Bernstein Polynomials of a Smooth Function Restricted to an Isolated Hypersurface Singularity

By Tristan Torrelli

Abstract

Let f, g be two germs of holomorphic functions on \mathbb{C}^n such that f is smooth at the origin and (f, g) defines an analytic complete intersection $(Z, 0)$ of codimension two. We study Bernstein polynomials of f associated with sections of the local cohomology module with support in $X = g^{-1}(0)$, and in particular some sections of its minimal extension. When $(X, 0)$ and $(Z, 0)$ have an isolated singularity, this may be reduced to the study of a minimal polynomial of an endomorphism on a finite dimensional vector space. As an application, we give an effective algorithm to compute those Bernstein polynomials when f is a coordinate and g is non-degenerate with respect to its Newton boundary.

§1. Introduction

Let $n \geq 2$ be an integer. Let us denote $\mathcal{O} = \mathbb{C}\{x_1, \ldots, x_n\}$ the ring of germs at 0 of complex holomorphic functions, and $\mathcal{D} = \mathcal{O}(\partial/\partial x_1, \ldots, \partial/\partial x_n)$ the ring of linear differential operators with holomorphic coefficients.

Let $g \in \mathcal{O}$ be a nonzero germ such that $g(0) = 0$, and $\mathcal{R} = \mathcal{O}[1/g]/\mathcal{O}$ the local cohomology module with support in the hypersurface $(X, 0) \subset (\mathbb{C}^n, 0)$ defined by g. It is a regular holonomic \mathcal{D}-module such that its complex of holomorphic solutions is the perverse sheaf $\mathcal{C}_X[-1]$ (see [5], [6], [14]).

Given a germ of function $f \in \mathcal{O}$ nonzero on X, there are functional equations in $\mathcal{R}[1/f, s]f^s = \mathcal{R} \otimes_{\mathcal{O}} \mathcal{O}[1/f, s]f^s$ of the form:

$$b(s)f^s = P \cdot f^{s+1}$$
for every $\delta \in \mathbb{R}$, with $b(s) \in \mathbb{C}[s]$ nonzero and $P \in \mathcal{D}[s] = \mathcal{D} \otimes \mathbb{C}[s]$ (see [6]). We call Bernstein polynomial of f associated with δ, and we denote $b(\delta f^s, s)$, the unitary generator of the ideal of polynomials $b(s)$ verifying such an identity. When f is not a unit, it is easy to check that $(s + r(\delta) + 1)$ is a factor of $b(\delta f^s, s)$, where $r(\delta) \in \mathbb{N}$ is such that $\delta \in f^{r(\delta)} \mathcal{R} - f^{r(\delta) + 1} \mathcal{R}$; let us denote $b(\delta f^s, s) \in \mathbb{C}[s]$ the quotient of $b(\delta f^s, s)$ by $(s + r(\delta) + 1)$.

Because of the algebraic theory of vanishing cycles, roots of these polynomials determine the eigenvalues of the monodromy of $f|_X : (X, 0) \to (\mathbb{C}, 0)$ (see [7], [12], and [20] for examples). In particular, the singular monodromy theorem implies that their roots are rational numbers ([8], [10]).

The effective determination of these polynomials is a difficult question. Following ideas of B. Malgrange ([11], [2] part A), we have investigated this problem in [21] when X has an isolated singularity and (f, g) defines a germ of complete intersection isolated singularity $(Z, 0)$. First, for $\delta \in \mathcal{R}$ of the form \dot{a}/g^ℓ with $a \in \mathcal{O}$ nonzero on the components of Z, the holonomic \mathcal{D}-module:

$$\mathcal{N}_\delta = (s + 1) \frac{\mathcal{D}[s] \delta f^s}{\mathcal{D}[s] \delta f^{s + 1}}$$

is supported by 0. Then the minimal polynomial of the action of s on \mathcal{N}_δ - which is nothing else but $b(\delta f^s, s)$ - may be computed using its n^{th}-group of de Rham cohomology $H^n_{dR}(\mathcal{N}_\delta) = \mathcal{N}_\delta / \sum (\partial/\partial x_i) \mathcal{N}_\delta$. In order to do that, we need an explicit description of this group. So we imposed that the annihilator in \mathcal{D} of δ is generated by operators of degree less or equal to one; but it is a very constraining condition, because this implies that g is weighted-homogeneous and that $a \in \mathcal{O}$ is a unit (see [21], [23]).

In this paper, we study the particular case where f is a germ of a smooth function. Let us recall that this contains the classical theory of the Bernstein polynomial of germs of holomorphic functions, because of the following relation:

$$b\left(\frac{1}{h} - z^s, s\right) = b(h^s, s)$$

for every $h \in \mathcal{O}$ nonzero, where $b(h^s, s)$ is the Bernstein polynomial of h and $1/h - z \in \mathbb{C}[x, z][1/h - z]/\mathbb{C}[x, z]$ (see Proposition 2.8 for example).

Without further condition on g, we prove in Theorem 2.1 that for some $\delta \in \mathcal{R}$, the $\mathcal{D}[s]$-module \mathcal{N}_δ coincides with:

$$(1) \quad \mathcal{N}_\ell = \frac{\mathcal{D}[s](\text{jac}(g), g)\delta f^{s + 1}}{\mathcal{D}[s] J \delta f^{s + 1}}$$

for an integer $\ell \in \mathbb{N}^*$, where $\text{jac}(g) \subset \mathcal{O}$ is the jacobian ideal of g, $J \subset \mathcal{O}$ is the ideal generated by g and by all the 2×2-minors of the jacobian matrix of
Bernstein Polynomials Of

\((f, g)\), and \(\delta \in \mathcal{R}\) is defined by \((-1)^{\ell+1}(\ell - 1)!/g^\ell \in \mathcal{O}[1/g]\). More precisely, \(\mathcal{N}_\delta\) is equal to \(\mathcal{N}_\ell\) (resp. \(\mathcal{N}_{\ell+1}\)) when \(\delta = v(g)\delta\ell\) (resp. \(\delta = \delta\ell\)) for every generic regular vector field \(v\) such that \(v(f) = 0\). This result enables us to treat in the same way the Bernstein polynomials of \(f\) associated with sections \(\delta\ell, \ell \in \mathbb{N}^*\), but also with certain generators of the minimal extension \(\mathcal{L} \subset \mathcal{R}\) of the local algebraic cohomology with support in \(X\) (since D. Barlet and M. Kashiwara prove in [1] that \(\mathcal{L}\) is generated by any nonzero section defined by \(v(g)/g\), where \(v \in \mathcal{D}\) is a vector field).

So we are interested in the determination of the minimal polynomial of the action of \(s\) on \(\mathcal{N}_\ell\), denoted by \(b_\ell(s)\), when \(f\) is smooth, \(X\) has an isolated singularity and \((f, g)\) defines a germ of complete intersection isolated singularity. In the third part, we express \(H^0_{\mathcal{D}\mathcal{R}}(\mathcal{N}_\ell)\) under these assumptions as a quotient of two finite dimensional vector spaces \(Z^*_\ell\) and \(Z_{\ell}\) defined in section 3.2. Therefore:

Theorem 1.1. For every \(\ell \in \mathbb{N}^*\), \(b_\ell(s)\) is the minimal polynomial of the action induced by \(s\) on \(Z^*_\ell/Z_{\ell}\).

This needs the knowledge of the annihilator in \(\mathcal{D}\) of \(\delta_k f^s\), \(\text{Ann}_D \delta_k f^s\), which authorizes the calculation of the \(n^{th}\)-group of the de Rham cohomology of the \(\mathcal{D}\)-module \(\sum_{k \geq 1} \mathcal{D}\delta_k f^{s+1}\) (into which \(\mathcal{D}[s](\text{jac}(g), g)\delta f^{s+1}\) injects). As an application, we develop in the last part an algorithm to compute \(b_\ell(s)\) when \(f = x_1\) and \(g\) is non-degenerate with respect to its Newton boundary in the sense of Kouchnirenko, which gives a generalization of [2]. Using the Newton function \(\rho\) on \(\mathcal{O}\), we define a weight function \(\rho^*\) by \(\rho^*(u\delta_k x_1^{s+1}) = \rho(ux_2 \cdots x_n) - k\). Then Kouchnirenko division theorem makes it possible to establish that the filtration induced by \(\rho^*\) is suited to our construction of \(H^0_{\mathcal{D}\mathcal{R}}(\sum_{k \geq 1} \mathcal{D}\delta_k f^{s+1})\). Moreover, the action of \(s\) respects the filtration induced by \(\rho^*\) on \(Z^*_\ell/Z_{\ell}\). Thus, if \(b_{\ell,q}(s)\) is the minimal polynomial of the action of \(s\) on \(\text{gr}_q Z^*_\ell/Z_{\ell}\), then the polynomial \(b_\ell(s)\) is the l.c.m. of \(b_{\ell,q}(s), q \in \mathbb{Q}\) (Theorem 4.9). The technics ‘rewriting by division’ and ‘increase in weight’ allow us to give an explicit computation of the spaces \(Z^*_\ell / Z_{\ell}\) and of the action of \(s\) on \(Z^*_\ell / Z_{\ell}\), and thus to determine \(b_\ell(s)\). In the particular case of semi-weighted-homogeneous germs, these computations are easier (Remark 4.12). On the way, we deduce from an algorithm for computing a multiple of the polynomials \(b_{\ell,q}(s)\) that the multiplicities of the roots of \(b_\ell(s)\) are strictly smaller than \(n\) (Theorem 4.10).

We end with the complete determination of the polynomials \(b_\ell(s)\) when \(g = x_1^4 + x_2^4 + x_3^4 + (x_1 x_2 x_3)^2, d \geq 9\).

Finally, we point out that the methods at the root of the algorithm may be adapted to compute Bernstein functional equations associated with an analytic
morphism - introduced by C. Sabbah ([15], [16]) - in the following case:

\[(g, x_1, \ldots, x_p) : (\mathbb{C}^n, 0) \to (\mathbb{C}^{p+1}, 0), 1 \leq p \leq n - 1.\]

In particular, one can make explicit non trivial equations of the form:

\[
d_0(\underline{s})g^{s_0}x_1^{s_1} \cdots x_p^{s_p} \in \mathcal{D}[\underline{s}]g^{s_0+1}x_1^{s_1} \cdots x_p^{s_p}
\]

\[
d_j(\underline{s})g^{s_0}x_1^{s_1} \cdots x_p^{s_p} \in \mathcal{D}[\underline{s}]x_jg^{s_0}x_1^{s_1} \cdots x_p^{s_p}, 1 \leq j \leq p
\]

where \(d_0(\underline{s}), d_j(\underline{s}) \in \mathbb{C}[s_0, \ldots, s_p]\) and \(\mathcal{D}[\underline{s}] = \mathcal{D} \otimes \mathbb{C}[s_0, \ldots, s_p]\). This completes H. Maynadier-Gervais results about these functional equations ([13]).

I acknowledge the partial support of the Swiss National Science Foundation. I also wish to thank Daniel Barlet for useful discussions, and Joël Briançon for his help in the proof of Proposition 4.6.

§2. Some Equivalences of Functional Equations

In this part, we denote \(f \in \mathcal{O}\) a germ of a smooth function and \(g \in \mathcal{O}\) a germ which is not a unit and does not belong to \(f\mathcal{O}\).

We first prove Theorem 2.1, where the \(\mathcal{D}\)-module \(\mathcal{N}_\delta\) is identified to \(\mathcal{N}_\ell\) for some \(\delta \in \mathbb{R}\). Then we give relations between some Bernstein polynomials of \(f\) associated with sections of \(\mathcal{R} = \mathcal{O}[1/g]/\mathcal{O}\).

§2.1. Some identifications of \(\mathcal{N}_\delta\) with \(\mathcal{N}_\ell\)

Let us state the result at the root of this study.

Theorem 2.1. Let \(f \in \mathcal{O}\) be a germ of a smooth function at the origin, and \(g \in \mathcal{O}\) a germ which is not a unit nor a multiple of \(f\). Let us denote \((Z, 0) \subset (\mathbb{C}^n, 0)\), the complete intersection defined by \(f\) and \(g\).

i) For every non negative integer \(\ell \in \mathbb{N}^*\), the \(\mathcal{D}[\underline{s}]\)-module:

\[
(s + 1) \frac{\mathcal{D}[\underline{s}]\delta_\ell f^s}{\mathcal{D}[\underline{s}]\delta_\ell f^{s+1}}
\]

where \(\delta_\ell = (-1)^{\ell+1}(\ell - 1)!/(1/g^\ell) \in \mathcal{R}\), coincides with \(\mathcal{N}_{\ell+1}\).

ii) Let \(v \in \mathcal{D}\) be a regular vector field such that \(v(f) = 0\). Let us suppose that \(v\) is not tangent to \((Z, 0)\). Then, for every \(\ell \in \mathbb{N}^*\), the \(\mathcal{D}[\underline{s}]\)-module:

\[
(s + 1) \frac{\mathcal{D}[\underline{s}]v(g)\delta_\ell f^s}{\mathcal{D}[\underline{s}]v(g)\delta_\ell f^{s+1}}
\]

coincides with \(\mathcal{N}_\ell\). Moreover, when \((Z, 0)\) does not have any irreducible smooth component, the equality is verified if \(v\) is not tangent to \((\text{Sing}(Z), 0)\).
iii) Let us suppose that \(f = x_1 \). Let \(v \in D \) be a vector field of the form \(x_1(\partial/\partial x_1) + v \) where \(v \in C[x_2, \ldots, x_n] \langle \partial/\partial x_2, \ldots, \partial/\partial x_n \rangle \) is a regular vector field. Let us suppose that \(v \) is not tangent to \((Z, 0)\). Then, for every \(\ell \in N^* \), the \(D[s] \)-module:

\[
(s + 1) \frac{D[s]v(g)\delta f^s \delta f^{s+1}}{D[s]v(g)\delta f^{s+1}}
\]

coincides with \(N_\ell \). Moreover, if \((Z, 0)\) does not have any irreducible smooth component, the equality is verified if \(v \) is not tangent to \((\text{Sing}(Z), 0) \).

Given \(\delta \in R \), the \(D[s] \)-module \(N_\delta \) coincides with \(N_\ell \), \(\ell \in N^* \), if and only if the following identities are verified:

\[(\dagger) \quad D[s]\delta f^{s+1} = D[s]J \delta f^{s+1} \]
\[(\ddagger) \quad D[s](s + 1)\delta f^s + D[s]\delta f^{s+1} = D[s](\text{jac}(g), g) \delta f^{s+1} \]

In order to prove the theorem, we will check that these identities are verified in any case.

Proof of Theorem 2.1, case i). The equality \((\dagger)\) results from the following identities:

\[(\ast) \quad g \delta_{\ell+1}f^{s+1} = -\ell \delta f^{s+1} \]
\[(\beta) \quad (f_{x_\ell}^r, g_{x_\ell}^r - f_{x_\ell}^r g_{x_\ell}^r) \delta_{\ell+1}f^{s+1} = \left(f_{x_\ell}^r \frac{\partial}{\partial x_i} - f_{x_\ell}^r \frac{\partial}{\partial x_j} \right) \delta f^{s+1} \]

So let \(r \) be an index such that \(f_{x_\ell}^r \) is a unit. From the identities:

\[
(s + 1)\delta f^s = (f_{x_\ell}^r)^{-1} \frac{\partial}{\partial x_r} \delta f^{s+1} - (f_{x_\ell}^r)^{-1} g_{x_\ell}^r \delta_{\ell+1}f^{s+1}
\]

and \((\dagger) \), we deduce:

\[
D[s](s + 1)\delta f^s + D[s]\delta f^{s+1} = D[s](g_{x_\ell}^r, J) \delta_{\ell+1}f^{s+1}.
\]

Thus \((\ddagger) \) is verified since the ideal \((g_{x_\ell}^r, \{g_{x_\ell}^r, f_{x_\ell}^r - g_{x_\ell}^r f_{x_\ell}^r\}_{i \neq r})O \) coincides with \(\text{jac}(g) \).

Proof of Theorem 2.1, first part of ii). Let \(v \in D \) be a regular vector field such that \(v \) annihilates \(f \) and is not tangent to \((Z, 0)\). Up to a change of coordinates, we may assume that \(f = x_1 \) and \(v = \partial/\partial x_2 \) (in particular \(J = (g_{x_2}, \ldots, g_{x_n}, g)O \)). In algebraic terms, the geometrical assumption on \(v \) is: \(g \not\in (x_1, x_3, \ldots, x_n)O \). In other words, there exists \(N \in N^* \) such that \(v^N(g) \) is a unit.
First we prove that the inclusion $\mathcal{D}[s]v(g)\delta_x x_1^{s+1} \subset \mathcal{D}[s]\mathcal{J}\delta_x x_1^{s+1}$ is an equality. It is enough to see that the ideal $I = \mathcal{D}[s]v(g) + \text{Ann}_{\mathcal{D}[s]}\delta_x x_1^{s+1}$ contains g'_x, \ldots, g_n' and g. Since the operators $(\partial/\partial x_i)v(g) - vg'_x$, $3 \leq i \leq n$, and $vg + (\ell - 1)v(g)$ annihilate $\delta_x x_1^{s+1}$, then $vg, vg'_x, \ldots, vg'_x \in I$. So we have $g, g'_x, \ldots, g'_x \in I$ by using the following lemma. Thus (i) is true.

Lemma 2.2. Let $\theta \in \mathcal{D}$ be a vector field and $h \in \mathcal{O}$ a nonzero germ such that $\partial^N(h)$ is a unit for a non negative integer $N \in \mathbb{N}^*$.

Then, for every $a, c \in \mathcal{O}[s]$, the ideal $\mathcal{D}[s](\theta + c)a + \mathcal{D}[s]ha$ contains a.

Proof. It is enough to prove that $\theta^k(h)a, k \in \mathbb{N}^*$, belong to the given ideal. This may be done by induction, using the identities: $\theta ah - h(\theta + c)a = \theta(h)a - cah$ and $v\theta^k(h)a - \theta^k(h)(\theta + c)a = \theta^{k+1}(h)a - \theta^k(h)ca, k \in \mathbb{N}^*$. □

Let us prove (i) for $\delta = v(g)\delta_x$. Since $\mathcal{D}[s]v(g)\delta_x x_1^{s+1}$ coincides with $\mathcal{D}[s]\mathcal{J}\delta_x x_1^{s+1}$, and using the equality:

$$(s + 1)v(g)\delta_x x_1^s = \left(v(g)\frac{\partial}{\partial x_1} - g'_x v \right)\delta_x x_1^{s+1} = \left(\frac{\partial}{\partial x_1}v(g) - vg'_x \right)\delta_x x_1^{s+1}$$

it is enough to remark that g'_x belongs to $\mathcal{D}(v(g), vg'_x)$. But this is a consequence of Lemma 2.2. Then (i) is verified. □

Proof of Theorem 2.1, first part of iii. Let \bar{v} be the vector field $x_1(\partial/\partial x_1) + v$ where $v \in \mathbb{C}\{x_2, \ldots, x_n\}(\partial/\partial x_2, \ldots, \partial/\partial x_n)$ is regular and such that $v^N(g)$ is a unit for a non negative integer $N \in \mathbb{N}^*$. From the case ii), the \mathcal{D}-module $\mathcal{D}[s]v(g)\delta_x x_1^{s+1}$ coincides with $\mathcal{D}[s]\mathcal{J}\delta_x x_1^{s+1}$. So, to prove (i), we just have to remark that $x_1g'_x\delta_x x_1^{s+1}$ belongs to $\mathcal{D}[s]\bar{v}(g)\delta_x x_1^{s+1}$ and to $\mathcal{D}[s]\mathcal{J}\delta_x x_1^{s+1}$. First, it is easy to check that if $v^N(g)$ is a unit, then $\bar{v}^N(h)$ is a unit too. Moreover, identity (4) implies that $(\bar{v} + (s + 1)x_1g'_x) \chi_1g'_x \in I$ (resp. $\chi_1g'_x$ belongs to $\bar{I} = \mathcal{D}[s]\bar{v}(g) + \text{Ann}_{\mathcal{D}[s]}\delta_x x_1^{s+1}$ (resp. $I = \mathcal{D}[s]v(g) + \text{Ann}_{\mathcal{D}[s]}\delta_x x_1^{s+1}$). Thus the germ $x_1g'_x\delta_x x_1^{s+1}$ belongs to I and to \bar{I} i.e. $x_1g'_x\delta_x x_1^{s+1} \in \mathcal{D}[s]\bar{v}(g)\delta_x x_1^{s+1}$ and $x_1g'_x\delta_x x_1^{s+1} \in \mathcal{D}[s]\mathcal{J}\delta_x x_1^{s+1}$.

The proof of (i) for $\delta = \bar{v}(g)\delta_x x_1^{s+1}$ is similar to the one of the previous case, using the identity:

$$(s + 1)\bar{v}(g)\delta_x x_1^s = \left(\frac{\partial}{\partial x_1}v(g) + (s + 1 - v)g'_x \right)\delta_x x_1^{s+1}$$

□

Remark 2.3. In the last case, we also prove that $\mathcal{D}[s](\text{jac}(g), g)\delta_x x_1^{s+1}$ is contained in $\mathcal{D}[s]\mathcal{J}\delta_x x_1^{s+1}$.

}
Proof of Theorem 2.1, second part of ii) and iii). We are going to prove that the equalities (1) and (4) are true for every regular vector field \(v \) or \(\tilde{v} = x_1(\partial/\partial x_1) + v \), where \(v \) is not tangent to the singular set of \((Z,0)\) and fulfills the conditions of the exposition. Let us take some coordinates such that \(f = x_1 \) and \(v = \partial/\partial x_2 \). Thus the geometrical assumption on \(v \) means that there is at least one monomial \(x_2^N \) or \(x_2^N x_i, i \geq 3 \), in the Taylor expansion of \(g |_{x_1=0} \in C\{x_2, \ldots, x_n\} \).

We start with the case \(\delta = v(g)\delta I \Phi^{\delta+1} \). Under our assumption, there exists an integer \(N \in \mathbb{N}^* \) such that \(v^N(g) = l + h \) where \(l \) is a linear form, non-zero and not proportional to \(x_1 \), and \(h \in (x_1, \ldots, x_n)^2 \mathcal{O} \). We let remark that if \(l \) depends on the variable \(x_2 \), \(v^N(g) \) is a unit and \(v \) is not tangent to \((Z,0)\). Without loss of generality, we can also suppose that \(n \geq 3 \), \(l = x_3 \) and that there is no monomial of the form \(x_2^N \) in the Taylor expansion of \(h \).

In order to get (1), we will prove that the ideal \(I = \mathcal{D}[s]v(g) + \text{Ann}_D[s] \) contains \(g'_{x_1}, \ldots, g'_{x_n} \) and \(g \) (following the proof of the case ‘\(v \) not tangent to \((Z,0)\)’). We start with the membership of \(I \) for \(g \). As above, we have \(v g, v g_{x_3}, \ldots, v g'_{x_n} \in I \); so \(v g g'_{x_1} - v(g)g'_{x_1} \in I \) and then \(v g'_{x_i}, 3 \leq i \leq n, \) belong to \(I \) too. Using that \(v g \in I \), we deduce: \(v(g'_{x_i}) g \in I \). Thus \(g \) belongs to the ideal \(I \) (Lemma 2.2).

It is more difficult to get the membership of \(I \) for \(g'_{x_1}, \ldots, g'_{x_n} \). Since \(v g'_{x_i}, v(g)g'_{x_1} \in I \), we remark - with the help of technics of Lemma 2.2 - that \(v g'_{x_i}, 3 \leq i \leq n, \) belong to \(I \). Multiplying the operators \((\partial/\partial x_1)g'_{x_1} - (\partial/\partial x_1)g'_{x_2} \in \text{Ann}_D \delta x_1^{\delta+1} \) by \(v^N(g) = x_3 + h \), we deduce:

(5) \quad \text{for } i \neq 1, 3, (1 + h'_{x_i})g'_{x_i} - h'_{x_1}g'_{x_2} \text{ belongs to } I

Thus the operators \((\partial/\partial x_3)h'_{x_1}(1 + h'_{x_1})^{-1} - \partial/\partial x_1)g'_{x_2} \) belong to the ideal \(I \). Dividing \(h'_{x_1}(1 + h'_{x_1})^{-1} \) by \(x_1 + h \), we get \((\partial/\partial x_3)\tilde{h}_{1,3} - \partial/\partial x_1)g'_{x_2} \in I \) where \(\tilde{h}_i \in \mathcal{O} \) does not depend of \(x_3 \). Similarly, dividing \(g \) by \(x_3 + h \), we have \(g = q(x_3 + h) + \tilde{g} \), where \(\tilde{g} \in \mathcal{O} \) does not depend of \(x_3 \), and is not proportional to \(x_1 \) because \((Z,0)\) does not have any smooth irreducible component. Thus \(\tilde{g}g'_{x_2} \) belongs to \(I \). So the fact \(g'_{x_2} \) belongs to \(I \) comes from Lemma 2.2, taking \(a = g'_{x_2}, h = \tilde{g} \) and \(v = \sum_{i \neq 1,3} A_i((\partial/\partial x_3)\tilde{h}_{1,3} - \partial/\partial x_1), \lambda_i \in C \) generic. From (5), we have then \(g'_{x_i}, \ldots, g'_{x_n} \in I \).

Now we consider (4). Following the proof of the case ii) above, it is enough to remark that the ideal \(I' = \mathcal{D}[s](v g'_{x_1}, g'_{x_2}, \ldots, g'_{x_n}, g) + \text{Ann}_D[s] \delta x_1^{\delta+1} \) contains \(g'_{x_1} \). Multiplying \(v g'_{x_1} \) by \(g'_{x_2} \), we see that \(v(g'_{x_1})g'_{x_1} \) belongs to \(I' \). Then we conclude with Lemma 2.2 (with \(h = v(g'_{x_1}) \)).

In the case \(\delta = \tilde{v}(g)\delta I \Phi^{\delta} \), we can assume that \(f = x_1, \tilde{v} = x_1(\partial/\partial x_1) + v \) where \(v = \partial/\partial x_2 \) and \(\tilde{v}^N(g) = x_3 + h, h \in (x_1, \ldots, x_n)^2 \mathcal{O} \). Then the identities
(†) and (‡) may be got similarly, using that the operators $(\tilde{v} - (s + 1))g, (\tilde{v} - (s + 1))g'_{x_2}, \ldots, (\tilde{v} - (s + 1))g'_{x_n}$ belong to the ideal $I = \mathcal{D}[s] \tilde{v}(g) + \text{Ann}_{\mathcal{D}[s]} \delta_\ell x_1^{s+1}$.

This comes from the identities:

$$(s + 1)g\delta_\ell x_1^{s+1} = \left((x_1 \frac{\partial}{\partial x_1} + \vartheta) g + (\ell - 1)(x_1 g'_{x_1} + \vartheta(g)) \right) \delta_\ell x_1^{s+1}$$

$$(s + 1)\vartheta(g)\delta_\ell x_1^{s+1} = \left((x_1 \frac{\partial}{\partial x_1} + \vartheta) g + \vartheta(x_1 g'_{x_1} + \vartheta(g)) \right) \delta_\ell x_1^{s+1}$$

for every vector field $\vartheta \in \mathbb{C}[x_2, \ldots, x_n](\partial/\partial x_2, \ldots, \partial/\partial x_n)$.

Remark 2.4. From these identities, we deduce the following ones:

$$\mathcal{D}[s]_{\leq d} \delta_\ell f^{s+1} = \mathcal{D}[s]_{\leq d-1} f'_{x_2'}_\delta_\ell f^{s+1} + \mathcal{D} \delta_\ell f^{s+1}$$

$$\mathcal{D}[s]_{\leq d}(\text{jac}(g), g)\delta_\ell f^{s+1} = \mathcal{D}[s]_{\leq d} g'_{x_2} \delta_\ell f^{s+1} + \mathcal{D} \delta_\ell f^{s+1}$$

for every $d \in \mathbb{N}$, where r is an index such that f'_{x_r} is a unit and $\mathcal{D}[s]_{\leq d} \subset \mathcal{D}[s]$ is the subspace of the operators which the degree in s is less or equal to d. This may be done by induction, and using that $f'_{x_2} \delta_\ell f^{s+1}$ belongs to $\mathcal{D}[s]_\ell f^{s+1} \mathcal{D}[s]_\ell f^{s+1}$ for every $\ell \in \mathbb{N}^*$ (Remark 2.3).

Remark 2.5. The identity (†) is not always true if $(Z, 0)$ has an irreducible smooth component. For example, if $f = x_1, g = x_1^2 + x_2 x_3, v = \partial/\partial x_2$ and $\ell = 1$, then $\mathcal{D}[s]v(g) + \text{Ann}_{\mathcal{D}[s]} \delta_\ell x_1^{s+1}$ is equal to $\mathcal{D}[s](x_1^2, x_3, (\partial/\partial x_2)x_2, s + 2 - (\partial/\partial x_1)x_1)$, and then it is different from the ideal $\mathcal{D}[s] \mathcal{J} + \text{Ann}_{\mathcal{D}[s]} \delta_\ell x_1^{s+1} = \mathcal{D}[s](x_1^2, x_2, x_3, s + 2 - (\partial/\partial x_1)x_1)$.

§2.2. Some relations between Bernstein polynomials

We start with some relations between the Bernstein polynomials of f associated with some elements of \mathcal{R} and the polynomial $\tilde{b}_\ell(s)$, the minimal polynomial of the action of s on \mathcal{N}_ℓ.

Corollary 2.6. Let $f \in \mathcal{O}$ be a germ of a smooth function, and let $g \in \mathcal{O}$ be a germ which is neither a unit nor a multiple of f. Let us denote $(Z, 0) \subset (\mathbb{C}^n, 0)$, the complete intersection defined by (f, g). Let $\ell \in \mathbb{N}^*$ be a non negative integer.

i) The polynomial $\tilde{b}(\delta_\ell f^*, s)$ coincides with $\tilde{b}_{\ell+1}(s)$.

ii) Let v be a regular vector field such that $v(f) = 0$. If v is not tangent to $(Z, 0)$, $\tilde{b}(v(g)\delta_\ell f^*, s)$ coincides with $\tilde{b}_\ell(s)$. Moreover, when $(Z, 0)$ does not have any irreducible smooth component, the equality is verified if v is not tangent to $(\text{Sing}(Z), 0)$.

iii) Assume that $f = x_1$. Let $v \in C\{x_2, \ldots, x_n\}(\partial/\partial x_2, \ldots, \partial/\partial x_n)$ be a regular vector field. If v is not tangent to $(Z, 0)$, then $\tilde{b}(x_1 g'_{x_1} + v(g))\delta f^s$, s coincides with $\tilde{b}_v(s)$. Moreover, when $(Z, 0)$ does not have any smooth component, this equality is true if v is not tangent to $(\text{Sing}(Z), 0)$.

iv) Let $u \in \text{jac}(g) + g\mathcal{O}$ be a generator of the \mathcal{O}-module $(\text{jac}(g) + g\mathcal{O})/J$. Then the polynomial $b(u\delta f^s, s)$ is a multiple of $\tilde{b}_v(s - 1)$.

Proof. The first 3 points are easy consequences of Theorem 2.1 and of the fact that $v(g)$ is not divisible by f for every v verifying the requisite conditions. The last point is a consequence of the surjectivity of the following $\mathcal{D}[s]$-linear morphism:

$$\frac{\mathcal{D}[s]u\delta f^{s+1}}{\mathcal{D}[s]u\delta f^{s+2}} \rightarrow \frac{\mathcal{D}[s](\text{jac}(g), g)\delta f^{s+1}}{\mathcal{D}[s]f\delta f^{s+1}}$$

which is well defined from Remark 2.3.

Hence, for every generic vector field v annihilating f, the polynomial $\tilde{b}(v(g)\delta, s)$ coincides with $\tilde{b}_v(s)$. However, because of iv), this is not true for every regular vector field v.

The following corollary gives a similar result for the classical Bernstein polynomial of a germ of function.

Corollary 2.7. Let $h \in \mathcal{O}$ be a germ neither zero nor a unit. Let us denote $(\mathcal{H}, 0) \subset (\mathbb{C}^n, 0)$ the hypersurface defined by h and $\tilde{b}(s) \in \mathbb{C}[s]$ its reduced Bernstein polynomial.

Let $v \in \mathcal{D}$ be a regular vector field. If v is not tangent to $(\mathcal{H}, 0)$, then the reduced Bernstein polynomial of $v(h)h^s$ is equal to $\tilde{b}(s + 1)$. Moreover, when $(\mathcal{H}, 0)$ does not have any smooth component, the equality is true if v is not tangent to the singular set of $(\mathcal{H}, 0)$.

This shifting in the roots of $\tilde{b}(s)$ is very clear in terms of poles of analytic continuation of distributions $\int_{\mathbb{C}^n} |h|^{2\lambda} \varphi$, where φ is a (n, n)-differential form with compact support around the origin, because:

$$\int_{\mathbb{C}^n} v(h)|h|^{2\lambda} \varphi = -\frac{1}{\lambda + 1} \int_{\mathbb{C}^n} h|h|^{2\lambda}(\nu, \varphi)$$

for every vector field v.

In order to prove this corollary, we will use the following result. This is the first explicit example of computation of the polynomials $\tilde{b}_v(s)$, $\ell \in \mathbb{N}^*$, and it generalizes a result of [19].
Proposition 2.8. Let \(h \in \mathcal{O} \) be a germ which is neither zero nor a unit. Let us denote \(\tilde{b}(s) \) its reduced Bernstein polynomial. Let \(N \in \mathbb{N}^* \) be a non negative integer and \(z \) a new variable.

Up to a multiplicative constant, the polynomial \(\tilde{b}(s) \), \(\ell \in \mathbb{N}^* \), associated with \(f = z \) and \(g = h - z^N \in \mathbb{C}[x,z] \) is equal to \(b(1 - \ell + (s + 1)/N) \).

Proof. Without loss of generality, we will prove the result for \(\tilde{h} = e^\tau h \), where \(\tau \) is a new variable. In fact, it does not change the value of the studied Bernstein polynomials.

To prove that \(\tilde{b}(s) \) is a multiple of \(\tilde{b}(1 - \ell + (s + 1)/N) \), we start with the ‘Bernstein identity’ of \(b(s) \), i.e.:

\[
\tilde{b}(s)z^{N-1} \in \mathcal{D}_{x,z}\{\tilde{h}, \tilde{h}_x, \ldots, \tilde{h}_{x^n}, \tilde{h} - z^N\} + \text{Ann}_\mathcal{D}_{x,z} \tilde{b}(s)z^{s+1}
\]

where \(\mathcal{D}_{x,z} \) is the ring of differential operators \(\mathbb{C}\{x,z,\tau\}\langle \partial/\partial x, \partial/\partial z, \partial/\partial \tau \rangle \). As the operator \(N(\partial/\partial \tau) + z(\partial/\partial z) - s - 1 + N\ell \) annihilates \(b(z^{s+1}) \), this equation may be rewritten:

\[
\tilde{b}(N \frac{\partial}{\partial \tau} + z \frac{\partial}{\partial z} - N + N\ell)z^{N-1} \in \mathcal{D}_{x,z}\{\tilde{h}, \tilde{h}_x, \ldots, \tilde{h}_{x^n}, \tilde{h} - z^N\} + \text{Ann}_\mathcal{D}_{x,z} \tilde{b}(s)z^{s+1}
\]

or:

\[
\tilde{b}(N \frac{\partial}{\partial \tau} - N - 1 + N\ell)z^{N-1} \in \mathcal{D}_{x,z}\{\tilde{h}, \tilde{h}_x, \ldots, \tilde{h}_{x^n}, \tilde{h} - z^N\} + \text{Ann}_\mathcal{D}_{x,z} \tilde{b}(s)z^{s+1}.
\]

Then we remark that \(\text{Ann}_\mathcal{D}_{x,z} \tilde{b}(s)z^{s+1} \) is generated by its operators which are not dependant of \(\partial/\partial z \). Indeed, if \(P = \sum_{i=0}^d (i^\ell/\partial z)^i P_i \) with \(P_i \in \mathbb{C}\{x,z,\tau\}\langle \partial/\partial x, \partial/\partial z, \partial/\partial \tau \rangle \) annihilates \(\tilde{b}(s)z^{s+1} \), so does \([P, z] = \sum_{i=1}^d i(\partial/\partial z)^{i-1} P_i \).

So we prove by induction that the operators \(P_0, \ldots, P_d \) annihilate \(\tilde{b}(s)z^{s+1} \). The identity becomes:

\[
(6) \quad \tilde{b}(N \frac{\partial}{\partial \tau} - N - 1 + N\ell)z^{N-1} \in \mathcal{D}_{x,z}\{\tilde{h}, \tilde{h}_x, \ldots, \tilde{h}_{x^n}, \tilde{h} - z^N\} + \text{Ann}_\mathcal{D}_{x,z} \tilde{b}(s)z^{s+1}.
\]

By division, an operator \(P \in \text{Ann}_\mathcal{D}_{x,z} \tilde{b}(s)z^{s+1} \) may be written:

\[
P = \tilde{Q}\left(\frac{\partial}{\partial \tau} (\tilde{h} - z^N) + (\ell - 1)\tilde{h} \right) + \sum_{i=1}^n Q_i\left(\frac{\partial}{\partial x_i} (\tilde{h} - z^N) + (\ell - 1)\tilde{h}_x \right) + q(\tilde{h} - z^N)^\ell + R' + \sum_{i=1}^{\ell} r_i(\tilde{h} - z^N)^{\ell-i}
\]

where \(\tilde{Q}, R' \), and \(r_i \) are polynomials in \(\tilde{h}, \tilde{h}_x, \ldots, \tilde{h}_{x^n} \).
where \(R' \in (\partial/\partial x, \partial/\partial \tau)\mathbb{C}\{x, \tau\}\{\partial/\partial x, \partial/\partial \tau\}[z] \) and \(r_1, \ldots, r_{\ell} \in \mathbb{C}\{x, \tau\}[z] \) have a degree in \(z \) strictly less than \(N \), and \(Q, Q_1, \in \mathcal{D}_{x, \tau}, q \in \mathbb{C}\{x, z, \tau\} \). So we have:

\[
R \frac{1}{(h - z^N)\ell} = \sum_{i=1}^{d} (-1)^i \frac{(\ell + i - 1)!}{(\ell - 1)!} \frac{r_i'}{(h - z^N)^{\ell+i}} + \sum_{i=1}^{\ell} \frac{r_i}{(h - z^N)^i}
\]

and

\[
R\hat{h}^s = \sum_{i=1}^{d} s(s - 1) \cdots (s - i + 1) \frac{r_i'}{h^i} + rh^s
\]

where \(d = \text{deg} R \) and \(r_i' \in \mathbb{C}\{x, \tau\}[z] \) has a degree in \(z \) strictly less than \(N \). As \(R \) annihilates \(\delta_r \), all the germs \(r_i \) and \(r_i' \) are necessarily equal to zero, and then \(R \) annihilates \(\hat{h}^s \). Hence (6) implies that:

\[
\bar{b}_\ell (\frac{\partial}{\partial \tau} - N - 1 + N\ell)z^{N-1} \in \mathcal{D}_{x, \tau}(\hat{h}, \hat{h}_{x_1}, \ldots, \hat{h}_{x_n}, z^N) + \mathcal{D}_{x, \tau}\text{Ann}_{\mathcal{D}_{x}} \hat{h}^s
\]

where \(\mathcal{D}_{x} = \mathbb{C}\{x, \tau\}\{\partial/\partial x, \partial/\partial \tau\} \). Consequently, \(\bar{b}_\ell (\frac{\partial}{\partial \tau} - N - 1 + N\ell) \) belongs to the ideal \(\mathcal{D}_{x}(\hat{h}, \hat{h}_{x_1}, \ldots, \hat{h}_{x_n}) + \text{Ann}_{\mathcal{D}_{x}} \hat{h}^s \) i.e. \(\bar{b}_\ell (Ns - N - 1 + N\ell) \) is definitely a multiple of \(\hat{b}(s) \).

The proof of the converse relation is similar (see [19]).

Proof of Corollary 2.7. By similar computations, we prove easily that the polynomial \(\hat{b}(\delta/\partial (h - z)z^s, s) \) coincides with the Bernstein polynomial of \(ah^s \).

So the assertion is a direct consequence of Corollary 2.6 and Proposition 2.8.

We end with a relation between the Bernstein polynomial of \(f \) associated with some particular element of \(\mathcal{O}[1/g] \) and of \(R = \mathcal{O}[1/g]/\mathcal{O} \). From the point of view of the monodromy, it is very clear (because \(\Phi_f(\mathcal{O}) \) is zero when \(f \) is smooth).

Proposition 2.9. Let \(f \in \mathcal{O} \) be a germ of a smooth function, and \(g \in \mathcal{O} \) a germ which is neither a unit nor a multiple of \(f \).

For every \(\ell \in \mathbb{N}^* \), the Bernstein polynomial of \((1/g^\ell)f^s \) coincides with \(b(\delta_\ell f^s, s) \).

Proof. We just prove that the Bernstein polynomial of \((1/g^\ell)f^s \in \mathcal{O}[1/fg, s]f^s \), denoted by \(b((1/g^\ell)f^s, s) \), is a factor of \(b(\delta_\ell f^s, s) \) (the converse relation is evident). Let \(R \in \mathcal{D}[s] \) be an operator realizing the functional equation of \(\delta_\ell f^s \): \(b(\delta_\ell f^s, s)\delta_\ell f^s = R\delta_\ell f^{s+1} \). So there are an integer \(d \in \mathbb{Z} \) and
where r is an index such that f_{x_r}' is a unit. So the equation (7) implies that $b(\delta f, s)(1/g')f^s \in D[s](1/g')f^{s+1}$, and our assertion is proved. \hfill \Box

§3. The Case of Isolated Singularities

In this part, the germ $g \in O$ defines an isolated singularity, and $f \in O$ is a germ of smooth function such that $f(0) = 0$ and (f, g) defines a complete intersection isolated singularity.

Following [2], [21], we give an explicit description of $H_D^0(N)$ in order to study the polynomials $\delta_k(s)$ (Theorem 1.1). So we introduce the D-module $\sum_{k \geq 1} D\delta_kf^{s+1}$.

§3.1. A suitable D-module

First, we remark that for every $\ell \in \mathbb{N}^*$, the $D[s]$-module $D[s]\delta_\ell f^{s+1}$ is a submodule of $\sum_{k \geq 1} D\delta_kf^{s+1}$. This comes from the identities:

\begin{equation}
(s + 2)\delta_kf^{s+1} = (f_{x_r}')^{-1}\frac{\partial}{\partial x_r} f\delta_kf^{s+1} - (f_{x_r}')^{-1}g_{x_r}' f\delta_{k+1}f^{s+1}, \quad k \in \mathbb{N}^*
\end{equation}

where r is an index such that the germ f_{x_r}' is a unit. Indeed, the D-module $\sum_{k \geq 1} D\delta_kf^{s+1}$ coincides with $\sum_{k \geq 1} \sum_{i \geq 0} D\delta_k\xi_i \subset \mathcal{R}[1/f, s]f^{s+1}$, where $\delta_k\xi_i$ is the element $(s + 2)i + 1 = 2i + 1 \delta_k f^{s+1}$, because:

$$
\delta_k\xi_i = (f_{x_r}')^{-1}\frac{\partial}{\partial x_r} \delta_k\xi_{i-1} - (f_{x_r}')^{-1}g_{x_r}' \delta_{k+1}\xi_{i-1}, \quad k \in \mathbb{N}^*
$$

for $i \in \mathbb{N}$.

We give now some results about the D-module $\sum_{k \geq 1} D\delta_kf^{s+1}$.

\[a \in O[s], \ a \not\in fO[s] - \{0\}, \text{ such that:} \]

\[(7) \quad b(\delta f^s, s)\frac{1}{g} f^s = R\frac{1}{g} f^{s+1} + a f^{s+d} \]

in $O[1/f, s]f^s$. If a is zero, $b((1/g')f^s, s)$ divides definitely $b(\delta f^s, s)$. Otherwise, let us prove that af^{s+d} belongs to $D[s]f^{s+1}$. If $d \geq 1$, it is trivial. So we suppose that $d \leq 0$. By specializations of s in $-1, 0, \ldots, -d - 1$, we remark that $(s + 1)s \cdots (s + d + 1)$ is a factor of a. Hence af^{s+d} belongs to $D[s]f^{s+1}$, because:

$$
\left[(f_{x_r}')^{-1}\left(\frac{\partial}{\partial x_r}\right)\right]^{-d+1} f^{s+1} = (s + 1)\cdots (s + d + 1) f^{s+d}
$$

This comes from the identities:
Lemma 3.1. For every non negative integer \(\ell \in \mathbb{N}^* \), the \(\mathcal{D} \)-module:

\[
\sum_{k \geq 1} \mathcal{D} \delta_k f^{s+1} \bigg/ \mathcal{D} \mathcal{J} \delta_\ell f^{s+1}
\]

is supported by the origin.

Proof. Under our assumptions, the ideal \(\mathcal{J} \) defines zero (see its definition page 798). So we have to prove that for every \(P \in \mathcal{D} \) and every non negative integer \(k \geq \ell \), there is an integer \(m \in \mathbb{N}^* \) such that \(hP \delta_k f^{s+1} \) belongs to \(\mathcal{D} \mathcal{J} \delta_\ell f^{s+1} \) for every \(h \in \mathcal{J}^m \). This may be done by induction on \(k - \ell \) and on the degree \(d \) of the operator \(P \), using that \(hP \in \mathcal{D} \mathcal{J} \) for \(h \in \mathcal{J}^{d+1} \) and that \(u \delta_k f^{s+1} \in \mathcal{D} \delta_k f^{s+1} \) for \(u \in \mathcal{J} \) (with the help of identities (2) & (3), page 801).

Let \(E \) be a \(\mathbb{C} \)-vector subspace of \(\mathcal{O} \) isomorphic to \(\mathcal{O} / \mathcal{J} \) by projection, \(\mathcal{D} \subset \mathcal{D} \) the ring of differential operators with constant coefficients, \(\mathcal{D} E \subset \mathcal{D} \) the subspace generated by \(\partial^\beta e \), \(e \in E \), and \(\mathcal{D} \mathcal{J} \subset \mathcal{D} \) the left ideal generated by \(\mathcal{J} \).

Proposition 3.2. For every \(\ell \in \mathbb{N}^* \), there is a decomposition:

\[
\sum_{k \geq 1} \mathcal{D} \delta_k f^{s+1} = \mathcal{D} \mathcal{J} \delta_\ell f^{s+1} \oplus \bigoplus_{k \geq \ell} \mathcal{D} E \delta_k f^{s+1}
\]

Proof. First remark that the \(\mathcal{D} \)-modules \(\mathcal{D} \delta_k f^{s+1} \), \(1 \leq k \leq \ell - 1 \), are contained in \(\mathcal{D} \mathcal{J} \delta_\ell f^{s+1} \) (since \(g \in \mathcal{J} \)). So, to get the existence of the decomposition, it is enough to prove it only for the elements \(u \delta_k f^{s+1} \), \(u \in \mathcal{O} \), \(k \geq \ell \). By division by \(\mathcal{J} \), there exists a uniquely defined element \(e \in E \), and \(h, \lambda_{i,j} \in \mathcal{O} \), \(1 \leq i < j \leq \ell \) such that \(u = e + hg + \sum_{i<j} \lambda_{i,j} (f'_{x_j} g'_{x_i} - f'_{x_i} g'_{x_j}) \). Hence we have:

\[
u \delta_k f^{s+1} = e \delta_k f^{s+1} - (k - 1)h \delta_{k-1} f^{s+1}
\]

\[
+ \left[\sum_{i<j} \left(\frac{\partial}{\partial x_i} f'_{x_j} - \frac{\partial}{\partial x_j} f'_{x_i} \right) \lambda_{i,j} - \left(f'_{x_j} \frac{\partial \lambda_{i,j}}{\partial x_i} - f'_{x_i} \frac{\partial \lambda_{i,j}}{\partial x_j} \right) \right] \delta_{k-1} f^{s+1}
\]

for \(k \geq \ell + 1 \). So, by induction on \(k \), every element of \(\sum_{k \geq 1} \mathcal{D} \delta_k f^{s+1} \) may be decomposed in \(\mathcal{D} \mathcal{J} \delta_\ell f^{s+1} \oplus \bigoplus_{k \geq \ell} \mathcal{D} E \delta_k f^{s+1} \).

The proof of the uniqueness uses that the ideals \(\text{Ann}_{\mathcal{D}} \delta_k f^{s+1} \), \(k \in \mathbb{N}^* \), are contained in \(\mathcal{D} \mathcal{J} \) (see [19], [21]). Suppose that \(V \delta_\ell f^{s+1} + \sum_{k=\ell}^\ell U_k \delta_k f^{s+1} = 0 \)
with $V \in \mathcal{D}J$ and $U_k \in DE$. This may be written:

$$\left[(-1)^{L+\ell} \frac{(\ell - 1)!}{(L - 1)!} V g^{L-\ell} + U_L + \sum_{k=\ell}^{L-1} (-1)^{L+k} \frac{(k - 1)!}{(L - 1)!} U_k g^{L-k} \right] \delta_L f^{s+1} = 0$$

As $\text{Ann}_D \delta_L f^{s+1} \subseteq \mathcal{D}J$, the operator U_L belongs to DE and to $\mathcal{D}J$ in the same time, and so it is zero. By induction, we prove that U_k, $\ell \leq k \leq L - 1$, are zero too, and then $V \delta_\ell f^{s+1} = 0$. Consequently, we get the assertion. \qed

Let $D' \subset D$ be the ideal of operators without nonzero constant term. Given $\kappa \in \mathbb{N}^*$, we consider the linear morphism:

$$c_\kappa : \bigoplus_{k \geq \kappa} D\delta_k f^{s+1} = \mathcal{D}J \delta_\kappa f^{s+1} \oplus \bigoplus_{k \geq \kappa} DE \delta_k f^{s+1} \longrightarrow \bigoplus_{k \geq \kappa} E \delta_k f^{s+1}$$

defined by $c_\kappa(D\delta_k f^{s+1}) = 0$ and if $Q = Q' + e$ with $Q' \in D'E, e \in E$, then $c_\kappa(\delta_k f^{s+1}) = e \delta_k f^{s+1}$ for every $k \geq \kappa$. Its kernel is $\mathcal{D}J \delta_\kappa f^{s+1} \oplus \bigoplus_{k \geq \kappa} D'E \delta_k f^{s+1}$. So we have the inclusion: $\bigoplus_{k \geq 1} D'O \delta_k f^{s+1} \subseteq \ker c_\kappa$. Hence c_κ induces an isomorphism:

$$\hat{c}_\kappa : H^n_{DR} \left(\bigoplus_{k \geq \kappa} \mathcal{D}J \delta_k f^{s+1} \right) \longrightarrow \bigoplus_{k \geq \kappa} E \delta_k f^{s+1}. \quad (9)$$

§3.2. The spaces \mathcal{Z}_ℓ, \mathcal{Z}_ℓ' and the polynomial $\tilde{b}_\ell(s)$

Given $\ell \in \mathbb{N}^*$, let us denote $\mathcal{Z}_\ell' = c_\ell(D[s] \{ \text{jac}(g), g \} \delta_\ell f^{s+1})$ and $\mathcal{Z}_\ell = c_\ell(D[s]J \delta_\ell f^{s+1}) \subseteq \mathcal{Z}_\ell'$. Now we give some general results on these \mathbb{C}-vector spaces.

Lemma 3.3. For every $\ell \in \mathbb{N}^*$, there are the following identifications:

$$\mathcal{Z}_\ell' = c_\ell(D[s]g'_s \delta_\ell f^{s+1}), \quad \mathcal{Z}_\ell = c_\ell(D[s]f'_s \delta_\ell f^{s+1})$$

where r is an index such that f'_r is a unit.

It is a consequence of Remark 2.4.

Proposition 3.4. For every $\ell \in \mathbb{N}^*$, the dimensions of the spaces \mathcal{Z}_ℓ and \mathcal{Z}_ℓ' are finite.

Proof. From regularity of the holonomic \mathcal{D}-module \mathcal{R}, there exist good operators in s in the annihilator of δf^s, $\delta \in \mathcal{R}$, i.e. of the form $s^N + P_1 s^{N-1}$
Bernstein Polynomials Of 811

+ \cdots + P_N \in \mathcal{D}[s] where the degree of \(P_i \in \mathcal{D} \) is less or equal to \(i \) (see [4], [18]).

If \(N \) is the degree of such an operator annihilating \(\delta f^{s+1} \), then:

\[
\mathcal{D}[s] \delta f^{s+1} = \sum_{i=0}^{N-1} s^i \mathcal{D} \delta f^{s+1} \subset \sum_{k=1}^{N+\ell-1} \mathcal{D} \delta_k f^{s+1}
\]

(see identity (8)). In particular, the dimension of \(c_\ell(D[s] \delta f^{s+1}) \) is finite, and the one of \(Z_\ell, Z'_\ell \) are finite too.

Remark that the dimension of \(Z_\ell, Z'_\ell \) and \(Z'_\ell/Z_\ell \) depends on the integer \(\ell \) (see the example studied in the last part).

Given \(\ell \in \mathbb{N}^* \), we define the action of \(s \) on \(\bigoplus_{k \geq \ell} E \delta_k f^{s+1} \) by \(sU = c_\ell(sU) \).

Remark that \(c_\ell(sU) \in \mathcal{Z}_\ell \) when \(U \in \ker c_\ell \). Indeed, \(s \bigoplus_{k \geq \ell} D' E \delta_k f^{s+1} \) is contained in the kernel of \(c_\ell \). Hence, the action of \(s \) on \(\bigoplus_{k \geq \ell} E \delta_k f^{s+1} \) is well defined on \(\mathcal{Z}_\ell, \mathcal{Z}'_\ell \), and then on \(\mathcal{Z}'_\ell/\mathcal{Z}_\ell \).

The proof of Theorem 1.1 is the very same as the one of [21], Theorem 1.1. It uses Lemma 3.1, the identification (9) and the fact that the functor \(H^n_{DR} \), from the category of \(\mathcal{D} \)-modules supported by zero to the category of \(\mathbb{C} \)-vector spaces, is an exact and faithful functor ([11]).

§4. The Computational Algorithm for Non Degenerate Hypersurfaces

Here we adapt to the case of polynomials \(\tilde{b}_\ell(s) \) the algorithm of computation of Bernstein polynomial of a non-degenerate convenient germ with respect to its Newton boundary in the sense of Kouchnirenko (see [2]). We invite the reader to see [2] for the proof of some results which may be easily extended.

§4.1. Division by \(J \) and increase in weight

Let \(g \in \mathcal{O} \) be a nonzero germ of an holomorphic function with \(g(0) = 0 \). Its Taylor expansion is written \(\sum_{A \in \mathbb{N}^n} g_A x^A \) where \(g_A \in \mathbb{C} \) and \(x^A = x_1^{a_1} \cdots x_n^{a_n} \) for \(A = (a_1, \ldots, a_n) \in \mathbb{N}^n \).

Let \(N(g) = \{ A \in \mathbb{N}^n \mid g_A \neq 0 \} \) be the Newton cloud of \(g \) and \(\Gamma(g) \subset (\mathbb{R}^+)^n \) its Newton boundary, the union of compact faces of the convex hull of \(N(g) + \mathbb{N}^n \). For every face \(\Delta \subset \Gamma(g) \) and every \(u = \sum_{A \in \mathbb{N}^n} u_A x^A \in \mathcal{O} \), we denote \(u|_{\Delta} = \sum_{A \in \Delta} u_A x^A \) the restriction of \(u \) to \(\Delta \).

We make the following assumptions on \(g \):
- g is convenient: each coordinate line has a point contained in $\Gamma(g)$.

- g is non-degenerate with respect to its Newton boundary: for every face $\Delta \subset \Gamma(g)$, the system:

$$\left(x_1 \frac{\partial g}{\partial x_1} \right)_{\Delta} = \cdots = \left(x_n \frac{\partial g}{\partial x_n} \right)_{\Delta} = 0$$

does not have any solution in $(\mathbb{C}^*)^n$.

Under these conditions, g defines an isolated singularity. We will suppose that $f = x_1$. In particular, the ideal J is $(g, g_{x_2}, \ldots, g_{x_n})\mathcal{O}$. Moreover the morphism (x_1, g) defines a isolated singularity too, because the restriction of g to $x_1 = 0$ is also convenient and non-degenerate.

Remark that the system of equations in the definition of the non-degeneracy condition is equivalent to the following one:

$$g|_{\Delta} = \left(x_2 \frac{\partial g}{\partial x_2} \right)_{\Delta} = \cdots = \left(x_n \frac{\partial g}{\partial x_n} \right)_{\Delta} = 0$$

because $g|_{\Delta}$ is a weighted-homogeneous polynomial in restriction to every face $\Delta \subset \Gamma(g)$. Let us recall that a nonzero polynomial is weighted-homogeneous of weight $d \in \mathbb{Q}^+$ for a system $\alpha \in (\mathbb{Q}^+)^n$ if it is a \mathbb{C}-linear combination of monomials x^α with $(\alpha, A) = d$.

Now we introduce some notations before giving the division theorem by the ideal J which is adapted to our situation.

Notation 4.1. Let \mathcal{F} be the set of $n - 1$ dimensional faces of $\Gamma(g)$. Given $F \in \mathcal{F}$, we consider the vector $\alpha_F = (\alpha_{F,1}, \ldots, \alpha_{F,n}) \in (\mathbb{Q}^+)^n$ such that $\langle \alpha_F, A \rangle = 1$ for every $A \in F$. The weight $\rho_F(u)$ in relation to the face $F \in \mathcal{F}$ of a nonzero germ $u = \sum_{A \in \mathbb{N}^n} u_A x^A \in \mathcal{O}$ is also defined by $\rho_F(u) = \inf \{ \langle \alpha_F, A \rangle | u_A \neq 0 \} \in \mathbb{Q}^+$. By agreement, we fix $\rho_F(0) = +\infty$. Then we define the weight of a germ $u \in \mathcal{O}$ in relation to $\Gamma(g)$ by $\rho(u) = \inf_{F \in \mathcal{F}} \rho_F(u)$.

For every rational $q \in \mathbb{Q}$, let us denote $\mathcal{O}_{\geq q} = \{ u \in \mathcal{O} | \rho(u) \geq q \}$ and $\text{gr} \mathcal{O} = \bigoplus_{q \in \mathbb{Q}^+} \mathcal{O}_{\geq q}$. We define another weight function, $\rho^* : \mathcal{O} \to \mathbb{Q}^+ \cup \{ +\infty \}$, by $\rho^*(u) = \inf_{F \in \mathcal{F}} \rho^*_F(u)$ where $\rho^*_F(u) = \rho_F(ux_2 \cdots x_n)$ for every $u \in \mathcal{O}$. As above, we have the spaces $\mathcal{O}_{\geq q}^*, \mathcal{O}_{\geq q}^*$, $q \in \mathbb{Q}$. If $\mathcal{O}_{\geq q}$ is the set of germs $u \in \mathcal{O}$ such that $ux_2 \cdots x_n$ is a polynomial supported by $q\Gamma(g)$, then $\text{gr}^* \mathcal{O} = \bigoplus_{q \in \mathbb{Q}} \mathcal{O}_{\geq q}^*/\mathcal{O}_{q}^*$ may be identified to $\bigoplus_{q \in \mathbb{Q}} \mathcal{O}_{q}^*$.

For every $u \in \mathcal{O}$ nonzero, let $\text{in}^*(u)$ be the coset of u in $\mathcal{O}_{\geq \rho^*(u)}^*/\mathcal{O}_{\rho^*(u)}^*$ identified to $\mathcal{O}_{\rho^*(u)}^*$. For every $q \in \mathbb{Q}^+$, let $E_q^* \subset \mathcal{O}_q^*$ be a supplementary of
$O_q^* \cap \text{in}^*(\mathcal{J})$ in O_q^*, where $\text{in}^*(\mathcal{J}) \subset \mathbb{C}[x]$ is the ideal generated by the initial parts of the elements of \mathcal{J}. Finally, let $E_{2q}^* \subset E$ be the space $\bigoplus_{q \geq q} E_q^*$.

Theorem 4.2. ([2], [9]) For every $u \in \mathcal{O}$, there exists a unique element $v \in E = \bigoplus_q E_q^*$ and $\lambda_1, \ldots, \lambda_n \in \mathcal{O}$ such that:

$$u = v + \lambda_1 g + \sum_{i=2}^n \lambda_i g_{x_i}^s,$$

where $\rho^*(v) \geq \rho^*(u)$, $\rho^*(\lambda_1) \geq \rho^*(u) - 1$, and for $2 \leq i \leq n$: $\rho^*(\lambda_i g_{x_i}^s) \geq \rho^*(u)$, $\rho^*(\lambda_i) \geq \rho^*(u) - 1 + \rho(x_i)$, $\rho^*(\partial \lambda_i / \partial x_i) \geq \rho^*(u) - 1$.

The proof is a direct adaptation of the one of Proposition B.1.2.2, B.1.2.3, B.1.2.6 of [2], which need Theorems 2.8 and 4.1 of [9]. In particular, the multiplication by $x_2 \cdots x_n$ induces a strict isomorphism λ from $(\mathcal{O}/\mathcal{J}, \rho^*)$ to $(\mathcal{O}x_2 \cdots x_n/\mathcal{O}x_2 \cdots x_n \cap I(g), \rho)$ where $I(g) = (g, x_2 g_{x_2}, \ldots, x_n g_{x_n})\mathcal{O}$.

Indeed, these Kouchnirenko results are true for every non-degenerate family $h_1, \ldots, h_n \in \mathcal{O}$, i.e. satisfying the non-degeneracy condition and such that $\rho(h_i) = 1$ for $1 \leq i \leq n$. In particular, the family $\{g, x_2 g_{x_2}, \ldots, x_n g_{x_n}\}$ is non-degenerate.

Let us denote $\Pi^* = \{q \in \mathbb{Q}^+ \mid E_q^* \neq 0\}$ and $\sigma^* = \sup \{q \mid E_q^* \neq 0\}$. Rewriting [2, p. 566], we get:

$$n - \sup_{F \in \mathcal{F}} \rho_F(x_1 \cdots x_n) \leq \sigma^* < n$$

The estimation is obtained by using the Rees function $\mathcal{P}_{I(g)}$, which coincides with the weight function ρ under our assumptions ([3], [17]).

We end by giving the technical lemmas at the root of the algorithm. First we give a filtered version of Proposition 3.2.

Lemma 4.3. Given $N, \ell \in \mathbb{N}^*$, $q \in \mathbb{Q}$, there is the following identity in $\sum_{k \geq 1} D \delta k x_1^{s+1}$:

$$\sum_{k=1}^N D O_q^* \supseteq q+k \delta k x_1^{s+1} = D J_{q+\ell} \delta \ell x_1^{s+1} \oplus D E_q^* \supseteq q+k \delta k x_1^{s+1}$$

where $J_{q+\ell} = J \cap O_{2q+\ell}^*$.

For every face $F \in \mathcal{F}$, let us denote $|\alpha_F| \in \mathbb{Q}^+$ the sum $\sum_{i=1}^n \alpha_{F,i}$, $\chi_F = \sum_{i=1}^n \alpha_{F,i} x_i (\partial / \partial x_i)$ the Euler vector field associated with F, $\overline{\chi}_F = \sum_{i=1}^n \alpha_{F,i} (\partial / \partial x_i) x_i = \chi_F + |\alpha_F|$ and $h_F = \chi_F(g) - g \in \mathcal{O}$.

Bernstein Polynomials Of

813
Lemma 4.4. Given \(w \in C, F \in F, u \in O \) and \(k \in \mathbb{N}^* \), there is an identity:

\[
(\alpha_{F,1}(s+1) + |\alpha_F| + w)u \delta_k x_1^{s+1} = [\chi_F u + [(w+k)u - \chi_F(u)]] \cdot \delta_k x_1^{s+1}
\]

and the following identities, for every \(F' \in F' \):

\[
\rho_{F'}(x_j u) > \rho^{*}(u), \quad \rho_{F'}((w+k)u - \chi_F(u)) \geq \rho^{*}(u), \quad \rho_{F'}(uh_F) \geq \rho^{*}(u) + 1
\]

If \(F' = F \), then \(\rho_{F'}(uh_F) > \rho^{*}(u) + 1 \). Moreover, if \(\rho_{F'}(u) > \rho^{*}(u) \) or \(\rho_{F'}(u) = \rho^{*}(u) = w + k + |\alpha_F| - \alpha_{F,1} \), then \(\rho_{F'}((w+k)u - \chi_F(u)) > \rho^{*}(u) \).

For every monomial \(u \), let \(F^*(u) \subset F \) be the set of the faces \(F \) with \(\rho_{F}(u) = \rho^{*}(u) \); if \(u \in O \) is nonzero, then \(F^*(u) \subset F \) is the set of \(F \in F \) such that there exists a monomial \(v \) in in \(F \) with \(\rho_{F}(v) = \rho^{*}(u) \). Using Lemma 4.4, we get the following formula:

Lemma 4.5. For every \(u \in O \) nonzero and \(k \in \mathbb{N}^* \):

\[
\prod_{F \in F^*(u)} (\alpha_{F,1}(s+2) + \rho^{*}(u) - k) \left[u \delta_k x_1^{s+1} \right] \in \sum_{i=0}^{\#F^*(u)} \mathcal{DO}_{\rho^*(u)+i}^* \delta_{k+i} x_1^{s+1}
\]

Remark that the multiplicity of a factor \((\alpha_{F,1}(s+2) + \rho^{*}(u) - k) \) in the given polynomial may be arbitrarily high. The next result states the existence of a polynomial such that the multiplicities are strictly smaller than \(n \).

Proposition 4.6. Let \(u \in O \) nonzero and \(k \in \mathbb{N}^* \). Let \(A^*(u) \subset \mathbb{Q}^{s*} \) be the set of \(\alpha_{F,1} \) with \(F \in F^*(u) \). Then:

\[
\prod_{a \in A^*(u)} (a(s+2) + \rho^{*}(u) - k) \left[u \delta_k x_1^{s+1} \right] \in \sum_{i=0}^{(n-1) \times \#A^*(u)} \mathcal{DO}_{\rho^*(u)+i}^* \delta_{k+i} x_1^{s+1}
\]

We prove this result in the next paragraph.

§4.2. Proof of Proposition 4.6

We need some additional notations.
Let us attach to any face $F \in \mathcal{F}$ the closed cone $C(F) \subset (\mathbb{R}^+)^n$, the union of linear half-lines going through F. In particular, $A \in (\mathbb{R}^+)^n$ belongs to $C(F)$ if and only if $\inf_{F' \in \mathcal{F}} \langle \alpha_{F'}, A \rangle = \langle \alpha_F, A \rangle$. Let us denote \mathcal{C} the fan with support in $(\mathbb{R}^+)^n$ associated with the Newton boundary $\Gamma(g)$. We recall that it is the smallest family of convex polyhedral rational convex cones of $(\mathbb{R}^+)^n$ which contains the cones $C(F), F \in \mathcal{F}$, and verifies the conditions:

- if C is a facet of a cone of \mathcal{C} then $C \in \mathcal{C}$;
- if $C_1, C_2 \in \mathcal{C}$, then $C_1 \cap C_2$ is a facet of C_1 and C_2.

For every $A \in (\mathbb{R}^+)^n$ nonzero, we note $C(A) \in \mathcal{C}$ the cone of smallest dimension which contains A, and $d(A) \in \mathbb{N}$ its dimension. In particular, we have $1 \leq d(A) \leq n$ and $d(A) = n$ if and only if A belongs to the interior of a cone $C(F)$.

The proof of the proposition uses the following elementary results.

Lemma 4.7. Let $F \in \mathcal{F}$ and let $A, A' \in C(F)$ be two nonzero vectors such that $A' \not\in C(A)$. Then $A, A' \in C(A + A')$ and so $d(A + A') \geq d(A) + 1$.

Lemma 4.8. Let $F_1, \ldots, F_m \in \mathcal{F}$ be faces such that $\alpha_{F_1,1}, \ldots, \alpha_{F_m,1}$ are equal. Let $A \in (\mathbb{R}^+)^n$ be a vector belonging to the cone $C(F_1, \ldots, F_m) = C(F_1) \cap \cdots \cap C(F_m)$ and such that $\inf_{F \in C(F)} \langle \alpha_{F}, A \rangle = \alpha_{F_1,1}$. Then, for every $\epsilon \in \mathbb{R}^+$ small enough, the vector $A + \epsilon(1, 0, \ldots, 0)$ belongs to $C(F_1, \ldots, F_m)$.

Proof of Proposition 4.6. Without loss of generality, we assume that u is a monomial; we denote $A \in \mathbb{N} \times (\mathbb{N}^*)^{n-1}$ the n-uptlet such that $ux_2 \cdots x_n$ is \mathbb{C}-proportional to x^A.

Let $F_1 \in \mathcal{F}^+(u)$. Using Lemma 4.4, we have:

$$
\langle \alpha_{F_1,1}(s+2) + \rho^*(u) - k \rangle u \delta_k x_1 \delta_{k+1} x_1^{s+1} = \bar{x}_{F_1} \cdot u \delta_k x_1 \delta_{k+1} x_1^{s+1} - u h_{F_1} \delta_{k+1} x_1^{s+1}
$$

where $\bar{x}_{F_1} \cdot u \delta_k x_1 \delta_{k+1} x_1^{s+1} \in DO_{\rho^*(u)} \delta_{k+1} x_1^{s+1}$. If $w_1 = x^{A_1}$ is a monomial of the Taylor expansion of h_{F_1}, then two cases are possible:

- First case: $\rho^*(uw_1) > \rho^*(u) + 1$. Then $uw_1 \delta_{k+1} x_1^{s+1} \not\in O_{\rho^*(u)+1} \delta_{k+1} x_1^{s+1}$.

- Second case: $\rho^*(uw_1) = \rho^*(u) + 1$. As $\rho_F(h_{F_1}) \geq 1$ with an equality if and only if $F \neq F_1$, we have also $\mathcal{F}^+(uw_1) = \{ F \in \mathcal{F}^+(u) | A_1' \in F \}$ and this set does not contain F_1. From Lemma 4.7 applied with $A \in C(F_1) \cap C(F_2)$, $A' = A_1' \in C(F_2) - C(F_1)$ for $F_2 \in \mathcal{F}^+(uw_1)$, we get $d(A + A_1') \geq d(A) + 1$.

Hence, up to an element of the \(D \)-module \(\sum_{i=0}^n \mathcal{DO}_{>\rho}(u) \cdot \delta_k + x_1^{k+1} \), the element \((\alpha_{F,1}(s+2)+\rho(u)-k)\delta_k \cdot x_1^{k+1}\) is equal to a \(C \)-linear finite combination of terms \(uw_1 \delta_k + x_1^{k+1}\) with weight \(\rho(u) - k \) such that \(\mathcal{F}^*(uw_1) \subset \mathcal{F}^*(u) - \{ F_1 \} \) and \(d(A + A'_1) \geq 2 \) if \(w_1 a x_2 \cdots x_n = x^{A+1} A'_1 \).

Remark that if \(d(A + A') = n \) then \(\mathcal{F}^*(uw) \) has necessarily one element. So, when a polynomial \(c(s) \in C[s] \) allows to use \(n \) times this process, we prove that \(c(s) \delta_k \cdot x_1^{k+1} \) belongs to \(\mathcal{D}[s]_{\leq \deg c(s)-n} \sum_{i=0}^n \mathcal{DO}_{>\rho}(u) \cdot \delta_k + x_1^{k+1} \) then to \(\sum_{i=0}^{\deg c(s)} \mathcal{DO}_{>\rho}(u) \cdot \delta_k + x_1^{k+1} \) (Lemma 4.4). In particular, the polynomial \(\prod_{a \in \mathcal{A}^*(u)} (a(s+2) + \rho(u) - k) \) is suitable. We will prove that the power \(n - 1 \) is sufficient.

It is easy to see that it is true if \(d(A) \geq 2 \). Remark that it is again true when there exists \(a \in \mathcal{A}^*(u) \) such that \(c_{F,1} = a \) for at most \(n-1 \) faces \(F \in \mathcal{F}^*(u) \) (this is true if \(n = 2 \)). Indeed, by taking such a face \(F_1 \in \mathcal{F}^*(u) \), the polynomials of degree less or equal to \(n \) so used to get terms \(uw_1 \cdot w_i \delta_k \cdot x_1^{k+1}, i \leq n \), with a weight strictly greater than \(\rho(u) - k \), are multiples of \((a(s+2) + \rho(u) - k)\), but they cannot be equal to \((a(s+2) + \rho(u) - k)\). A similar argument allows us to conclude that there exists \(F_1 \in \mathcal{A}^*(u) \) such that, for every monomial \(u_1 \) of the Taylor expansion of \(h_{F,1} \) with \(\rho(u_1) = \rho(u) - 1 \), the set \(\mathcal{A}^*(u_1) \) is not reduced to \(\{ \alpha_{F,1} \} \).

So we have just to consider the following case: \(n \geq 3, d(A) = 1 \), and, for every \(F \in \mathcal{F}^*(u) \), there exists at least one monomial \(w = x^{A'} \) in the Taylor expansion of \(h_{F,1} \) such that \(\rho(uw) = \rho(u) + 1, d(A + A') = 2, \mathcal{A}^*(uw) \subset \{ \alpha_{F,1} \} \) and the set \(\mathcal{F}^*(uw) \) has at least \(n - 1 \) elements. We will prove that after at least \(n - 1 \) iterations of the general process given above, we get a sum of terms \(uw_1 \cdots w_i \delta_k \cdot x_1^{k+1}, i \leq n - 1 \) with a weight strictly greater than \(\rho(u) - k \).

Let \(F_1 \in \mathcal{F}^*(u) \) such that \(\alpha_{F,1} \) is the smallest element of \(\mathcal{A}^*(u) \). Let \(w_1 = x^{A'_1} \) be a monomial in the Taylor expansion of \(h_{F,1} \) which verifies the requisite conditions, and let \(\mathcal{F}^*(uw_1) = \{ F_2, \ldots, F_m \} \). Let us prove that \(A + A'_1 \) is necessarily in the interior of the cone \(\{ 0 \} \times (\mathbb{R}^+)^{n-1} \). Otherwise the vector \(A + A'_1 \in (\mathbb{N}^+)^n \) is in the interior of the cone \(C(F_2, \ldots, F_m) = C(F_2) \cap \cdots \cap C(F_m) \) and \(A'_1 \notin C(F_1) \). As \(A \in C(A + A'_1) \cap C(F_1) \) and \(A'_1 \neq C(F_1) \), the cone \(C(F_1, F_2, \ldots, F_m) \) is contained in a facet of \(C(A + A'_1) \). Then for a dimensional argument, it coincides with \(C(A) \). But, from Lemma 4.8, this is not possible because \(d(A) = 1 \) and \(A \in \mathbb{N} \times (\mathbb{N}^+)^{n-1} \). So the assertion is proved.

Now we apply this process for the face \(F_2 \). If \(d(A + A'_1 + A'_2) \geq 4 \), at least \(n - 3 \) additional iterations are enough for ending. So we can assume that \(d(A + A'_1 + A'_2) = 3 \). But \(d(A + A'_1) = 2 \) and \(C(A + A'_1) \subset \{ 0 \} \times (\mathbb{R}^+)^{n-1} \).
So, using again the above argument, we obtain also that $A'_2 \in \{0\} \times (\mathbb{R}^+)^{n-1}$ necessarily, and then $C(A + A'_1 + A'_2) \subset \{0\} \times (\mathbb{R}^+)^{n-1}$. Iterating again at least $n - 4$ times this process and the argument, if it is not finished, then $C(A + A'_1 + \cdots + A'_{n-2})$ is a cone in $\{0\} \times (\mathbb{R}^+)^{n-1}$ of dimension $n-1$. But also $\mathcal{F}^*(uw_1 \cdots w_{n-2})$ is reduced to $\{F\}$ and after a last iteration, $\rho^*(uw_1 \cdots w_{n-2})$ is strictly greater than $\rho^*(u) - k$. This ends the proof.

§4.3. Filtrations and roots of $\tilde{b}_t(s)$

For every $\ell \in \mathbb{N}^*$, the weight function ρ^* may be extend to $\bigoplus_{k \geq \ell} E\delta_k x_1^{s+1}$ by $\rho^*(\sum_k u_k \delta_k x_1^{s+1}) = \min_{k \leq \ell} \{\rho^*(u_k) - k\}$. It induces the decreasing filtration $(\bigoplus_{k \geq \ell} E\delta_k x_1^{s+1})_{\geq q} = \bigoplus_{k \geq \ell} E_{s+1,q+k}^* \delta_k x_1^{s+1}$, $q \in \mathbb{Q}$. Then the spaces Z_{ℓ}, Z_{ℓ}' and Z_{ℓ}/Z_{ℓ} get the induced filtrations and we have:

$$
\text{gr}^* Z_{\ell} \hookrightarrow \text{gr}^* Z_{\ell}' \hookrightarrow \text{gr}^* \left(\bigoplus_{k \geq \ell} E\delta_k x_1^{s+1} \right) \cong \bigoplus_{q \geq \ell} \left(\bigoplus_{k \geq \ell} E_{s+1,q+k}^* \delta_k x_1^{s+1} \right)
$$

For every $U = \sum_k u_k \delta_k x_1^{s+1} \in \bigoplus_{k \geq \ell} E\delta_k x_1^{s+1}$ nonzero, the initial part of U is the element in $\text{in}^*(U) \in \bigoplus_{k \geq \ell} E_{s+1}^* (U) + \delta_k x_1^{s+1}$ defined by:

$$
\text{in}^*(U) = \sum_{\rho^*(u_k) - k = \rho^*(U)} \text{in}^*(u_k) \delta_k x_1^{s+1}
$$

If $G \subset \bigoplus_{k \geq \ell} E\delta_k x_1^{s+1}$ is a nonzero subspace, we will denote $\text{in}^*(G)$ the subspace of $\bigoplus_q (\bigoplus_{k \geq \ell} E_{s+1,q+k}^* \delta_k x_1^{s+1})$ generated by the initial parts of the nonzero vectors of G. For $q \in \mathbb{Q}$, let us denote $Z_{\ell,q} = \text{in}^*(Z_{\ell}) \cap \bigoplus_{k \geq \ell} E_{s+1,q+k}^* \delta_k x_1^{s+1}$, and $Z_{\ell,q}' = \text{in}^*(Z_{\ell}') \cap \bigoplus_{k \geq \ell} E_{s+1,q+k}^* \delta_k x_1^{s+1}$. In particular, the rational numbers q with $Z_{\ell,q}' \neq 0$ are contained in $\{q \in \mathbb{Q} \mid \exists k \in \mathbb{N}^*, q + k \in \Pi^*\}$.

Using (8) and Lemma 4.3, we prove that the action of s on Z_{ℓ}'/Z_{ℓ} respects the filtration by ρ^* and induces an action of degree zero on $\text{gr}^* (Z_{\ell}'/Z_{\ell})$. For every $q \in \mathbb{Q}$, let us denote $\tilde{b}_{\ell,q}(s)$ the minimal polynomial of s on $\text{gr}^* (Z_{\ell}'/Z_{\ell})$. So, from Theorem 1.1, we have:

Theorem 4.9. *The polynomial $\tilde{b}_t(s)$ is the l.c.m. of the polynomials $\tilde{b}_{\ell,q}(s)$:*

$$
\tilde{b}_t(s) = \text{l.c.m.} Z_{\ell,q} \subseteq Z_{\ell}' \tilde{b}_{\ell,q}(s)
$$

Remark that, contrary to the classical case, the polynomials $\tilde{b}_{\ell,q}(s)$ are not a power of an affine form (see Lemma 4.5). In Proposition 4.6, we have proved that the multiplicities of their roots are strictly smaller than n. Thus:
Theorem 4.10. The multiplicity of a root of $\tilde{b}_t(s)$ is at most $n - 1$.

Remark 4.11. Up to a change of notations, the first part of the proof of Proposition 4.6 allows to prove in the case of a non-degenerate convenient germ that the multiplicities of its reduced Bernstein polynomial are raised by n.

§4.4. The effective computation

Thus the determination of $\tilde{b}_t(s)$ needs the one of spaces Z^*_t, and $Z^*_{t,q}$, $q \in \mathbb{Q}$. Here we adapt the method given in [2], and we apply it on an example.

Using the following formula:

$$
(\alpha F_1(s + 1) + w - (\alpha F_1) - \chi F_1) \partial x^p a_1 x^{p+1} = \partial x^p [(w + k - |\alpha F_1|)u - \chi F_1(u)] \partial x^{p+1} - \partial x^p u \partial x_{k+1} x^{p+1}
$$

for $u \in \mathcal{O}$, $k \in \mathbb{N}^*$, $w \in \mathbb{C}$, $\beta \in \mathbb{N}$, and Lemma 4.3, we construct a sequence $(S_{t,m})_{1 \leq m \leq M_t}$ of good operators $S_{t,m}$ in degree m, a creasing sequence of rational numbers $(q_{t,m})_{1 \leq m \leq M_t - 1}$ with $q_{t,1} \geq \rho(s) x_{1} g_{x_1}'$, and a sequence $(H_{t,m})_{1 \leq m \leq M_t - 1}$ of elements of $D_{k \geq t} \partial \delta x_{1}^{p+1}$ such that:

- $S_{t,m} x_{1} g_{x_1}' \delta x_{1}^{p+1} - H_{t,m} \in D_{\partial} \delta x_{1}^{p+1}$ for $1 \leq m \leq M_t - 1$;
- $S_{t,M_t} x_{1} g_{x_1}' \delta x_{1}^{p+1} \in D_{\partial} \delta x_{1}^{p+1}$;
- $H_{t,m} = \sum_{\ell \leq k \leq m - 1} H_{t,m,k} \delta x_{1}^{p+1}$ with $H_{t,m,k} \in D_{\delta, \partial}^{\ast}$ of degree at least $m + \ell - k - 1$.

Then this sequence $(H_{t,m})$ determines Z_t:

$$Z_t = \left\{ \sum_{m=1}^{M_t-1} c_m(a_m H_{t,m}) + c_\ell(a_0 x_{1} g_{x_1}' \delta x_{1}^{p+1}) \mid a_m \in \mathcal{O} \right\}
$$

because Z_t coincides with $c_\ell(D[s] x_{1} g_{x_1}' \delta x_{1}^{p+1})$ (Lemma 3.3) and, for every $P(s) \in D[s]$:

$$P(s) x_{1} g_{x_1}' \delta x_{1}^{p+1} = \sum_{m=1}^{M_t-1} D S_{t,m} x_{1} g_{x_1}' \delta x_{1}^{p+1} + D x_{1} g_{x_1}' \delta x_{1}^{p+1} + D_{\partial} \delta x_{1}^{p+1}
$$

Indeed, by division we have: $P(s) = P_{Mt} S_{t,M_t} + \sum_{m=1}^{M_t-1} P_m S_{t,m} + P_0$ where $P_m \in D$, $0 \leq m \leq M_t - 1$, and $P_{Mt} \in D[s]_{\leq d-M_t}$ if $d \in \mathbb{N}$ is the degree in s of $P(s)$. An induction on d allows us to conclude, using Remark 2.4 and that $S_{t,M_t} x_{1} g_{x_1}' \delta x_{1}^{p+1} \in D_{\partial} \delta x_{1}^{p+1}$.

The determination of Z^*_t is similar, using sequences $(S^*_{t,m})_{1 \leq m \leq M_t}$, $(q^*_{t,m})_{1 \leq m \leq M_t - 1}$ with $q^*_{t,1} \geq \rho(s) x_{1} g_{x_1}'$, and $(H^*_{t,m})_{1 \leq m \leq M_t - 1}$.
Remark 4.12. If the Newton polyhedron of g has only one $(n-1)$-dimensional face F - with normal vector $\alpha \in (\mathbb{Q}^+)^n$ - the algorithm is very simple, exactly as in [2], part 2. In fact, it is enough to suppose that $g|_F$ and $(g|_F,x_1)$ define some isolated singularities, i.e. g, (g,x_1) are semi-weighted-homogeneous morphism. Then the division theorem used in [2], p. 593, is sufficient, and so the weight function $\rho = \rho_F$ is enough. Moreover, II is also the set of the weights of a weighted-homogeneous co-basis of the ideal $\text{in}(\mathcal{J}) = (\text{in}(g), \text{in}(g_{x_2}), \ldots, \text{in}(g_{x_n}))\mathbb{C}[x]$, with $\sigma = n - 2|\alpha| + 1$, and the formula given in Lemma 4.4 ends in one time:

$$(\alpha_1(s+1) + |\alpha| + \rho(u) - k)u^{\delta_k} x_1^{s+1}$$

$$\in \mathcal{D}O_{>\rho(u)}^{\delta_k} x_1^{s+1} + \mathcal{D}O_{\geq \rho(u) + \rho(h)}^{\delta_k+1} x_1^{s+1}$$

where $h = \chi(g) - g$. Hence $\langle \alpha_1(s+1) + |\alpha| + q \rangle$ annihilates $gr_q \mathcal{Z}_i/\mathcal{Z}_t$, and the polynomial $\tilde{b}_t(s)$ is given by:

$$\tilde{b}_t(s) = \prod_{z_i \in \mathcal{Z}_i} \left(s + 1 + \frac{|\alpha| + q}{\alpha_1}\right)$$

When g is in fact a weighted-homogeneous polynomial, we easily get:

$$\tilde{b}_t(s) = \prod_{p \in \Pi'} \left(s + \frac{|\alpha| + 1 + p - \ell}{\alpha_1}\right)$$

where $\Pi' \subset \mathbb{Q}^+$ is the set of the weights of a weighted homogeneous co-basis of $(x_1, g_{x_2}, \ldots, g_{x_n})\mathcal{O}$ (see [22]).

Example. Let g be the germ $x_1^d + x_2^d + x_3^d + x_1^2 x_2^2 x_3^2$ with $d \geq 9$, and $f = x_1$. The computation of the Bernstein polynomial of g is done in [2]. Here we determinate the polynomials $b_t(s)$, $\ell \in \mathbb{N}^*$.

The Newton polyhedron of g has exactly three 2-dimensional faces F_1, F_2, F_3, with normal vectors associated:

$$\alpha_{F_1} = \left(\frac{1}{2} - \frac{2}{d}, \frac{1}{d}, \frac{1}{d}\right), \quad \alpha_{F_2} = \left(\frac{1}{d}, \frac{1}{d}, \frac{1}{2} - \frac{1}{d}\right), \quad \alpha_{F_3} = \left(\frac{1}{d}, \frac{1}{2}, \frac{1}{d} - \frac{2}{d}\right)$$

So $|\alpha_{F_1}| = 1/2$ and $h_{F_1} = (d/2 - 3)x_i^d$, $1 \leq i \leq 3$.

The ideal \mathcal{J} is generated by g, $g'_{x_2} = dx_2^{d-1} + x_1^2 x_2 x_3^2$ and $g'_{x_3} = dx_3^{d-1} + 2x_1^2 x_2 x_3$. By taking away the non multiple of $x_2 x_3$ monomials from the monomial basis of $\mathcal{I}(g) = (g, x_2 g'_{x_2}, x_3 g'_{x_3})\mathcal{O}$ given in [2], B.4.2.2.3, we obtain (using the isomorphism λ) the following monomials:
\[\begin{array}{|c|c|c|}
\hline
u & \rho^*(u) & \\
\hline
(x_1 x_2 x_3)^{\varepsilon} x_1 & (\varepsilon + 1)/2 & 0 \leq \varepsilon \leq 4 \\
(x_1 x_2 x_3)^{\varepsilon} x_1 x_1' & (\varepsilon + 1)/2 + i/d & 0 \leq \varepsilon \leq 2, 1 \leq i \leq d - 1, 1 \leq \theta \leq 3 \\
(x_1 x_2 x_3)^{\varepsilon} x_2' x_3' & \varepsilon/2 + (i + j + 2)/d & 0 \leq \varepsilon \leq 1, 0 \leq i, j \leq d - 2 \\
x_1'^{j} x_0' & 1/2 + (i + j)/d & 1 \leq i, j \leq d - 1, \theta = 2, 3 \\
\hline
\end{array}\]

So this gives a basis of a supplementary \(E \subset \mathcal{O} \) of the ideal \(\mathcal{J} \). Thus \(\sigma^* = 5/2 \), and \(\Pi^* = \{1/2 + k/d \mid 0 \leq k \leq 2d\} \cup \{k/d \mid 2 \leq k \leq 2d\} \).

Now we determinate the space \(Z_\ell = c_\ell(D[s]_x g_{x_1}^d \delta_{\ell x_1^{\varepsilon+1}}) \). First we remark that the division of \(x_1 g_{x_1}^d \) by \(\mathcal{J} \) is given by:

\[x_1 g_{x_1}^d = dx_1 + \frac{2}{d-4} (dg - x_2 g_{x_2}^d - x_3 g_{x_3}^d)\]

Without loss of generality, it is also enough to find the sequence \((H_{\ell,m})\) associated with \(x_1^d \delta_{x_1^{\varepsilon+1}} \). We have the identities:

\[
\left(\frac{1}{d}(s + 1) + \frac{3}{2} - \ell - \mathcal{F}_s\right) x_1^d \delta_{x_1^{\varepsilon+1}} = \left(\frac{6 - d}{2}\right) x_1^d x_2^d \delta_{x_1^{\varepsilon+1}}
\]

\[
\left(\frac{1}{d}(s + 1) + \frac{3}{2} - \ell - \mathcal{F}_s\right) x_1^d x_2^d \delta_{x_1^{\varepsilon+1}} = \left(\frac{6 - d}{2}\right) x_1^d x_2^d \delta_{x_1^{\varepsilon+1}}
\]

where \(\rho^*((x_1 x_2 x_3)^d) = d/2 + 2/d > \sigma^* + 2 \) because \(d \geq 9 \). Hence the term \((x_1 x_2 x_3)^d \delta_{x_1^{\varepsilon+1}} \) belongs to \(D\mathcal{J} \delta_{x_1^{\varepsilon+1}} \) and so \(M_\ell = 2 \). We get \(H_{\ell,1} \) by rewriting \((d(6 - d)/2)x_1^d x_2^d \delta_{x_1^{\varepsilon+1}}\). As \(dx_1^d x_2^d = x_1^d x_2 g_{x_2}^d - 2(x_1 x_2 x_3)^2 x_1^d \), we obtain:

\[H_{\ell,1} = (d - 6)(x_1 x_2 x_3)^2 x_1^d \delta_{x_1^{\varepsilon+1}} + d\left(\frac{d - 6}{2}\right) \left[x_1^d - \frac{\partial}{\partial x_2} x_1^d x_2^d\right] \delta_{x_1^{\varepsilon+1}}\]

Consequently, \(Z_\ell \) is equal to \(c_\ell(O x_1^d x_2^d x_3^d + O(x_1 x_2 x_3)^2 x_1^d \delta_{x_1^{\varepsilon+1}}) \). So we find:

\[Z_\ell = G \delta_{x_1^{\varepsilon+1}} \oplus C(x_1 x_2 x_3)^2 x_1^d \delta_{x_1^{\varepsilon+1}} \oplus C(x_1 x_2 x_3)^4 x_1^d \delta_{x_1^{\varepsilon+1}}\]

where \(G \subset E \) is the subspace generated by the monomials:

\[
\begin{aligned}
(x_1 x_2 x_3)^2 x_1 & \quad 2 \leq \varepsilon \leq 4 \\
(x_1 x_2 x_3)^2 x_1' & \quad \varepsilon = 0, \ i = d, \text{ or } \varepsilon = 1, \ i = d - 1, d, \text{ or } \varepsilon = 2, \ 2 \leq i \leq d \\
(x_1 x_2 x_3)^2 x_1 x_1' & \quad \varepsilon = 1, \ i = d - 1 \text{ or } \varepsilon = 2, \ 1 \leq i \leq d - 1 (\theta = 2, 3) \\
(x_1 x_2 x_3)^2 x_2' x_3' & \quad \varepsilon = 0, \ i = j = d - 2 \text{ or } \varepsilon = 1, \ d - 3 \leq i, j \leq d - 2 \\
x_1'^i x_0' & \quad i = d, \ 1 \leq j \leq d - 1 \text{ or } d - 2 \leq i, j \leq d - 1 (\theta = 2, 3)
\end{aligned}
\]
The determination of the sequence \((H_{\ell,m}) \) associated with \(g_{x_2} \delta x_1^{x_1+1} \) is similar (for more details, see [22]). So we obtain that the quotient space \(\mathcal{Z}_\ell^*/\mathcal{Z}_\ell \) may be identified to:

\[
G' \delta \ell x_1^{x_1+1} \oplus \mathbb{C}(x_1 x_2 x_3)^2 x_1^{d-1} \delta \ell x_1^{x_1+1}
\]

where \(G' \subset E \) is the \(\mathbb{C} \)-vector space generated by the \(d(d-2) \) monomials:

\[
\begin{align*}
(x_1 x_2 x_3)^{x_1} & \quad \varepsilon = 0, \ i = d - 1, \ \text{or} \ \varepsilon = 1, \ i = d - 2 \\
(x_1 x_2 x_3)^{x_2 x_3} & \quad 1 \leq i, j \leq d - 2 \ \text{except} \ d - 3 \leq i, j \leq d - 2 \\
x_1^{x_1} x_3^j & \quad i = d - 1, \ 1 \leq j \leq d - 3, \ \text{or} \ i = d - 3, \ d - 1 \leq j \leq d - 2
\end{align*}
\]

for every \(\ell \in \mathbb{N}^* \), expect if \(d \) is even and \(\ell = 2 \). In this case, the four monomials \(x_1^{d-1} x_3^{d/2+1} \), \(x_3^{d/2+1} x_2 x_3(x_1 x_2 x_3) \), \(\theta = 2, 3 \), do not belong to \(G' \), and \(G' \) have the following two vectors in addition \(x_3^{d/2+1} g_{x_2} = d x_1^{d-1} x_3^{d/2+1} + 2 x_3^{d/2+1} x_2 x_3(x_1 x_2 x_3) \), \(\theta = 2, 3 \).

In order to study the action of \(s \) on nonzero spaces \(\mathcal{Z}_\ell^*/\mathcal{Z}_\ell \), we use the relation:

\[
(\alpha_{F_i}(s + 2) + \rho^*(u) - k) u \delta_{k} x_1^{x_1+1} = \frac{6 - d}{2} u x_1^{x_1+1}
\]

where \(u \) is a monomial and \(F_i \in \mathcal{F} \) such that \(\rho^*(u) = \rho_{F_i}(u) \), and we compute the image by \(c_{\ell} \) after rewriting by division. For every \(u \delta_{k} x_1^{x_1+1}, \ u \in G' \), the computation gives zero - in \(\text{gr} \rho^*(u) - \mathcal{Z}_\ell^*/\mathcal{Z}_\ell \) - with one exception if \(u = x_1^{d-1} \):

\[
\left(\frac{1}{d} (s + 2) + \frac{3}{2} - \frac{2}{d} - \ell \right) x_1^{d-1} \delta \ell x_1^{x_1+1} = \frac{d - 6}{2d} (x_1^{d-1} \delta \ell x_1^{x_1+1} + 2 x_1 x_2 x_3)^{d-1} \delta \ell x_1^{x_1+1}
\]

and \((1/d)(s + 2) + 3/2 - 2/d - \ell)^2 \delta \ell x_1^{x_1+1} = 0. Consequently, \(b_i(s) \) is the l.c.m. of \((1/d)(s + 2) + 3/2 - 2/d - \ell)^2\) and of \((\alpha_{F_i}(s + 2) + \rho^*(u) - \ell)\) with \(F \in \mathcal{F}^*(u) \), \(u \neq x_1^{d-1} \) in the given basis of \(G' \). Then in the general case, we have:

\[
b_i(s) = \text{l.c.m.} \left\{ \begin{array}{l} s + d(2 - \ell) - 1, \left(s + d\left(\frac{3}{2} - \ell\right) \right)^{2d-3} \prod_{i=1}^{2d-8} \left(s + d\left(\frac{3}{2} - \ell\right) + i \right) \end{array} \right\}
\]

where the last polynomial is the one of the monomials \(u \) with \(\mathcal{F}^*(u) = \{ F_i \} \).
References

