The Stable Cohomotopy Ring of G_2

Dedicated to Professor Hirosi Toda on his 60th birthday

By

Ken-ichi MARUYAMA*

§ 1. Introduction

The fact that a Lie group (generally a finite H-space) has a stably trivial attaching map of its top cell makes a little bit easier to determine the cohomotopy groups, especially when the space has a few cells. Actually, for $Sp(2)$ and $SU(3)$, it is easy to obtain 0-th cohomotopy groups, and moreover ring structure can also be calculated. These are carried out by G. Walker in [9]. But the more cells the space has, the more difficult the determination becomes.

In this paper we shall give the 0-th stable cohomotopy group of G_2, the exceptional Lie group, by means of G. Walker's method in the above mentioned paper and S. Oka's accurate study of the stable homotopy type of G_2 in [6]. We shall also determine the ring structure by the results of P. Eccles and G. Walker [3]. Then we shall be able to recover that $[G_2, L] = \kappa$ (see §4).

We denote the q-th reduced stable cohomotopy of X by $\pi^q(X) (= \lim[S^n X, S^{n+q}])$. We state our main results.

Theorem 1.1.

\[\pi^q(G_2) = \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_4 . \]

Generators are $q^*\sigma^2$, $q^*\kappa$, $q^*\nu j'$, $\text{Ext} \varepsilon - \sigma \text{Ext} \gamma$, $\text{Ext} \varepsilon$, ν, $\alpha_1, \alpha_1, \gamma$, respectively (see §3).

Theorem 1.2.

1) $\nu^2 = q^*\nu j' + \nu \mod 4\text{Ext} \varepsilon (= 4\sigma \text{Ext} \gamma)$. 2) $(q^*\nu j') \nu = 2\nu$. 3) $\nu^3 = 2\nu + q^*\kappa$, where $\nu = \sigma \text{Ext} \gamma + \text{Ext} \varepsilon$. Other products are trivial.

This paper is organized as follows. In Section 2, we recall the result of [6]. In Section 3, we shall prove our main Theorem 1.1.
In Section 4, we shall give above results on the ring structure and prove our application to \([G_2, L]\).

§ 2. \(\pi^0(X^3)\) and \(\pi^0(Y^{11})\)

First we recall that \(G_2\) is stably equivalent to the space \(Q \bigvee S^{14}\). For the space \(Q\), there exists a cofibration \(X^3 \rightarrow Q \rightarrow Y^{11}\), where \(X^3\) and \(Y^{11}\) are following cofibers. ([6]).

\[\begin{align*}
(2.1) & \quad M^5 \xrightarrow{\eta} S^3 \xrightarrow{i^*} X^3 \xrightarrow{i''} M^5. \\
(2.2) & \quad S^{10} \xrightarrow{\eta} M^6 \xrightarrow{i^*} Y^{11} \xrightarrow{i''} S^{11}.
\end{align*}\]

Here \(M^a\) denotes the Moore space \(S^a \cup e^{a+1}\).

From above cofibrations we obtain exact sequences as follows.

\[\begin{align*}
(2.3) & \quad 0 \rightarrow \pi^0(S^3) \xrightarrow{i^*} \pi^0(X^3) \xrightarrow{i''} \pi^0(M^5) \rightarrow 0.
\end{align*}\]

\[\begin{align*}
(2.4) & \quad \pi^0(S^{10}) \xrightarrow{\eta} \pi^0(M^6) \xrightarrow{i^*} \pi^0(Y^{11}) \xrightarrow{i''} \pi^0(S^{11}) \rightarrow \pi^0(M^8).
\end{align*}\]

Lemma A. In the exact sequence (2.4),

\(a). \ker \eta^* = Z_4\langle \sigma \text{Ext } \eta \rangle + Z_4\langle \text{Ext } \epsilon \rangle. \quad b). \ker j^* = Z_4\langle 2\zeta \rangle.

Proof. By J. Mukai [4], \(\pi^0(M^8) = Z_4\langle \text{Ext } \epsilon \rangle \bigoplus Z_4\langle \sigma \text{Ext } \eta \rangle \bigoplus Z_4\langle \mu \rho \rangle\). Now \(\eta^* (\mu \rho) = \mu \eta\) is the generator of \(\pi^0_0(\text{Toda } [8])\), where \(\rho\) is a projection map.

Consider elements \(\eta^* (\sigma \text{Ext } \eta), \eta^* (\text{Ext } \epsilon),\) these are nothing but Toda brackets \(\{\sigma \eta, 2, \eta\}\) and \(\{\epsilon, 2, \eta\}\). We see easily these contain zero. Thus \(a\) is obvious. For \(b\), this time we need to investigate \(\{\mu, 2, \eta\}, \{\eta \sigma \eta, 2, \eta\}\) and \(\{\eta \sigma, 2, \eta\}\). \(\{\eta \sigma \eta, 2, \eta\} \supset \eta \sigma \{\eta, 2, \eta\}, \{\eta \sigma, 2, \eta\} \supset \epsilon \{\eta, 2, \eta\}\) and \(\{\eta, 2, \eta\} = \{\nu', -\nu'\}\) (5.4 [8]). These contain zero since \(\nu' = 2\nu\). We see easily that \(\{\mu, 2, \eta\}\) contains \(2\zeta\), for example by \(e\)-invariant of Adams (Theorem 11.1 in [1]). q. e. d.

We shall determine group extension in (2.3). Since \(\pi^3 = Z_4\langle \nu \rangle \bigoplus Z_4\langle \alpha_1 \rangle, \pi^0(M^8) = Z_2\langle \nu^2 \rho \rangle\), we only consider the two primary component. We obtain an equality as follows.

\[8a \eta^{* -1}(\nu) = j^* \{8a, \nu, \eta\} \mod j'(8\zeta[M^8, S^9]).\]
This equality is due to Toda (Proposition 1.9 [8], also refer Walker [9]). By the natural property of Toda brackets, \(i_\circ \{8, \nu, \eta\} = \{i_0, 8, \nu\} (\sim S^\#)\), where \(i_0: S^0 \to M^0\) is the inclusion. We obtain \(\{i_0, 8, \nu\} = (\text{Coext } \eta) \eta^g\) since \(\rho \{i_0, 8, \nu\}\) can be easily seen to be \(4\nu = \rho (\text{Coext } \eta) \eta^g\) and by Theorem 3.2. [4] (Coext \(\eta) \eta^g\) is a generator of \([S^1, M^0]\) = \(Z_2\). On the other hand, as \((\text{Coext } \eta) \eta^g (\sim \text{Ext } \eta) = \gamma^2\eta^g = 0\) by vi) of Proposition 2.1 [5], \(\{i_0, 8, \nu\} (\sim \eta) = 0\). Finally, \(i_0\) induces a monomorphism \(i_0: [M^g, S^0] \to [M^g, M^0]\) again by [4, Theorem 3.1 and Theorem 3.3]. So \(\{8, \nu, \eta\} = 0\). Thus (2.3) is split. We summarize our result as follows.

Proposition 2.5. \(\pi^0(\mathcal{X}^3) = Z_6 \langle \nu \rangle \oplus Z_3 \langle \alpha_1 \rangle \oplus Z_2 \langle \nu \rho \eta^g \rangle \), where \(i^{*} (\nu) = \nu, i^{*} (\alpha_1) = \alpha_1\).

Analogously, we obtain the following.

Proposition 2.6. \(\pi^0(\mathcal{Y}^{11}) = Z_4 \langle \text{Ext } \epsilon - \sigma \text{Ext } \eta \rangle \oplus Z_3 \langle \text{Ext } \eta \rangle \oplus Z_3 \langle \alpha_1 \rangle \oplus Z_7 \langle \alpha_1 \gamma \rangle \).

Proof. \([4\epsilon, \text{Ext } \epsilon, \eta]\) \(4\epsilon = \{2\epsilon, 2\text{Ext } \epsilon, \eta\}\) \(4\epsilon = \{2\epsilon, \sigma \text{Ext } \eta, \eta\}\) \(4\epsilon = \{2\epsilon, \epsilon \eta, \eta\}\) \(4\epsilon = 4\zeta\) since \(\{2\epsilon, \epsilon \eta, \eta\} = \zeta + 2\pi_3[8, (9.4)]\). Therefore \(\{4\epsilon, \text{Ext } \epsilon, \eta\}\) contains the element \(\zeta\). Thus the extension of \(\text{Ext } \epsilon\), we denote it by \(\overline{\text{Ext } \epsilon}\), is the element of order 8. Similarly \(\sigma \text{Ext } \eta\) has the order 8. Finally, by (2.4) and Lemma A we obtain our proposition.

§ 3. The Determination of \(\pi^0(G_2)\)

Let \(\phi\) be a map given in [6]. Then there exists the cofibration as follows.

\[(3.1) \quad \mathcal{X}^3 \xrightarrow{i} \mathcal{Q} \xrightarrow{j} \mathcal{Y}^{11} \xrightarrow{\phi} \sum \mathcal{X}^3 (= \mathcal{X}^4).\]

Because first we see that \(\pi^1(\mathcal{Y}^{11})\) is easily seen to be zero and \(\pi^1(\mathcal{X}^3)\) contains only elements of order 2, on the other hand \(\phi\) is equal to \(2 (\Sigma \epsilon') \sigma j^g\) by [6, Theorem 4.12]. Then it is not hard to show that the following is exact.

\[(3.2) \quad 0 \xrightarrow{\pi^0(\mathcal{X}^3)} \pi^0(\mathcal{Q}) \xrightarrow{\pi^0(\mathcal{Y}^{11})} 0.\]

We have to determine this group extension. First we consider the
2-component. As in Section 2, we need to know Toda brackets \[\{2 \nu, 2 \nu' \phi', \Sigma^{-1} \phi\} \] and \[\{2 \nu, 2 \nu' \phi, \Sigma^{-1} \phi\} \supset \{2 \nu, 2 \nu' \phi, \Sigma^{-1} \phi\} \] contains zero since \(\phi = 2(\Sigma i') a j' \) and \(j' \) is order 2. Thus the \(Z_2 \)-summand splits. We claim that \(\{2 \nu, 2 \nu' \phi, \Sigma^{-1} \phi\} = 0 \) since without indeterminacy we obtain the equality: \(\{2 \nu, 2 \nu' \phi, \Sigma^{-1} \phi\} = \{2 \nu, 2 \nu' \phi, \Sigma^{-1} \phi\} \). Therefore \(Z_2 \)-summand also splits. As at the prime 3 \((\Sigma^2 \cup \epsilon) \), we only have to consider the Toda bracket \(\{3 \alpha, \alpha_3, 2 \alpha_3\} \). By Theorem 11.4 [1], we see that its \(e_c \)-invariant, \(e_c \{3 \alpha, \alpha_3, 2 \alpha_3\} = -\delta(4, 6)/3 \mod Z \) and \((1/3)Z \). As we may take \(\delta(4, 6) = 2 \cdot 5 \cdot 23 \cdot 7 \), our invariant is nontrivial. Thus we obtain a nontrivial extension on the 3-primary part. Now we complete the proof.

§ 4. The Ring Structure (Proof of Theorem 1.2)

To prove Theorem 1.2, we use the results of [3] and the spectral sequence of Atiyah-Hirzebruch associated to the filtration \(F^q(X) \), \(F^q(X) = \ker[\pi^q(X) \to \pi^q(X^{q-1})] \), \(X^{q-1} \) is a \((q-1)\)-skeleton of \(X \). Thus \(v, \alpha \in F^3 \), \(v \nu' j' \in F^6 \), \(\Ext \varepsilon, \sigma \Ext \eta \in F^8 \), \(4 \Ext \varepsilon = 4 \sigma \Ext \eta = j'(\zeta) \), \(\alpha_1, \gamma \in F^{11} \), \(q^*(\alpha^2) \), \(q^*(\varepsilon) \in F^{14} \), where \(F^m = F^m(G_2) \). It is easy to see that all products except \(v^2 \), \(\alpha_1^2 \), \(v \nu' j' \), \((v \nu' j')^2 \), \((v \nu' j') \nu \), \((v \nu' j') \nu \), \(v \nu \) and \((v \nu' j') x \) \((x = \Ext \varepsilon \) or \(\sigma \Ext \eta) \), \(v^3 \), \(v^4 \), \(v \cdot j'(\zeta) \) are zero for filtration reasons.

In the Atiyah-Hirzebruch spectral sequence, \(E^{2, j}_{2} = H^j(G_2; \pi^j) \to \pi^{-j}(G_2) \).

\(v \in E^{3, 3}_{2} \) converges to \(v \). By the multiplicative properties, \(v^2 \in E^{3, 3}_{2} \) converges to \(v \nu' j' \), \(v^3 \in E^{3, 3}_{2} \) converges to \(v^3 \). Since \(v \nu' j'(\zeta) \) has the filtration 14 and corresponds to \(\nu j' = 0 \), it is trivial. Also relations \(\nu \sigma = \nu \varepsilon = 0 \) give the results \((v \nu' j') x = 0 \), \((x = \Ext \varepsilon \) or \(\sigma \Ext \eta) \). On the other hand, the element \(v^2 \) is equal to \(v \nu' j' \) at filtration 6, \(v^3 \) and \((v \nu' j') \nu \) corresponds to \(2 \nu \) at \(F^9 \) since \(v^3 = \nu^2 a + \nu \varepsilon \) which is \(2(\sigma \Ext \eta + \Ext \varepsilon) \) in \(\pi^9(M^9) \). In \(\pi^9(SU(3)) \) it has been proved that \(v^2 = v \), thus by the natural inclusion we obtain that \(v^2 = v \nu' j' + v + t \), where \(t \) is an element of higher filtration. As \(G_2 \) is stably self dual, we can apply Proposition 3.1 of [3]. Using this proposition, a composition \(S^{14} \to G_2 \otimes S^0 \otimes S^0 \to S^0 \otimes S^0 = S^0 \) is the Toda bracket \(\{v, \phi, v^*\} \), where \(d \) is a duality map and \(v^* \) means the dual of \(v \). The bracket \(\{v, \phi, v^*\} \)
contains zero since $2 \{v, i'\sigma S^{-1}j', \sigma^*\} = 0$ $(\sigma_{11}^2(S^0) = (2)^2)$. Thus the restriction of t to the top cell $(=S^0)$ is trivial. This is 1). Similarly, $(\nu^2p j')v \equiv 2\nu$ mod $j'(\xi)$ since $\{v, \phi, (\nu^2p j')^*\}$ also contains zero. Moreover the element $(\nu^2p j')v$ can not involve $j'(\xi)$ by the c-invariant argument. Namely, we define c-invariant on $[Q, S^0]$ and $[Y^{11}, S^0]$ in terms of the Chern character as in [6], so that we obtain the following commutative diagram.

\[e_c: [Q, S^0] \longrightarrow Q/2Z \oplus Q/\frac{1}{2}Z \]

\[e_c: [Y^{11}, S^0] \longrightarrow Q/\frac{1}{2}Z, \]

in which vertical arrows are monic. On $[Y^{11}, S^0]$, $e_c(j'(\xi)) = 1/4$ mod $(1/2)Z$, thus e_c of $j'(\xi)$ on $[Q, S^0]$ is also nontrivial. Since we can easily see that $e_c((\nu^2p j')v) = c(2\nu) = 0$, we obtain our result.

Part 3). As $\nu^3 = (\nu^2p j' + \nu) = 2\nu + v\nu$ by 1) and 2), we have to determine νv. Since this element has the filtration 14, we can use the similar method as above to obtain that at the top cell νv is equal to the bracket $[v, \text{Ext}\phi, \text{Coext}\phi]$ which is κ by [8] p. 96. Namely ν^4 and $(\nu^2p j')^2$ are also seen to be trivial.

(Odd prime case). It is well known that at the prime 3, G_2 is equivalent to $(S^3 / e^{11}) \cup e^{14}$. We obtain the following homotopy commutative diagram.

\[
\begin{array}{ccc}
C & \overset{d}{\longrightarrow} & C \wedge e^{11} \\
\downarrow & & \downarrow \\
S^{11} & \overset{g}{\longrightarrow} & C \wedge S^0 \\
\end{array}
\]

where d is the diagonal map, $C = S^9 \cup e^{11}$, g is a representative of the restriction of α_1 to C. Obviously, there exists \tilde{d} which makes this diagram commutative. We observe that $\pi_{11}^0(C \wedge C) = 0$, thus the top rows of the diagram are trivial. Therefore α_1^2 is contained in $F^{12}(G_2)$. Since $\pi_{11}^0(S^6) = 0$ we can conclude that $\alpha_1^2 = 0$.

Let $[G_2, L]$ be a stable homotopy element obtained by applying the Pontryagin–Thom construction to the left invariant framing L of
By [7], [10], it has been shown that \([G_2, L] = \kappa\). Also in [2], this fact is stated without the full proof. Combining our theorem above with the method in [2], we can easily obtain the result.

Corollary 4.1. ([7], [10] and [2]). \([G_2, L] = \kappa\).

Proof. \(q^*[G_2, L] = J_R(J_R - 2)\) by [2, (5.4) Theorem (a)], where \(J_R\) is the Hopf construction of 7-dimensional representation of \(G_2\). As it is seen by the natural inclusion \(SU(3) \to G_2\) that \(J_R = \pm 9 + t\), \(t\) an element of higher filtration. Thus \(q^*[G_2, L] = 2\varphi_2 \pm \varphi_3 = q^*\kappa\) by our theorem above.

References