The Ergodicity of the Convolution $\mu \ast \nu$ on a Vector Space

By

Yoshiaki OKAZAKI* and Yasuji TAKAHASHI**

Abstract

Let G be a subgroup of a vector space X and μ, ν be two probability measures on X. If μ and ν are G-quasi-invariant and G-ergodic, then the convolution $\mu \ast \nu$ is also G-ergodic.

§ 1. Introduction

Let X be a vector space, \mathcal{B} be a subspace of X^* (the algebraic dual of X) and $\mathcal{B}_{\mathcal{B}}$ be the smallest σ-algebra on X which makes each $x' \in \mathcal{B}$ measurable. For probability measures μ and ν on $\mathcal{B}_{\mathcal{B}}$, μ is said to be absolutely continuous with respect to ν (denoted by $\mu < \nu$) if $\nu(A) = 0, A \in \mathcal{B}_{\mathcal{B}}$, implies that $\mu(A) = 0$. μ and ν are equivalent (denoted by $\mu \sim \nu$) if $\mu < \nu$ and $\nu < \mu$. Denote by $A \ominus B = (A \cap B') \cup (A^c \cap B)$ the symmetric difference.

Denote by $\tau_x(x \in X)$ the translation $\tau_x(z) = z + x$. $\tau_x: (X, \mathcal{B}_{\mathcal{B}}) \rightarrow (X, \mathcal{B}_{\mathcal{B}})$ is measurable and $\tau_x \mathcal{B}_{\mathcal{B}} = \mathcal{B}_{\mathcal{B}}$ for every $x \in X$. We put for $x \in X$,

$$\mu_x(A) = \tau_x(\mu)(A) = \mu(A - x), A \in \mathcal{B}_{\mathcal{B}}.$$

Let $A_\mu = \{x \in X; \mu_x \sim \mu\}$ be the set of all admissible translates of μ. A_μ is an additive subgroup of X. For a subset $G \subseteq X$, μ is called G-quasi-invariant if $G \subseteq A_\mu$, and μ is called G-ergodic if $\mu(A \ominus (A - x)) = 0$ for every $x \in G$ implies that $\mu(A) = 0$ or 1.

* Department of Mathematics, Kyushu University 33, Fukuoka 812, Japan.
** Department of Mathematics, Yamaguchi University, Yamaguchi 753, Japan.
(Current address: School of Health Sciences, Okayama University, Shikata, Okayama 700, Japan.)
convolution $\mu \ast \nu$ of two probability measures μ and ν is defined as follows:

$$\mu \ast \nu(A) = \int_X \mu(A - x) d\nu(x).$$

$\mu \ast \nu$ coincides with the image measure $\phi(\mu \times \nu)$, where $\mu \times \nu$ is the product measure on $(E \times E, \mathcal{B} \otimes \mathcal{B})$.

It holds that $A_{\mu \ast \nu} \supset A_\mu + A_\nu$, see Yamasaki [2], p. 170, [3], Theorem 13.1. By this result, for a subgroup G of X, it follows that if μ or ν is G-quasi-invariant, then $\mu \ast \nu$ is also G-quasi-invariant.

Concerning the ergodicity of $\mu \ast \nu$, Yamasaki [2], p. 170, raised the following problem.

Problem. Let G be a subgroup of X and let μ, ν be probability measures on (X, \mathcal{B}) which are G-quasi-invariant and G-ergodic. Then is the convolution $\mu \ast \nu$ G-ergodic?

Yamasaki [2], Theorem 23.2, proved that if G is either

(1) G is a linear subspace of algebraically countable dimension, or

(2) G is a complete separable metrizable topological vector subspace of X such that the identity $G \to X_{\sigma(X, \mathcal{B})}$ is continuous, where $\sigma(X, \mathcal{B})$ is the weak topology determined by \mathcal{B},

then the answer is affirmative.

In this paper, we shall prove that the answer to the above problem is affirmative without any assumption on G.

§ 2. Main Result

Theorem. Let μ, ν be probability measures on (X, \mathcal{B}) and G_μ, G_ν be two subgroups of X. Suppose that μ, ν be G_μ, G_ν-quasi-invariant and G_μ, G_ν-ergodic, respectively. Suppose also that $G_\nu \subseteq A_\mu$, that is, μ is G_ν-quasi-invariant. Then $\mu \ast \nu$ is G_μ-ergodic.

Corollary. Let μ, ν be probability measures on (X, \mathcal{B}) and G be a
subgroup of \(X \). If \(\mu \) and \(\nu \) are \(G \)-quasi-invariant and \(G \)-ergodic, then \(\mu \ast \nu \) is \(G \)-ergodic.

To prove the theorem, we use the following lemma due to Yamasaki [2], Theorem 25. 6, p. 182. The proof given here is a modification of Shimomura [1], p. 706–707.

Lemma. Let \(\{x_n\} \subset A_\mu \) be a net satisfying that

\[
\int |(d\mu_{x_n}/d\mu)(z)| - 1 |d\mu(z)| \to 0.
\]

Then it follows that \(\mu(B \ominus (B - x_n)) \to 0 \) for every \(B \in \mathcal{B}_G \).

Proof. First we show that \(x_n \to 0 \) in \(\sigma(X, \mathcal{B}) \). For every \(x' \in \mathcal{R} \), take \(\delta \) so that \(|t| < \delta \) implies that

\[
|\sum \exp(it\langle z', x'\rangle) d\mu(z)| > 1/2. \]

By

\[
|1 - \exp(it\langle x_n, x'\rangle)| \left| \int \exp(it\langle z, x'\rangle)d\mu(z) \right| = \left| \int \exp(it\langle z, x'\rangle)(d\mu_{x_n}/d\mu)(z) - 1 |d\mu(z)|, \right.
\]

we have

\[
|1 - \exp(it\langle x_n, x'\rangle)| < 2 \int |(d\mu_{x_n}/d\mu)(z)| - 1 |d\mu(z) |
\]

for every \(t \) with \(|t| < \delta \). Thus \(\langle x_n, x'\rangle \to 0 \).

Next we claim that

\[
\int |(d\mu_{x_n}/d\mu)(z)f(z - x_n) - f(z) |d\mu(z)| \to 0 \quad \text{for every } f \in L^1(X, \mathcal{B}_G).
\]

In fact, for each function of the form

\[
f(z) = \sum \gamma_j \exp(it\langle z, x_j'\rangle), \quad \gamma_j \text{ are real numbers and } x_j \in \mathcal{R},
\]

the assertion holds since \(\langle x_n, x_j'\rangle \to 0 \) for every \(j \). Since these functions are dense in \(L^1(X, \mathcal{B}_G) \), we get the claim.

For every \(B \in \mathcal{B}_G \), we have

\[
\mu(B \ominus (B - x_n)) = \int |\chi_{B-x_n}(z) - \chi_B(z) |d\mu(z) \leq \int |(d\mu_{x_n}/d\mu)(z) - 1 |d\mu(z) + \int |d\mu(z) + \int |(d\mu_{x_n}/d\mu)(z)\chi_B(z + x_n) - \chi_B(z) |d\mu(z)| \to 0
\]

remarking that

\[
\int |(d\mu_{x_n}/d\mu)(z) - 1 |d\mu(z) = \int |(d\mu_{x_n}/d\mu)(z) - 1 |d\mu(z)|,
\]

where \(\chi_B \) is the characteristic function of \(B \). This proves the Lemma.

Proof of the Theorem. Suppose that for \(A \in \mathcal{B}_G \), \(\mu \ast \nu \) is \(\sigma(A \ominus (A - x)) \)
= 0 for every \(x \in G_n \). By the definition of the \(\sigma \)-algebra \(\mathcal{B}_\mathcal{G} \), there exists a countable subset \(\Gamma = \{ x'_i \}_{i=1}^{\infty} \subset \mathcal{G} \) such that \(A \in \mathcal{B}_\Gamma \); \(\mathcal{B}_\Gamma \) is the minimal \(\sigma \)-algebra on \(X \) which makes each \(x'_i \,(i=1,2,\ldots) \) measurable. The measures \(\mu, \nu \) are also \(G_n, G_{\nu} \)-quasi-invariant and \(G_n, G_{\nu} \)-ergodic on the sub-\(\sigma \)-algebra \(\mathcal{B}_\Gamma \subset \mathcal{B}_\mathcal{G} \). Consequently, in order to show \(\mu \ast \nu(A) = 0 \) or 1, we can suppose in advance that the \(\sigma \)-algebra \(\mathcal{B}_\mathcal{G} \) is countably generated. In particular, \(L^1(X, \mathcal{B}_\mathcal{G}) \) is separable.

Take a countable dense subset \(\{ d\mu_x/d\mu \}_{x=1}^{\infty} \) of \(\{ d\mu_x/d\mu \; ; \; x \in G_n \} \) in \(L^1(X, \mathcal{B}_\mathcal{G}) \). We claim that for each \(A \in \mathcal{B}_\mathcal{G} \), if \(\mu(A \ominus (A-x_n)) = 0 \) for every \(n \), then \(\mu(A \ominus (A-x)) = 0 \) for every \(x \in G_n \). Let \(x \in G_n \) be arbitrary. By \(\mu(A \ominus (A-x)) = 0 \) for every \(n \), it follows that \(\mu(A \ominus (A-x)) = \mu((A-x_n) \ominus (A-x)) \) for every \(n \). By the preceding Lemma (putting \(B = A - x \)), for every \(\varepsilon > 0 \), there exists \(\delta = \delta(A, x, \varepsilon) \) such that \(\int |(d\mu_x/d\mu)(z) - 1| d\mu(z) < \delta \) implies \(\mu((A-x) \ominus (A-x-y)) < \varepsilon \). By the definition of the sequence \(\{ x_n \} \), there exists \(n = n(\delta) \) such that \(\int |(d\mu_x/d\mu)(z) - (d\mu_x/d\mu)(z)| d\mu(z) = \int |(d\mu_x/d\mu)(z)| d\mu(z) < \delta \). Thus we have \(\mu((A-x) \ominus (A-x_n)) = \mu((A-x) \ominus (A-x - (x + x_n))) < \varepsilon \), that is, \(\mu(A \ominus (A-x)) < \varepsilon \) for every \(\varepsilon > 0 \) which proves \(\mu(A \ominus (A-x)) = 0 \).

By \(\mu \ast \nu(A \ominus (A-x_n)) = \int_x \mu((A-z) \ominus (A-z-x_n)) d\nu(z) = 0 \) for every \(n \), there exists a subset \(\Omega \in \mathcal{B}_\mathcal{G} \) satisfying that \(\nu(\Omega) = 1 \) and \(\mu((A-z) \ominus (A-z-x_n)) = 0 \) for every \(n \) and for every \(z \in \Omega \). By the second step of this proof and by the ergodicity of \(\mu \), it follows that \(\mu(A-z) = 0 \) or 1 for every \(z \in \Omega \). We set \(B = \{ z \in X ; \mu(A-z) = 1 \} \). Since \(G_\nu \subset A_\nu \), \(B \) is a \(G_\nu \)-invariant subset. By the \(G_\nu \)-ergodicity of \(\nu \), it follows that \(\nu(B) = 0 \) or 1. If \(\nu(B) = 1 \), then we have \(\mu \ast \nu(A) = 1 \) and if \(\nu(B) = 0 \) then \(\mu \ast \nu(A) = 0 \). Thus \(\mu \ast \nu(A) = 0 \) or 1. This completes the proof.

References

