^{-1}]$ is isomorphic to $B(H)/J$. In fact there exist at least countably infinite many denominator sets with this property, although we have not yet determined all of them.

Theorem 4. If S is a semigroup such that $F_0 \subset S \subset F$, then S is a denominator set. In particular F_0 and F are denominator sets.

Proof. It is clear that S satisfies (S0) and (S3). We shall show that S satisfies (S1). Take $s \in S$ and $a \in B(H)$. Since $s \in F$, s^t exists. Then $1 - ss^t \in J$, because $\dim \ker (1 - ss^t) = \dim \ker s < + \infty$. Put $c = (1 - ss^t)a$. Then c is also in J, so $\ker c$ is closed and c^t exists. Then c^t is in J. Put $t = 1 - c^t$. Since t is a compact perturbation of 1, $t \in F_0 \subset S$. Put $b = st$. Then

$$st - sb = (1 - ss^t)at = (1 - ss^t)a(1 - c^t) = c(1 - c^t) = 0.$$

So $sb = at$. Thus S satisfies (S1). Next we shall show that S satisfies (S2). Take $s \in S$ and $a \in B(H)$ such that $sa = 0$. Since $\ker a \subset \ker s$, a is in J. Consider a polar decomposition $a = u |a|$. We may assume that u is a unitary. Put $t = u^* s^t s$. Then $\ind t = \ind u^* - \ind s + \ind s = 0$. Hence $t \in F_0 \subset S$. And $at = u |a| u^* s^t s = u(sa) s^t s = u(sa) s = 0$. Thus S satisfies (S2).

Finally we shall give two kinds of examples of denominator sets of $B(H)$ which do not contain F_0. Let K be a separable, infinite dimensional, Hilbert space and n be a positive integer. Put $H = K \oplus \cdots \oplus K$ (n times). Then $B(H)$ can be identified with the set $M_n(B(K))$ of $n \times n$ matrices whose entries are in $B(K)$. Let S be a denominator set of $B(K)$. Define S_n and $S^n \subset B(H)$ by

$$S_n = \left\{ \begin{pmatrix} s & 0 \\ s & \cdots & \cdots \\ 0 & \cdots & s \end{pmatrix} \in B(H) \mid s \in S \right\}$$

$$S^n = \left\{ \begin{pmatrix} s_1 & 0 & \cdots & 0 \\ s_2 & \cdots & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots \\ 0 & \cdots & \cdots & s_n \end{pmatrix} \in B(H) \mid s_1, \cdots, s_n \in S \right\}.$$

By [4; page 61, Exercises 4], S_n is a denominator set of $B(H)$. Similarly we can show that S^n is also a denominator set of $B(H)$. Therefore we get the following:
Theorem 5. There exist countably infinite many denominator sets S of $B(H)$ such that $B(H)[S^{-1}]$ are isomorphic to $B(H)/J$.

Acknowledgement

The author would like to thank Prof. Y. Watatani for his help.

References

